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Abstract

The last few years have seen a surge of work on high dimensional statistics under
privacy constraints, mostly following two main lines of work: the “worst case” line,
which does not make any distributional assumptions on the input data; and the
“strong assumptions” line, which assumes that the data is generated from specific
families, e.g., subgaussian distributions. In this work we take a middle ground,
obtaining new differentially private algorithms with polynomial sample complexity
for estimating quantiles in high-dimensions, as well as estimating and sampling
points of high Tukey depth, all working under very mild distributional assumptions.
From the technical perspective, our work relies upon fundamental robustness results
in the convex geometry literature, demonstrating how such results can be used
in a private context. Our main object of interest is the (convex) floating body
(FB), a notion going back to Archimedes, which is a robust and well studied high-
dimensional analogue of the interquantile range. We show how one can privately,
and with polynomially many samples, (a) output an approximate interior point
of the FB – e.g., “a typical user” in a high-dimensional database – by leveraging
the robustness of the Steiner point of the FB; and at the expense of polynomially
many more samples, (b) produce an approximate uniform sample from the FB, by
constructing a private noisy projection oracle.

1 Introduction

Computing statistics of large, complex high-dimensional datasets under privacy constraints is a
fundamental challenge in modern data science. In this work, we study the sample complexity of
several different tasks related to estimating the quantiles of a d-dimensional distribution D, from
having sample access to it, under privacy constraints. Our first focus is on estimating quantiles of fixed
marginals. For a random vector X ∈ Rd, the quantiles of X along direction θ are the quantiles of the
(one-dimensional) marginal ⟨X, θ⟩, which we denote by Qq(⟨X, θ⟩) for q ∈ [0, 1]. Our second focus
is on estimating a convex region called the floating body of a d-dimensional distribution, an analogue
of the 1-dimensional interquantile range exhibiting rich mathematical properties, investigated over
decades of research in convex geometry and sharing connections with the work of Archimedes (see,
e.g., the survey [NSW19]). Formally, the q-floating body of a random vector X ∈ Rd is given by

Fq(X) =
⋂

θ∈Sd−1

{
x ∈ Rd : ⟨x, θ⟩ ≤ Qq(⟨X, θ⟩)

}
, (1)

and in statistical language corresponds to the points of so-called Tukey-depth at least 1− q [NSW19].
When clear from context, we also denote by Fq(D) the floating body of the random vector X ∼ D.
See Figure 1 for a simple demonstration of the floating body.
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Figure 1: The floating body of a dataset X .

Similar to their 1-dimensional analogues, the quantiles in high-dimensions are preferred to other
descriptive statistics and location estimators due to their robustness properties [Hub81, MR97] and
high breakdown points [DG07, Alo03, TP16]. As opposed to other statistics, marginal quantiles can
be estimated under the mere minimal distributional assumption of having non-trivial mass around
the location of the quantiles (see e.g. [AMB19, Lemma 3]). Moreover, the floating body can also be
estimated in the Hausdorff distance for log-concave measures and stable laws [AR20].

Besides statistical guarantees, an essential property of an estimator in modern data science is to be
private. For instance, many large healthcare datasets contain sensitive patient information [DE13,
ZLZ+17, FLJ+14, YKÖ17] and it is crucial for an estimator to balance the trade-off between
protecting the privacy of the input while producing accurate statistical results.

Differential privacy (DP) is the leading notion in quantifying privacy guarantees of a randomized
algorithm over an input dataset. In this work, we focus on algorithms satisfying pure DP guarantees.
Given a parameter ε > 0, ε-differential privacy guarantees that the probability of a given output
cannot change more than a multiplicative factor eε after the arbitrary change of the input data of one
data item (e.g., a single user record in a large database). More generally, ε-DP can be defined as
follows with respect to the Hamming distance dH (X,X ′) := |{i ∈ [n]

∣∣∣Xi ̸= X ′
i}|, defined for two

n-tuples of samples X = (X1, . . . , Xn), X
′ = (X ′

1, . . . , X
′
n) ∈ (Rd)n.

