A Lower bounds

In this section, we show the following lower bound:

Theorem A.1. Any algorithm for Euclidean (k, ℓ)-clustering with a finite approximation ratio has average sensitivity $\Omega(k/n)$.

We note that, for algorithms that select with probability $\Omega(k/n)$, there is a trivial lower bound of $\Omega(k/n)$ because when one of the centroids is deleted, which happens with probability $\Omega(k/n)$, the algorithm must change its output. Theorem A.1 shows that the same lower bound applies even for algorithms that may select centroids from $\mathbb{R}^d \setminus X$.

Proof of Theorem A.1. Let A be an algorithm with a finite approximation ratio. Let $X = \{x_1, \ldots, x_n\}$ be a set of points in \mathbb{R}^d such that x_1, \ldots, x_{k+1} are all distinct and $x_{k+1} = x_{k+2} = \cdots = x_n$. Then for any $X^{(i)}$ with $1 \leq i \leq k$, the set $Z_i := \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k+1}\}$ is the unique optimal solution, which gives the objective value zero. Hence to have a finite approximation ratio, the algorithm A must output Z_i on $X^{(i)}$. Let p_i be the probability that the algorithm A outputs Z_i on X. Then, the average sensitivity of A on X is

$$\frac{1}{n} \sum_{i=1}^{n} d_{TV}(A(X), A(X^{(i)})) \geq \frac{1}{n} \sum_{i=1}^{k} d_{TV}(A(X), A(X^{(i)})) \geq \frac{1}{n} \sum_{i=1}^{k} (1 - p_i) \geq \frac{1}{n} (k - 1) = \Omega\left(\frac{k}{n}\right).$$

\[\square\]

B Proof of Lemma 3.5

The following useful lemma is implicit in the proof of Lemma 2.3 of [15].

Lemma B.1. For $\epsilon, B, B' > 0$, let X and X' be sampled from the uniform distributions over $[B, (1 + \epsilon)B]$ and $[B', (1 + \epsilon)B']$, respectively. Then, we have

$$d_{TV}(X, X') \leq \frac{1 + \epsilon}{\epsilon} \left| 1 - \frac{B'}{B} \right|.$$

Proof of Lemma 3.5. We now analyze the size of the coreset. As we mentioned, the approximation ratio of D^k-SAMPLING is $O(2^k \log k)$. Also, we have $\mathbb{E} \sum_{x \in X} s_{X, Z}(x) \leq 2^{2^k} O(\log^2 k)k = O(2^k \log^2 k)$ by Lemma 3.4. Hence by the choice of m_Z, the size of C is at most

$$O\left(\frac{2^k \log^2 k}{\epsilon^2} \left(d k (\log(2^k \log^2 k)) + \log \frac{1}{\delta} \right) \right) = \tilde{O}\left(\frac{2^k k \log^2 k}{\epsilon^2} \left(d k + \log \frac{1}{\delta} \right) \right) \quad (5)$$

Next, we analyze the average sensitivity. Let $X = \{x_1, \ldots, x_n\}$. Let Z and $Z^{(i)}$ be the outputs of D^k-SAMPLING on X and $X^{(i)}$, respectively. Then by Theorem 2.1, we have $(1/n) \sum_{i=1}^{n} d_{TV}(Z, Z^{(i)}) = O(k/n)$. Let (C, w) and $(C^{(i)}, w^{(i)})$ be the coresets constructed for X and $X^{(i)}$, respectively. We have

$$\frac{1}{n} \sum_{i=1}^{n} d_{TV}((C, w), (C^{(i)}, w^{(i)}))$$

$$= \frac{1}{n} \sum_{i=1}^{n} d_{TV}(Z, Z^{(i)}) + \frac{1}{n} \sum_{i=1}^{n} \int d_{TV}\{(C, w) \mid Z = \tilde{Z}\}, \{(C^{(i)}, w^{(i)}) \mid Z^{(i)} = \tilde{Z}\} \text{d}\tilde{Z}$$

$$= O\left(\frac{k}{n}\right) + \frac{1}{n} \sum_{i=1}^{n} \int d_{TV}((C \mid Z = \tilde{Z}), (C^{(i)} \mid Z^{(i)} = \tilde{Z})) \text{d}\tilde{Z}$$

