A Variance of LogEstimator

We now bound the variance of our estimator by \(O(\log^2 k)\). Recall that the output of LogEstimator is given by \(\log(X/t) - g(B_1, \ldots, B_r)\), where the function \(g\) is bounded. Since the variance we seek is \(O(\log^2 k)\), it suffices to show that the variance of \(\log(X/t)\) is \(O(\log^2 k)\) with \(i \sim \mathcal{D}\), since subtracting \(g\) changes the estimate by at most a constant (see Lemma 2.3).

Lemma A.1. Let \(i \sim \mathcal{D}\) and \(X\) denote the number of independent trials from \(\text{Ber}(p_i)\) before we see \(t\) successes. Then, \(\text{Var}[\log(X/t)] = O(\log^2 k)\).

Proof. Let \(X_{\max} = 2kt\), and consider the random variable \(X' = \min\{X, X_{\max}\}\). Then

\[
\text{Var}[\log(X/t)] \leq E\left[(\log(X/t) - \log(X'/t) + \log(X'/t))^2\right]
\]

\[
\leq 2 \cdot E\left[(\log(X/t) - \log(X'/t))^2\right] + 2 \cdot E\left[\log^2(X'/t)\right]
\]

\[
\leq 2 \cdot E\left[\log^2(X/X')\right] + 2 \log^2(2k)
\]

\[
\leq \frac{4}{\ln^2(2)} \cdot E\left[\left(\frac{X}{X'} - 1\right)^2\right] + 2 \log^2(2k),
\]

where we used that \(\log(X'/t) \leq \log(2k)\) always, and that \(\log(z) \leq \sqrt{z - 1}/\ln(2)\) for all \(z \geq 1\). Then,

\[
E\left[\frac{X}{X'} - 1\right] \leq E\left[\frac{X}{X_{\max}}\right] = \frac{1}{X_{\max}} \sum_{i=1}^{k} p_i \cdot \frac{t}{p_i} = \frac{tk}{X_{\max}} = 2.
\]

\[\square\]

B Omitted Details from Section 2

Proof of Claim 2.5. Notice that \(X\) is the number of trials from \(\text{Ber}(p_i)\) until we see \(t\) successes. We now have the following string of equalities:

\[
E_{X, B_1, \ldots, B_r} [\eta - \log \left(\frac{1}{p_i}\right)] = E_X [\log Y] - E_{B_1, \ldots, B_r} [g(B_1, B_2, \ldots, B_r)]
\]

\[
= E_X [f(Y) + h(Y)] - g(p_i, p_i^2, \ldots, p_i^r) = E_X [h(Y)],
\]

where we used the fact that \(g\) is a linear function, and that \(E[B_\ell] = p_\ell^r\) in order to substitute

\[
E_{B_1, \ldots, B_r} [g(B_1, \ldots, B_r)] = g(p_i, p_i^2, \ldots, p_i^r).
\]

Furthermore, we divide \(\log Y = f(Y) + h(Y)\), where \(f(z)\) is the degree-\(r\) Taylor expansion of \(\log z\) at 1, and \(h(z) = \log z - f(z)\) is the error in the degree-\(r\) Taylor expansion of \(\log(z)\), i.e.,

\[
h(z) = \log(z) - f(z).
\]

Finally, by construction of \(g\), \(E[f(Y)] = g(p_i, p_i^2, \ldots, p_i^r)\), which gives the desired equality. \[\square\]

Verifying \(Y\) is subgamma. Recall that \(X\) is the number of independent draws from a \(\text{Ber}(p)\) distribution until we see \(t\) successes. In other words, we may express \(X = X_1 + \cdots + X_t\), where \(X_i\) is the number of draws of \(\text{Ber}(p)\) before we get a single success. Then, we always satisfy

\[
E[X_i] = \frac{1}{p}, \quad \Pr[X_i > \ell] = (1 - p)^{\ell} < e^{-p\ell}.
\]