Definition 1 (ε-DP). A randomized algorithm A is ε-differential private if for all subsets S ∈ F of
the output space (Ω,F) and n-tuples of samples X1, X2 ∈ (Rd)n, it holds that

P (A(X1) ∈ S) ≤ eεdH(X1,X2)P (A(X2) ∈ S) . (2)

While there has been a lot of work on differential privacy, it usually analyzes algorithms under
worst-case assumptions. The most closely related to our work is the line of research on privately
outputting an interior point of the convex hull of n input points in high dimensions for a worst-case
input [BMNS19, KMST20, SS21, KSS20]. Only recently there has been a lot of statistical work
analyzing differentially private estimators under distributional assumptions for various statistical tasks
[BCS15, DJW18, BCSZ18b, KSSU19, KLSU19, SU19, ZKKW20, CKS20, TVGZ20, KSU20]. On
the topic of the present work, [TVGZ20] established the exact trade-off between privacy and accuracy
of median estimation in one dimension. One of the main motivations of the present work is to
make a first step towards understanding the high-dimensional counterparts of these privacy-accuracy
tradeoffs, by proposing the floating body as a natural estimate under privacy constraints in high
dimensions. In particular, the convexity of the floating body allows us to invoke powerful robustness
theorems, originating from decades of research in convex geometry. It is this combination, of classical
theorems with the modern framework of DP, which yields several new and non-trivial results.

1.1 Our Contributions

The minimal assumptions. It is known that even in one dimension, private quantile estimation is
impossible for arbitrary measures [TVGZ20]. Thus, some assumptions are required. In this work we
make the following minimal assumptions on the underlying distribution.
Definition 2. We say that a distribution D supported on Rd has a q-admissible law with parameters
Rmax, Rmin, r, L > 0, if, for every θ ∈ Sd−1, the following four conditions hold:

1. Qq(⟨X, θ⟩) ∈ [−Rmax, Rmax].
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2. For some c ∈ Rd, it holds that |Qq(⟨X, θ⟩)− ⟨c, θ⟩| ≥ Rmin.

3. The density fθ of ⟨X, θ⟩ exists and satisfies fθ(t) ≥ L whenever t ∈ [Qq(⟨X, θ⟩) −
r,Qq(⟨X, θ⟩) + r].

4. If {Xi}ni=1 are i.i.d. as D, then with high probability ∥Xi∥2 ≤ poly(n, d), for all i ∈ [n].

The set of all such distributions is denoted by Aq(Rmax, Rmin, r, L).

We now expand further on the claimed “minimality” of the above assumptions. First, note that
assumptions (1) and (3) are actually necessary for consistent private quantile estimation. This is an
outcome of the tight lower bound for the one-dimensional case (see the main result of [TVGZ20]),
where it is established that the minimal sample complexity to privately learn one quantile of a
distribution explodes to infinity whenever there is no bound on the possible quantile values (R =
Rmax = ∞) or the distribution has no mass around the quantile (L = 0). We highlight that the latter
property (of having a positive density around the quantile) is a requirement for optimal estimation
rates (and a standard assumption) for even non-private one-dimensional quantile estimation (e.g.,
see [VdV00, Chs. 21, 25.3]). Now, assumption (2) is equivalent to the assumption that the floating
body contains a ball of radius Rmin. Again, if Rmin = 0, the floating body has an empty interior,
and the floating body’s estimation becomes a degenerate task. Finally, assumption (4) is a very mild
boundedness technical condition that our data is arbitrarily polynomially-bounded, which almost
does not hurt generality. For example, for the "heavy-tailed" Cauchy random vectors this assumption
holds for the polynomial dn.

Private many-quantiles estimation. Let us introduce a useful convention: we identify a fixed vec-
tor X = (X1, . . . , Xn) ∈ (Rd)n with a random vector in Rd, chosen uniformly from (X1, . . . , Xn).
In other words we identify a “sample” X with the empirical distribution over its d-dimensional
coordinates. Now, in [AR20] it was established that for any symmetric log-concave measure D, if
one has n i.i.d. samples X = (X1, . . . , Xn) ∈ (Rd)n from D, then the empirical measure on the
samples satisfies for Y ∼ D with probability at least 0.9,

δq(X,Y ) := sup
θ∈Sd−1

|Qq(⟨X, θ⟩)−Qq(⟨Y, θ⟩)| ≤ α, (3)

for some n = Õ(d/α2). Here, and throughout the paper, Õ means we omit logarithmic factors, in
all parameters. One can easily generalize the above result for any q-admissible law (as described in
Definition 2) (see Supplementary material).

We now proceed with an observation. For any integer M > 0, and for any subset of M directions,
say that one wants to estimate the q-quantiles of the distribution along each of the M directions.
A simple “low-dimensional” approach would be as follows; one can take n samples and then take
the empirical q-quantiles of the projection of the samples along each of the M directions. Using
standard concentration results having Õ(1/α2) fresh samples per direction suffices for estimation in
the corresponding direction, leading to the desired estimation guarantee with n = Õ(M/α2) samples.
We note that for each specific direction Õ(1/α2) samples are known to be necessary [TVGZ20,
Proposition 3.7]. Comparing with the guarantee of [AR20] in (3) we are lead to an interesting
high-dimensional statistical phenomenon: without privacy constraints, simultaneously estimating
M > d marginal quantiles in high-dimensions requires less samples than the natural (but perhaps
naive) approach of projecting the points and then calculating the empirical quantile on each direction.