$$+ \frac{1}{n} \int \sum_{i=1}^{n} d_{TV}\{w \mid C = \tilde{C}, Z = \tilde{Z}\}, \{w^{(i)} \mid C^{(i)} = \tilde{C}, Z^{(i)} = \tilde{Z}\} \text{d}\tilde{C} \text{d}\tilde{Z} \quad (6)$$
Now, we bound the second term. Let \(p(x) \) and \(p^{(i)}(x) \) denote the probability of sampling \(x \) from \(X \) and \(X^{(i)} \), respectively, in (one iteration of) \textsc{Coreset}. Conditioned on that \(Z = Z^{(i)} = \tilde{Z} \), we have

\[
\sum_{i=1}^{n} \sum_{x \in X^{(i)}} |p(x) - p^{(i)}(x)| = \sum_{i=1}^{n} \sum_{x \in X^{(i)}} \left| \frac{s_{X,Z}(x)}{s_{X,Z}} - \frac{s_{X^{(i)},\tilde{Z}}(x)}{s_{X^{(i)},\tilde{Z}}} \right|
\]

\[
= \sum_{i=1}^{n} \sum_{x \in X^{(i)}} \frac{s_{X,Z}(x)(s_{X,Z} - s_{X^{(i)},\tilde{Z}})}{s_{X,Z}s_{X^{(i)},\tilde{Z}}} = \sum_{i=1}^{n} \sum_{x \in X^{(i)}} \frac{s_{X,Z}(x) \cdot s_{X^{(i)},\tilde{Z}}(x)}{s_{X,Z}s_{X^{(i)},\tilde{Z}}} = \sum_{i=1}^{n} \frac{s_{X,Z}(x_i)}{s_{X,Z}} = 1.
\]

Then, we have

\[
\frac{1}{n} \sum_{i=1}^{n} d_{TV}(\{C \mid Z = \tilde{Z}\}, \{C^{(i)} \mid Z = \tilde{Z}\}) = \frac{m\tilde{Z}}{n} \sum_{i=1}^{n} \left(p(x_i) + \sum_{x \in X^{(i)}} |p(x) - p^{(i)}(x)| \right) = O\left(\frac{m\tilde{Z}}{n} \right).
\]

Hence, the second term of (6) is \(O(\mathbb{E} \frac{mZ}{n}) \).

Now we bound the third term of (6). By Lemma [B.1] it can be bounded by

\[
\frac{\mathbb{E} m\tilde{Z}}{n} \sum_{i=1}^{n} \left(\sum_{x \in X^{(i)}} \min \left\{ \frac{p(x), p^{(i)}(x)}{\epsilon} \right\} \cdot \frac{1}{\epsilon} \left| 1 - \frac{p^{(i)}(x)}{p(x)} \right| \right)
\]

\[
\leq \frac{\mathbb{E} m\tilde{Z}}{n} \sum_{i=1}^{n} \left(\sum_{x \in X^{(i)}} \frac{1}{\epsilon} \left| p(x) - p^{(i)}(x) \right| \right) = O\left(\frac{\mathbb{E} m\tilde{Z}}{\epsilon n} \right),
\]

where the last equality is by (7). By combining above, the average sensitivity of the algorithm is given as

\[
O\left(\frac{k}{n} \right) + O\left(\frac{\mathbb{E} m\tilde{Z}}{n} \right) + O\left(\frac{\mathbb{E} m\tilde{Z}}{\epsilon n} \right) = O\left(\frac{m}{\epsilon n} \right).
\]

By combining the above and (5), the claim follows.

\(\square \)

C Consistent transformation

In this section, we show that the general transformation discussed in Section 3 can be used to design consistent algorithms in the random-order model. To this end, we first prove the following.

Lemma C.1. Let \(A \) be the algorithm of Lemma 3.5. Then, the probability transportation for \(A \) with average sensitivity as in Lemma 3.5 is computable.

Proof. Let us fix a set \(X \) of \(n \) points in \(\mathbb{R}^d \) and \(i \in [n] \). Then, given a coreset \((C^{(i)}, w^{(i)}) \) for \(X^{(i)} \), we need to compute a coreset \((C, w) \) for \(X \). We apply the probability transportation used in the proof of Theorem 4.3 to compute a set \(Z \) of \(k \) points for \(X \) from a set \(Z^{(i)} \) of \(k \) points for \(X^{(i)} \). If \(Z \neq Z^{(i)} \), then we compute the coreset \((C, w) \) by running \textsc{Coreset}. If \(Z = Z^{(i)} \), then we recompute points (and weights) added to \(C \) by applying \textsc{LazySampling} on each point in \(C^{(i)} \). This provides a probability transportation, and we can observe that all the conditions of Definition 4.1 are satisfied.