This, in turn, implies that for any \(r \geq 1\)

\[
(E[|X_i - 1/p|^r])^{1/r} \leq (E_{X_i, X_i^*}[|X_i - X_i^*|^r])^{1/r} \leq 2 (E[|X_i|^r])^{1/r} = O(r/p),
\]
where the first line is by Jensen’s inequality, and the second is by the triangle inequality and Hölder inequality. Finally, we use the tail bound on \(X_i \) to upper bound the expectation of \(|X_i|^r\). Then, we have
\[
\mathbb{E}\left[e^{\lambda(X_i - 1/p)} \right] = 1 + \lambda \mathbb{E}[X_i - 1/p] + \sum_{k=2}^{\infty} \frac{\lambda^k}{k!} \cdot \mathbb{E}[|X_i - 1/p|] \\
= 1 + \sum_{k=2}^{\infty} \frac{\lambda^k}{k!} (O(k/p))^k \leq 1 + O(\lambda^2/p^2), \quad \text{when } |\lambda| \text{ sufficiently smaller than } p \\
\leq \exp\left(O(\lambda^2/p^2) \right)
\]
Then, since \(X_1, \ldots, X_t \) are all independent, we have
\[
\mathbb{E}\left[e^{\lambda(X - t/p)} \right] \leq \exp\left(O(\lambda^2t/p^2) \right) \Rightarrow \mathbb{E}\left[e^{\lambda(Y - 1)} \right] \leq \exp\left(O(\lambda^2/t) \right),
\]
and this bound is valid whenever \(|\lambda|\) is sufficiently smaller than \(t\).

C Omitted Proofs from Section 3

Proof of Lemma 3.1. The approach is to estimate
\[
\mathbb{E}_{i \sim \mathcal{D}}[h_i(p_i)] = \mathbb{E}_{i \sim \mathcal{D}}[g(p_i, p_i^2, \ldots, p_i^t)]. \tag{10}
\]
There exists an algorithm using \(O(\log(1/\epsilon)/\epsilon^2)\) samples to estimate the above quantity: for \(j \in \{0, \ldots, O(1/\epsilon^2)\}\), one takes a sample \(i_j \sim \mathcal{D}\) and uses \(r = O(\log(1/\epsilon))\) additional samples \(s_1, \ldots, s_r \sim \mathcal{D}\) to define
\[
B_m^{(j)} \overset{\text{def}}{=} \mathbb{1}\{s_1 = \cdots = s_m = i_j\} \quad \text{and} \quad Z_j = g(B_m^{(j)}, \ldots, B_r^{(j)}).
\]
Then, let \(Z\) be the average of all \(Z_j\)'s, which is an unbiased estimate to \(\mathbb{E}_{i \sim \mathcal{D}}[g(p_i, p_i^2, \ldots, p_i^t)]\). Since \(g\) is bounded (from Lemma 2.3), the variance of \(O(1/\epsilon^2)\) such values is a large constant factor smaller than \(\epsilon^2\). By Chebyshev’s inequality, we estimate (10) to error \(\pm \epsilon\) with probability at least 0.9. With that estimate, we will now use Lemma 2.4. Specifically, the entropy of \(\mathcal{D}\) is exactly \(\mathbb{E}_{i \sim \mathcal{D}}[\log(1/p_i)]\), and we have
\[
\left| \mathbb{E}_{i \sim \mathcal{D}}[\log(1/p_i)] - (\hat{H} - Z) \right| \leq \epsilon + \left| \mathbb{E}_{i \sim \mathcal{D}}[\log(1/p_i)] - (\widetilde{H} - Z) \right| \\
\leq \epsilon + \mathbb{E}_{i \sim \mathcal{D}}\left[\left| \log\left(\frac{1}{p_i} \right) - \mathbb{E}[\eta_i] \right| \right] \leq 2\epsilon,
\]
where \(\eta_i\) is the result of running LogEstimator(\(\mathcal{D}, i\)).

Proof of Lemma 3.2. We note that since \(\log(\cdot)\) is monotone increasing, we must have \(H \geq \hat{H}\). To see that it is not much larger, note that we always have \(\log z = \ln(z)/\ln(2) \leq (z-1)/\ln(2)\), which means
\[
H - \hat{H} = \mathbb{E}_{i, X}[\log(X/X')] \leq \frac{1}{\ln(2)} \mathbb{E}_{i, X} \left[\frac{X}{\min\{X, X_{\max}\}} - 1 \right] \leq \frac{1}{\ln(2)} \mathbb{E}_{i, X} \left[\frac{X}{X_{\max}} \right] \\
= \frac{1}{X_{\max} \cdot \ln(2)} \sum_{i=1}^{k} \frac{p_i}{t} \cdot \frac{t}{p_i} = \frac{tk}{X_{\max} \cdot \ln(2)} = \epsilon.
\]