Our first contribution is to reveal the private analogue of the above high-dimensional phenomenon.
Consider the task now of private estimation of M quantiles, i.e. of Qq(⟨Y, θi⟩), Y ∼ D for M
different directions (θi)

M
i=1. The “naive” approach would be, as before, to first project along the

different directions, but then, instead of calculating the (non-private) empirical quantiles of the
projected points, one would apply the optimal private algorithm of [TVGZ20] to each projection,
separately.1 This would lead to the guarantee in (3) with sample complexity (assuming, for simplicity,
here and throughout the contribution section all parameters besides M, ε, α are constant)

n = O

(
M

α2
+

M

εα

)
. (4)

1The algorithm from [TVGZ20] is technically only designed for median estimation, but with the natural
modifications the same algorithm and analysis can be straightforwardly extended for q-quantile estimation.
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Our first main result is an improved private rate for the estimation of M quantiles which appropriately
privatizes the high-dimensional result of [AR20].

Theorem 3 (informal). There exists an ε-differentially private algorithm that draws

n = Õ

(
d

α2
+

M

εα

)
samples from any admissible distribution Y ∼ D and produces an estimate m̂ that satisfies
max

i=1,...,M
|Qq(⟨Y, θi⟩)− m̂i| ≤ α with probability at least 0.9.

Notice that the rate described in Theorem 3 is always at least as good as the rate in (4), and that
it is strictly better when M > d and ε > α. This constitutes indeed a private analogue of the
high-dimensional phenomenon mentioned above; privately estimating M > d can require much less
samples than simply projecting and applying the one-dimensional machinery.

Private interior point. Next, we attempt to privately produce point estimates of the floating body
Fq(Y ) itself. Our first task is to output an interior point of Fq(Y ), a relatively easy task without
privacy concerns [AR20], with a clear statistical motivation of outputting a “typical datapoint” in
high-dimensions. We show that with polynomial in d samples one can achieve such a guarantee with
small error. There has been closely related (but not fully comparable) work on this task in the worst
case regime, which we discuss in depth in Section 1.2.

For our result we leverage the Steiner point of the floating body, denoted S(Fq(Y )) (see (7) for the
definition). The Steiner point has been widely studied in the context of Lipschitz selection [BL00]. In
the problem of Lipschitz selection, one looks to consistently select a point from the interior of each
convex body, in a way which is robust to perturbations of the body. The Steiner point is celebrated
for being the optimal Lipschitz selector in this setting. Just recently, this construction proved to be
instrumental in the resolution of the chasing nested convex sets problem [BKL+20, Sel20, AGTG21],
a problem in online learning, related to Lipschitz selection. It is precisely this optimal robustness that
makes the Steiner point insensitive to individual sample points, a desirable property in the design of
DP algorithms. To the best of our knowledge, this is the first time the Steiner point and its properties
have been used it to build differentially private estimators, and we believe it might be useful in other
similar problems.

Theorem 4 (informal). There exists an ε-differentially private algorithm that draws

n = Õ

(
d

α2
+

d2.5

εα

)
samples from any admissible distribution Y ∼ D and produces an estimate m̂ ∈ Rd that satisfies
∥m̂− S(Fq(Y ))∥2 ≤ α with probability at least 0.9.

In comparison, the best known dependence of n on the dimension in the worst case literature is
of order Õ(d4) for pure ε-DP [KSS20] and of order Õ(d2.5) for the weaker notion of approximate
(ε, δ)-DP [BMNS19].2 Thus, Theorem 4 achieves essentially the same dependence as the best known
approximate DP result while enjoying the stronger guarantees of pure DP. We note again that the
results are not fully comparable; see Section 1.2 for a thorough discussion.

Private sampling from the floating body. Outputting an, a-priori, arbitrary point from the floating
body comes with possible drawbacks, for example biasing the output point towards or away from
its boundary. This can lead to inaccurate statistical conclusions if a more detailed description of the
“typical datapoints” is needed. For this reason, we undertake the harder task of outputting a uniform
sample. The sampling from convex bodies problem has a long and rich history with many deep
results, see [KLS95, KLS97, LV06] for some prominent examples. In many cases, the computation
preformed by the sampling algorithm reduces to iteratively projecting points into the convex body,
along the trajectory of an appropriate Markov chain [BEL18, Leh21].