Theorem C.2. Let \(A \) be an \(\alpha \)-approximation algorithm for Euclidean \((k, \ell) \)-clustering. Then for any \(\epsilon, \delta > 0 \), there exists an algorithm for consistent Euclidean \((k, \ell) \)-clustering in the random-order model such that (i) it outputs \((1 + \epsilon)\alpha\)-approximation with probability at least \(1 - \delta \) at each step, and (ii) its inconsistency is

\[
\tilde{O}\left(\frac{2\ell^2 k^2 \log n}{\epsilon^3} \left(d\ell + \log \frac{1}{\delta} \right) \right).
\]

Proof. We combine Lemma 4.2 and Lemma C.1. The approximation guarantee is clearly satisfied. The inconsistency of the algorithm is \(k \cdot \sum_{i=1}^{\ell} O(\mathbb{E} |C|/\epsilon t) = k \log n \cdot O(\mathbb{E} |C|/\epsilon) \), and hence the claim holds. \(\square \)
D Dynamic transformation

We show that the consistent transformation discussed in Section C can be implemented in such a way that the amortized update time in the random-order model is small. Specifically, we show the following:

Theorem D.1. Let A be an α-approximation algorithm for Euclidean (k,ℓ)-clustering with time complexity $T(n,d,k,\ell)$. Then for any $\epsilon,\delta > 0$, there exists an algorithm for dynamic Euclidean (k,ℓ)-clustering in the random-order model that (i) outputs $(1+\epsilon)\alpha$-approximation with probability at least $1-\delta$, and (ii) its amortized update time is

$$O\left(dk + \left(k(k + \log n) + \frac{mT(m,d,k,\ell)}{\epsilon} \right) \log n \right),$$

where $m = \tilde{O}\left(\frac{2^{2k}}{\epsilon^2} (dk\ell + \log \frac{1}{\delta}) \right)$.

Proof. The consistent transformation has two components, that is, D^{ℓ}-SAMPLING and coreset construction.

We use the dynamic algorithm of Theorem 5.1 to run the D^{ℓ}-SAMPLING part and hence the amortized update time of this part is $O(dk + (k + \log n)k \log n)$.

For the coreset construction part, we maintain a coreset (C,w) and a sequence S storing $s(x_1),\ldots,s(x_t)$, where $s(x)$ is the upper bound on the sensitivity of x as in the proof of Lemma 3.5. We maintain a binary tree on S as with dynamic version of D^{ℓ}-SAMPLING. When the output of D^{ℓ}-sampling changes after x_t arrives, we recompute (C,w) and the sequence S from scratch. When the output of D^{ℓ}-SAMPLING does not change, we append $s(x_t)$ to S, and then update the coreset (C,w) using LAZY-SAMPLING.

Now we analyze the amortized update time of the coreset construction part. At each step we need $O(|C| \log n)$ time to update (C,w). Also, when the output of D^{ℓ}-sampling changes, we need additional $O(t \log t)$ time to reconstruct a binary tree over S. Finally, when (C,w) is updated, we need to recompute an optimal solution for C, which takes $T(|C|,d,k,\ell)$ time. Recalling that $|C| \leq m$ by Lemma 3.5, in expectation, the total computational time is bounded as

$$E\left[O(|C| \log n) \cdot n + \sum_{t=1}^{n} O\left(\frac{k}{t} \right) O(t \log t) + \sum_{t=1}^{n} O\left(\frac{|C|}{\epsilon t} \right) \cdot T(|C|,d,k,\ell) \right]$$

$$= O\left(\left(m + k + \frac{mT(m,d,k,\ell)}{\epsilon} \right) \cdot n \log n \right)$$

$$= O\left(\left(k + \frac{mT(m,d,k,\ell)}{\epsilon} \right) n \log n \right).$$

Combined with the amortized time of dynamic D^{ℓ}-SAMPLING, the claim holds. \qed