Proof of Lemma 3.4. Substituting the \(r_\ell\) values into Lemma 3.3 ensures \(\mathbb{E}[\text{Error}^2] \leq \epsilon^2/10\). Hence the estimator is within \(\pm \epsilon\) of \(\hat{H}\) with probability 0.9 by Chebyshev’s inequality.
For the intervals \(\ell = \{1, \ldots, L - 1\}\), we always spend \(r_\ell\) tries to determine whether a sample falls within a particular interval. Note that we take one sample to determine \(i \sim \mathcal{D}\), and then we take at
most \(b_r \) samples. Therefore, the sample complexity for these is
\[
\sum_{\ell=1}^{L-1} r_\ell \cdot b_\ell = \frac{80tk}{\epsilon^2} \cdot \sum_{\ell=1}^{L-1} \frac{\log^2(\log^{(\ell-1)}(k)/\epsilon)}{(\log^{(\ell)} k)^3} = \frac{80tk}{\epsilon^2} \cdot \sum_{\ell=1}^{L-1} \frac{(3\log^{(\ell)}(k) + \log(1/\epsilon))^2}{(\log^{(\ell)} k)^3}
\leq k \cdot O(\log^2(1/\epsilon^2)),
\]

where we used the fact that
\[
\sum_{\ell=1}^{L-1} \frac{1}{(\log^{(\ell)} k)} \leq \frac{1}{1} + \frac{1}{\exp(1)} + \frac{1}{\exp(\exp(1))} + \ldots = O(1).
\]

Finally, it remains to bound the expected sample complexity of the bucket \(L \). Here, we note
\[
r_L = \frac{O(1)}{\epsilon^2} \cdot \log^2 \left(\frac{\log^{(L-1)} k}{\epsilon} \right) \leq O \left(\frac{\log^2(1/\epsilon)}{\epsilon^2} \right).
\]

Therefore, the expected sample complexity for interval \(L \) is
\[
r_L \cdot \sum_{i=1}^{k} \frac{p_i}{p_i} = O(k \log^4(1/\epsilon)/\epsilon^2).
\]

\[\square\]

D Conjectured Lower Bound

Recall that without a memory constraint the sample complexity is known to be \(n = \Theta(\max\{\epsilon^{-1} \cdot k/\log(k/\epsilon), \epsilon^{-2} \log^2 k\}) \) [VV17, VV11, JVHW15, WY16]. To prove a \(\Omega(k/\epsilon^2) \) lower bound for the memory constrained version, we conjecture the following randomized process can be used to generate distributions over \([2k]\) that look alike to any constant space algorithm that uses \(o(k/\epsilon^2) \) samples but they have different entropies.

Suppose we have \(k \) Bernoulli random variables with parameter \(\alpha \): \(Y_1, \ldots, Y_k \). And, we have \(k \) Rademacher random variables \(Z_1, \ldots, Z_k \) (that are \(+1 \) or \(-1 \) with probability \(1/2 \)). We construct distribution \(p \) in such a way that it is uniform over \(k \) pairs of elements \((1, 2), (3, 4), \ldots, (2k - 1, 2k)\). However, conditioning on pair \((2i - 1, 2i)\), we may have a constant bias based on the random variable \(Y_i \). And, we decide about the direction of the bias based on \(Z_i \). More precisely, we set the probabilities in \(p \) as follows:

\[
p_{2i-1} = \frac{1 + Y_i \cdot Z_i / 4}{2k}, \quad p_{2i} = \frac{1 - Y_i \cdot Z_i / 4}{2k} \quad \forall i \in [k].
\]

Now, it is not hard to show that if we generate two distributions as above with \(\alpha = (1 + \epsilon)/2 \) and \(\alpha = (1 - \epsilon)/2 \), then their entropies are \(\Theta(\epsilon) \) separated with a constant probability. Thus, any algorithm that can estimate the entropy has to distinguish \(\alpha = (1 + \epsilon)/2 \) from \(\alpha = (1 - \epsilon)/2 \). Intuitively, to learn \(\alpha \), we would require to determine \(\Omega(1/\epsilon^2) \) many of \(Y_i \)'s. Since we have only a constant words of memory, we cannot perform the estimation of the \(Y_i \)'s in parallels. Thus, any natural algorithm would require to draw \(\Omega(k/\epsilon^2) \) samples.