It is precisely the idea described above which serves as the working engine behind our private
sampling algorithm. To cope with privacy constraints, we capitalize on known robustness properties

2See Supplementary material for a definition and comparison between the different privacy notions.
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of the projection operator (see (8)) on convex bodies, as proved in [AW93]. Remarkably, when the
projected point is fixed and one considers the convex body as the variable, the projection operator
is known to be 1/2-Hölder with respect to the Hausdorff distance. This allows us to build a noisy
projection oracle for the floating body, in a private fashion. Combining the noisy oracle with known
results leads to a new sampling algorithm, which operates under pure differential privacy, and with
guarantees in the quadratic Wasserstein distance, W2 (see Section D.2 for the definition).
Theorem 5 (informal). Let µFq(Y ) be the uniform measure on the floating body. There exists an
ε-DP algorithm that draws

n = Õ

(
d2

α14
+

d4

ε2α8

)
samples from any admissible distribution Y ∼ D, and whose output, µ̂Fq(Y ), satisfies

1

d
W 2

2 (µ̂Fq(Y ), µFq(Y )) ≤ α.

We note that the 1
d normalizing factor in Theorem 5 serves as the correct scale for the W2 metric

which typically scales as square-root of the dimension, see [Leh21] for further discussion on this.

1.2 Further Comparison with [BMNS19, KSS20]

The most closely related work to our point estimators of the floating body (Theorems 4 and 5) are by
Beimel et al. [BMNS19] and Kaplan et al. [KSS20]. Both of these works address under worst-case
input the private interior point problem: namely, given a (worst case) set of n points x1, . . . , xn in
d dimensions, the task is to privately output a point that lies within the convex hull of these points.
While the non-private analogue is trivial (since one can always output, say, x1), the problem becomes
interestingly non-trivial when privacy considerations are introduced. To achieve such guarantees,
the set of points is assumed to be a subset of a finite grid of possible points Ud (where U is some
finite universe). This is a necessary condition for the existence of successful private estimators under
worst-case assumptions [BNS13, BNSV15]), whereas this assumption is not required in our case. On
the other hand, due to the use of the extension lemma, our algorithms do not have any explicit bound
on the running time (see Section 1.3 below), unlike the situation in the worst case works, whose
running time is generally exponential in d.

The first work [BMNS19] solves the private center point problem under approximate (ε, δ)-differential
privacy, a weaker privacy guarantee than ε-differential privacy, assuming that the dataset is of size at
least some n = Õ(d2.5 log∗(|U |)) (in the Õ term here we suppress dependencies in ε, δ, and lower
order terms). The second work [KSS20] solves the problem under pure differential privacy (as in
our paper) for n = Õ(d4 log |U |), and obtains an improved O(nd) running time using O(d4 log |U |)
samples under approximate DP. The n = Õ(d4 log |U |) bound is currently the best known sample
complexity under pure DP for this worst-case task. In both [BMNS19] and [KSS20], the authors’
approach is to output a point of high Tukey-depth with respect to the set of the n points, which can
be interpreted as outputting an element of the q-floating body of the n points for some appropriate,
and perhaps data-dependent, value of q.

While our considered settings are similar but incomparable, we recall that our Theorem 4 obtains
pure ε-differentially private guarantees that for any q outputs a point of the q-floating body with
Õ(d2.5) samples. Finally, we note that matching the sample complexity of the best (ε, δ)-approximate
private algorithm with an ε-private algorithm has been challenging in the privacy literature, e.g., in
the context of high-dimensional Gaussian mean estimation [KLSU19, KSU20], and in fact provably
impossible in the worst-case context for many problems of interest; see [BMNS19] for more details.

1.3 General Approach

Our approach towards building all ε-private algorithms in this work is based on an appropriate use
of a Lipschitz extension tool called the Extension Lemma [BCSZ18a, BCSZ18b]. This lemma was
also the main tool behind the construction of the private median estimator in [TVGZ20]. One of the
main hurdles in constructing sample-efficient ε-differentially private algorithms under distributional
assumptions is that the privacy constraint needs to hold for all input data-sets, while the accuracy is
based on the behavior of the algorithm on “with-high-probability” or typical data-sets. The Extension
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Lemma completely resolves this issue and allows the algorithm designer to focus on ensuring privacy
solely on the typical data-sets3 Then a (privacy-preserving) Lipschitz Extension argument takes care
of extending the private algorithm on typical-inputs to a private algorithm on all possible inputs,
while maintaining the original algorithm’s output on the typical inputs (see Proposition 6 for more
details). Leveraging this tool, our results are based on a two-step procedure.

1. First we consider the (non-private) estimator of interest. For example, this is the Steiner point
of the floating body for Theorem 4 and the projection of a point to the floating body for The-
orem 5. Then we define a typical set of possible input datasets X = (X1, . . . , Xn) ∈ (Rd)n

which is realized with high probability over all inputs drawn from admissible distributions.
Following this we establish Lipschitzness properties of the non-private estimator seen as a
function of the input X with respect to the Hamming distance between two inputs of the
(non-private) estimator, when defined only on inputs from the typical set. Such robustness
properties can be non-trivial and to do so we use interesting tools from convex geometry
to establish them for the Steiner point [BL00], and for the projection of a point [AW93].
Notably, none of these estimators is (non-trivially) Lipschitz with respect to the Hamming
distance of the input, unless the input is on the typical set. Using now the Lipschitzness
properties combined with classic differential privacy ideas we can “privatize” the estimator
by applying the (flattened) Laplace mechanism [TVGZ20], while ensuring high accuracy.

2. With the Extension Lemma, we extend our estimator to be defined and private on all possible
inputs. The Extension Lemma also guarantees that the estimator remains identical when
the input is from the typical set. These allow to obtain a globally private algorithm with the
same accuracy guarantee.

2 Getting Started

Extension Lemma Let us consider an arbitrary ε-differentially private algorithm defined on n
samples in Rd as input and belonging in some set H ⊆ (Rn)d. Then the Extension Lemma guarantees
that the algorithm can be always extended to a 2ε-differentially private algorithm defined for arbitrary
input data in (Rn)d with the property that if the input data belongs in H, the distribution of output
values is exactly the same with the original algorithm. We note that the result in [BCSZ18a] is
“generic”, in the sense of applying to any input metric space and output probability space, but here we
present it for simplicity only on inputs from Rn and equipped with the Hamming distance, dH .

Proposition 6 (The Extension Lemma, Proposition 2.1, [BCSZ18a]). Let Â be an ε-differentially
private algorithm designed for input from H ⊆ (Rd)n with arbitrary output measure space (Ω,F).
Then there exists a randomized algorithm A defined on the whole input space (Rd)n with the same

output space which is 2ε-differentially private and satisfies that for every X ∈ H, A(X)
d
= Â(X).

Quantiles and Floating Bodies For X a random variable over R, and q ∈ (0, 1), the q-quantile
of X , which we denote Qq(X), is the smallest number in R satisfying P (X ≤ Qq(X)) ≥ q. Our
main object of interest is a high-dimensional analogue of the quantile, called the convex floating
body, defined in (1). Notice, that for q < 1

2 , Fq(X) is necessarily empty and unfortunately it may
sometimes by empty for q ≥ 1

2 . Assumption 2. in Definition 2 ensures that Fq(D) ̸= ∅ and moreover
that Fq(D) contains a ball of radius Rmin, centered at c (see Supplementary material for more details).

Useful Distances The following pseudo-metric measures the maximum difference between the
q-quantiles of two (random) vectors.
Definition 7 (q-distance). Let q ∈ ( 12 , 1) and let A ⊂ Sd−1. If X and Y are two random vectors in
Rd, their q-distance, with respect to A is defined by δq(X,Y ;A) := sup

θ∈A
|Qq(⟨X, θ⟩)−Qq(⟨Y, θ⟩)| .

If A = Sd−1, we abbreviate δq(X,Y ;A) = δq(X,Y ).

In the sequel, we will consider two types of set A, in Definition 7. First, finite sets of directions,
which correspond to privately estimating a finite (but potentially large) number of quantiles. Second

3While this work is entirely focused on sample complexity guarantees, we note that the Extension Lemma
comes in principle with no explicit termination time guarantee (see [BCSZ18a] and Appendix F).
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the whole set of possible directions A = Sd−1. In this case where δq(X,Y ;A) = δq(X,Y ) bounds
on δq(X,Y ) are strong enough to yield allow estimation of high-dimensional statistics of Fq(X),
such as the Steiner point of the body or the projection operator to the body.

To further elaborate on this remark, let us recall that there is another natural convex geometric way to
measure distances between convex bodies, the Hausdorff distance. For two convex bodies K,K ′ ⊂
Rd, their Hausdorff distance is δHaus(K1,K2) := inf{t > 0|K ⊂ K ′ + tBd and K ′ ⊂ K + tBd},
where Bd is the unit Euclidean ball in Rd. The following connection between δHaus and δq holds.

Lemma 8. [Bru18, Lemma 5] Let q ∈ ( 12 , 1) and let X and Y be two random vectors in Rd. Suppose
that Fq(X) contains a ball of radius Rmin and is contained in a ball of radius Rmax, for some
Rmax, Rmin > 0. If δq(X,Y ) ≤ Rmin

2 then, δHaus(Fq(X), Fq(Y )) ≤ 3Rmax

Rmin
δq(X,Y ).

3 A Meta Algorithm for Hölder Queries

We are now ready to present our main result. In the introduction, we highlighted three results of
our work, all of which follow from a meta-theorem resulting in a differentially private algorithm for
querying generic Hölder statistics of the floating body with respect to the δq norm. Since our result is
general, it requires certain notation.

Approximate Hölder queries Let p ∈ [1,∞], h ∈ (0, 1], and M ∈ N. Denote by Cd the space of
all convex bodies in Rd, and assign M to be the dimension of the output space, equipped with the
Lp-norm. We say that a map f : Cd → RM is h-Hölder (with constant K > 0, and with respect to a
set A ⊂ Sd−1), or simply Lipschitz when h = 1, if

∥f(Fq(X))− f(Fq(Y ))∥p ≤ Kδq(X,Y ;A)h, (5)
where X and Y are random vectors. One example to keep in mind is when X and Y are both the
empirical distributions of two samples that satisfy dH(X,Y ) = 1. In this case we establish that,
when drawn from admissible distributions, with high-probability δq(X,Y ;A) is small (see Lemma
21). Thus, (5) will imply a low sensitivity condition for f , a desirable property for the design of
differentially private algorithms to approximate f .

It turns out that many of the queries we study, like the Steiner point, are Hölder with respect to
the Hausdorff distance, not the δq metric. In light of Lemma 8, it will sometimes be convenient
to restrict the domain in which (5) holds. In particular, for a fixed admissible class of measures,
Aq(Rmax, Rmin, r, L), we shall enforce the condition that the floating bodies contain, and are
contained in, a ball, as well as require some a-priori upper bound on the δq distance.
Definition 9 (Approximate Hölder functions for the class Aq(Rmax, Rmin, r, L)). We say that f is
approximate h-Hölder if for all X,Y , which satisfy that for some a ∈ Rd, which could depend on X ,

B(a,Rmin/2) ⊆ Fq(X) ⊆ B(0, Rmax + r) and δq(Fq(X), Fq(Y )) ≤ Rmin

4
,

(5) holds.

Since our private algorithm will be extended from a restricted algorithm on a typical set (recall the
plan from Section 1.3) using Proposition 6, there is no loss of privacy when considering approximate
Hölder functions, as long as the desired conditions hold with high probability over the sample.

The main result. We are now prepared to state our main theorem. All results mentioned in the
preceding sections will follow by working with suitable approximate Hölder functions.
Theorem 10. Fix q ∈ (1/2, 1) and assume that D ∈ Aq(Rmax, Rmin, r, L). Further, for h,K > 0
and A ⊂ Sd−1, let f : Cd → RM be an approximate h-Hölder function with constant K, with respect
to A. Then, there is an ε-differentially private algorithm A which for input X = (X1, . . . , Xn),
sampled i.i.d from D, satisfies for all α < min{1,K}min{r,Rmin}

2 that P(∥A(X)− f(Fq(D))∥p ≤
α) ≥ 1− β, for some n such that

n = Õ

K2/h
(
d+ log

(
4
β

))
α2/hL2

+
WK1/h(log

(
1
β

)1/h
M1/h)

(εα)1/hL
+

WM1/h

(εmin{r,Rmin})1/hL

 ,
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where W = min{d, log |A|}+ log
(

1
β

)
.

The obtained rate may seem complicated; this is to be expected, given the generality of our results
and the number of parameters. In the next section we demonstrate several concrete uses of Theorem
10, which show how the rate simplifies in various interesting settings.

4 Applications

Here we describe the main applications of Theorem 10. As mentioned we apply the theorem using
suitable approximate Hölder functions.

Simultaneous estimation of quantiles Fix q ∈ (0, 1) and let A ⊂ Sd−1, with |A| = M . Define
the multiple M -query function which on a random vector X , equals fA(X) = {Qq(⟨X, θ⟩)}θ∈A.

It is immediately seen that fA is a Lipschitz function4, with constant 1, in the L∞ (p = ∞) norm:

∥fA(X)− fA(Y )∥∞ = max
θ∈A

|Qq(⟨X, θ⟩ −Qq(⟨Y, θ⟩| = δq(X,Y ;A). (6)

We thus have the following result.
Corollary 11. Let D ∈ Aq(Rmax, Rmin, r, L) be an admissible measure on Rd. Then, there is
an ε-differentially private algorithm A which for input X = (X1, . . . , Xn), sampled i.i.d from D,
satisfies for all α < min{r,Rmin}

2 , P(∥A(X)− fA(D)∥∞ ≤ α) ≥ 0.9, for

n = Õ

(
d

α2L2
+

M

εLα
+

M

εLmin{r,Rmin}

)
.

Proof. The observation in (6) shows that fA is a Lipschitz function with constant 1. The result now
follows by invoking Theorem 10 for the L∞ norm, with K,h = 1, β = 0.1, and W = log(M).

Privately returning an interior point: the Steiner point. Given Theorem 10 it will be enough to
show that one can select a point from a convex body in a Lipschitz way. This naturally leads to the
Steiner point, a widely studied object in Lipschitz selection. For a convex body K ⊂ Rd, define by

S(K) := d

∫
Sd−1

θhK(θ)dσ, (7)

its Steiner point, where σ is the normalized Haar measure on Sd−1, and the support function of K,
hK : Sd−1 → R, is defined by hK(θ) = max

x∈K
⟨x, θ⟩.

The following result follows from well-known results in convex geometry and from Lemma 8.
Lemma 12. The Steiner point S : Cd → Rd is an approximate Lipschitz function, with constant
6
√
dRmax+r

Rmin
, which satisfies S(K) ∈ K for every convex body K.

We immediately get the following corollary to Theorem 10.
Corollary 13. Let D ∈ Aq(Rmax, Rmin, r, L) be an admissible measure on Rd. Then, there is
an ε-differentially private algorithm A which for input X = (X1, . . . , Xn), sampled i.i.d from D,
satisfies for all α < min{r,Rmin}

2 , P(∥A(X)− S(Fq(D))∥2 ≤ α) ≥ 0.9, for some

n = Õ

(
d2

(Rmax + r)2

R2
minα

2L2
+ d2.5

Rmax + r

Rmin

(
1

εLα
+

1

εLmin{r,Rmin}

))
.

Proof. Consider the Steiner point S : Cd → Rd. Lemma 12 states that S is an approximate Lipschitz
function with constant 6

√
dRmax+r

Rmin
, for every X,Y ∈ HC . The result follows by invoking Theorem

10 for the Euclidean norm, with K = 6
√
dRmax+r

Rmin
, M = d, h = 1, β = 0.1, and W = Õ(d).

4Strictly speaking, fA is not a function of the floating body, but of the sample itself. However, with a trivial
adaption, it still fits nicely within our framework.
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Private projection and sampling. Let K ⊂ Rd be a convex body. Define the projection operator,
PK : Rd → Rd by,

PK(x) = argmin
y

{y ∈ K|∥y − x∥}. (8)

We shall establish that, for admissible distributions D and for any point x, one can privately estimate
PFq(D)(x) with polynomially many samples. This follows by coupling a classic result in convex
geometry, [AW93, Proposition 5.3], concerning the stability of projections with Lemma 8.
Lemma 14. Fix x ∈ Rd and consider PK(x) : Cd → Rd. Then PK(x) is an approximate 1

2 -Hölder

function with constant 5
√

(∥x∥2+Rmax+r)(Rmax+r)
Rmin

.

Now, to sample from the body K, for η > 0, we define the following discretized Langevin process:

Xt+1 = PK(Xt + ηgt), X0 = S(K),

where {gt}t≥0 are i.i.d. standard Gaussians and S(K) is the Steiner point of K. It is well known
(see for example [Leh21, Theorem 2]) that this process mixes rapidly, in the Wasserstein distance.
By applying the known results about the mixing time of the Langevin process, and by taking account
of the inherent noise introduced by the privacy constraints, we prove the following result.
Corollary 15. Let D ∈ Aq(Rmax, Rmin, r, L) be an admissible measure on Rd and let Uq be a
random vector which is uniform on Fq(D). Assume that Fq(D) contains a ball of radius Rmin

around the Steiner point S(K). Then, there is an ε-differentially private algorithm A which for input
X = (X1, . . . , Xn), sampled i.i.d from D, satisfies for all α < min{1,r,Rmin}

2 ,

1

d
W 2

2 (A(X), Uq) ≤ α,

for some

n = Õ

(
poly(Rmax + r + 1)

poly(Rmin)

(
d2

α14L2
+

d4

ε2α8L
+

d4

ε2α2 min{r,Rmin}2L

))
.

Corollary 15 requires that the floating body contains a ball, centered at the Steiner point. The reason
for this assumption is that the discretized Langevin process is initiated at the Steiner point, and the
distance from the initialization to the boundary of Fq(D) will determine the mixing time of Xt. We
chose the Steiner point as an the initial point because, by Theorem 13, we can privately approximate
it. Moreover, the Steiner point tends to lie “deeply” in the interior of the convex body, although
exact estimates seem to be unknown for the general case [Sch93, Section 5.4] (however see [Shv04,
Theorem 1.2] for a similar construction with relevant guarantees).

To improve performance, one might impose some extra assumptions. For example, if the distribution
D is symmetric around its mean, then the Steiner point will be at the center of Fq(D). Another option
is to assume that Fq(D) contains a known point, like the origin, in which case we can initialize
X0 = 0. We chose to state Corollary 15 this way to make it as general as possible.

Such sampling schemes are related to optimization of convex functions and could be of further
interest. We expand this discussion in the supplementary material.

5 Proof Sketch of Theorem 10

To provide intuition, we now briefly describe how one can use the two-stage procedure from Section
1.3 to obtain Theorem 10, from which all our applications follow. We fix an approximate h-Hölder
query f(Fq(Y )), Y ∼ D and assume for simplicity that it is Hölder w.r.t. δq(X,Y ), that is A = Sd−1.

Obtaining a “good” (non-private) estimator Our first step is to obtain a (non-private) estimate
of the query. For that, we sample n independent points {Xi}ni=1 ∼ D, and define X the uniform
empirical measure over (X1, . . . , Xn), for which we compute f(Fq(X)). In terms of accuracy, by
an appropriate generalization of the arguments in [AR20] to apply for any admissible distribution we
have δq(X,Y ) ≤ (α/K)1/h for some n = Õ(dK1/h/α2/h). Notice now that, by admissibility, and
the discussion in Section A.1 it can be easily checked that Fq(Y ) satisfies the necessary geometric
condition; it contains a ball and is contained in a ball, both of “controlled” radius. Hence, the
approximate Hölderness implies ∥f(Fq(X))− f(Fq(Y ))∥p ≤ Kδq(X,Y )h = α.

9



Designing the private estimator on a typical set. Our goal now turns to design a private, yet
accurate estimate, of f(Fq(X)). To do this, in principle we would desire f(Fq(X)) to be Lipschitz
(with a “good” constant, say Λf ) with respect to the Hamming distance on X. Indeed, with such a
property the Laplace mechanism [DR14] produces an ε-DP estimate of f(Fq(X)) with error Λf/ε.
Unfortunately, such a property cannot exist in general; as mentioned, in many cases of interest, f is
only known to be Lipschitz with respect to δq under certain conditions; for example, when Fq(X)
contains a ball and is contained in a ball. So, we must impose some restrictions on the input X .

For this reason, we design an appropriate “typical” high-probability set H ⊆ (Rd)n, such that
f(Fq(X)), restricted to H is Lipschitz, with respect to the Hamming distance on the input X . The
properties of the typical set will allow that for all X,Y ∈ H unless the Hamming distance dH(X,Y )
is “large” it holds (a) ∥f(Fq(X))− f(Fq(Y ))∥p ≤ Kδq(X,Y )h and (b) δq(X,Y ) ≤ C

LndH(X,Y ).
These results together imply ∥f(Fq(X))− f(Fq(Y ))∥p ≤ KCh/(Lhnh)dH(X,Y ). We then apply
a variant of the Laplace mechanism, called the flattened Laplacian mechanism, [BCSZ18b, TVGZ20]
which gives an ε-DP, yet accurate, estimate of f(Fq(X)) when X ∈ H. The accuracy guarantee of
the flattened Laplacian mechanism results from a careful multivariate integral calculation.

We now describe the typical set, H. It is built as the intersection of two conditions, each one happening
with high-probability. The first condition is that, in every direction, the quantiles are appropriately
bounded; this is satisfied since the empirical distribution of X is close to the population distribution D
in the δq distance. As discussed, this condition enforces property (a) from the paragraph above. The
second condition is more intricate, as it requires that, in every direction, the quantile is close, in several
scales, to a non-negligible fraction of the points. This reduces the sensitivity of the quantile to the
individual sample points and we use it to establish property (b). The proof that the second condition
holds with high-probability for any admissible distribution is a combination of a net-argument and an
appropriate use of the one-dimensional result in [TVGZ20, Lemma B.2].

Extension Lemma Finally, a direct application of the Extension Lemma 6 extends the flattened
Laplacian mechanism from the previous paragraph to a 2ε-DP estimator on the whole (Rd)n, while
remaining the same on inputs from H. Since H happens with high probability, the result follows.

6 Conclusion

Our work suggests several future directions. First, our estimators come with no polynomial termina-
tion time guarantee since they are based on applying the generic Extension Lemma. Yet, in the one
dimensional case, [TVGZ20] showed that the Extension Lemma can be computed in polynomial time
when applied to the empirical median on an appropriate typical set. Given the analogies between our
works, it is an important open problem to see if the high-dimensional estimators we propose can also
be implemented in polynomial-time. Second, our work leverages classical robust convex geometric
tools to construct private algorithms, which allow to demonstrate non-trivial high-dimensional phe-
nomena. It will be interesting to see if these newly introduced tools in the privacy literature can be
further used to reveal other non-trivial high-dimensional results.
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