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Abstract
The ability to identify influential training examples enables us to debug training
data and explain model behavior. Existing techniques to do so are based on the
flow of training data influence through the model parameters (Koh & Liang, 2017;
Yeh et al., 2018; Pruthi et al., 2020). For large models in NLP applications, it is
often computationally infeasible to study this flow through all model parameters,
therefore techniques usually pick the last layer of weights. However, we observe
that since the activation connected to the last layer of weights contains “shared
logic”, the data influenced calculated via the last layer weights prone to a “cancel-
lation effect”, where the data influence of different examples have large magnitude
that contradicts each other. The cancellation effect lowers the discriminative power
of the influence score, and deleting influential examples according to this measure
often does not change the model’s behavior by much. To mitigate this, we propose
a technique called TracIn-WE that modifies a method called TracIn (Pruthi et al.,
2020) to operate on the word embedding layer instead of the last layer, where the
cancellation effect is less severe. One potential concern is that influence based on
the word embedding layer may not encode sufficient high level information. How-
ever, we find that gradients (unlike embeddings) do not suffer from this, possibly
because they chain through higher layers. We show that TracIn-WE significantly
outperforms other data influence methods applied on the last layer significantly
on the case deletion evaluation on three language classification tasks for different
models. In addition, TracIn-WE can produce scores not just at the level of the
overall training input, but also at the level of words within the training input, a
further aid in debugging.

1 Introduction
Training data influence methods study the influence of training examples on a model’s weights
(learned during the training process), and in turn on the predictions of other test examples. They
enable us to debug predictions by attributing them to the training examples that most influence them,
debug training data by identifying mislabeled examples, and fixing mispredictions via training data
curation. While the idea of training data influence originally stems from the study of linear regression
(Cook & Weisberg, 1982), it has recently been developed for complex machine learning models like
deep networks.

Prominent methods for quantifying training data influence for deep networks include influence
functions (Koh & Liang, 2017), representer point selection (Yeh et al., 2018), and TracIn (Pruthi
et al., 2020). While the details differ, all methods involves computing the gradients (w.r.t. the loss) of
the model parameters at the training and test examples. Thus, they all face a common computational
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challenge of dealing with the large number of parameters in modern deep networks. In practice,
this challenge is circumvented by restricting the study of influence to only the parameters in the
last layer of the network. While this choice may not be explicitly stated, it is often implicit in the
implementations of larger neural networks. In this work, we revisit the choice of restricting influence
computation to the last layer in the context of large-scale Natural Language Processing (NLP) models.

We first introduce the phenomenon of “cancellation effect” of training data influence, which happens
when the sum of the influence magnitude among different training examples is much larger than the
influence sum. This effect increases the influence magnitude of most training examples and reduces
the discriminative power of data influence. We also observe that different weight parameters may
have different level of cancellation effects, and the weight parameters of bias parameters and latter
layers may have larger cancellation effects. To mitigate the “cancellation effect” and find a scalable
algorithm, we propose to operate data influence on weight parameters with the least cancellation
effect – the first layer of weight parameter, which is also known as the word embedding layer.

While word embedding representations might have the issue of not capturing any high-level input
semantics, we surprisingly find that the gradients of the embedding weights do not suffer from this.
Since the gradient chain through the higher layers, it thus takes the high-level information captured in
those layers into account. As a result, the gradients of the embedding weights of a word depend on
both the context and importance of the word in the input. We develop the idea of word embedding
based influence in the context of TracIn due to its computational and resource efficiency over other
methods. Our proposed method, TracIn-WE, can be expressed as the sum of word embedding gradient
similarity over overlapping words between the training and test examples. Requiring overlapping
words between the training and test sentences helps capture low-level similarity, while the word
gradient similarity helps capture the high-level semantic similarity between the sentences. A key
benefit of TracIn-WE is that it affords a natural word-level decomposition, which is not readily
offered by existing methods. This helps us understand which words in the training example drive its
influence on the test example.

We evaluate TracIn-WE on several NLP classification tasks, including toxicity, AGnews, and MNLI
language inference with transformer models fine-tuned on the task. We show that TracIn-WE
outperforms existing influence methods on the case deletion evaluation metric by 4 � 10⇥. A
potential criticism of TracIn-WE is its reliance on word overlap between the training and test examples,
which would prevent it from estimating influence between examples that relate semantically but not
syntactically. To address this, we show that the presence of common tokens in the input, such as
a “start” and “end” token (which are commonly found in modern NLP models), allows TracIn-WE
to capture influence between semantically related examples without any overlapping words, and
outperform last layer based influence methods on a restricted set of training examples that barely
overlaps with the test example.2

2 Preliminaries
Consider the standard supervised learning setting, with inputs x 2 X , outputs y 2 Y , and training data
D = {(x1, y1), (x2, y2), ...(xn, yn)}. Suppose we train a predictor f with parameter ⇥ by minimizing
some given loss function ` over the training data, so that ⇥ = argmin⇥

Pn
i=1 `(f(xi), yi). In the

context of the trained model f , and the training data D, we are interested in the data importance of a
training point x to the testing point x0, which we generally denote as I(x, x0).

2.1 Existing Methods
We first briefly introduce the commonly used training data influence methods: Influence func-
tions (Koh & Liang, 2017), Representer Point selection (Yeh et al., 2018), and TracIn (Pruthi et al.,
2020). We demonstrate that each method can be decomposed into a similarity term S(x, x0), which
measures the similarity between a training point x and the test point x0, and loss saliency terms L(x)
and L(x0), that measures the saliency of the model outputs to the model loss. The decomposition
largely derives from an application of chain rule to the parameter gradients.

I(x, x0) = L(x)S(x, x0)L(x0)

The decomposition yields the following interpretation. A training data x has a larger influence on a
test point x0 if (a) the training point model outputs have high loss saliency, (b) the training point x
and the test point x0 are similar as construed by the model. In Section 3.3,we show that restricting

2code is in https://github.com/chihkuanyeh/TracIn-WE.
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the influence method to operate on the weights in the last layer of the model critically affects the
similarity term, and in turn the quality of influence. We now introduce the form of each method, and
the corresponding similarity and loss saliency terms.
Influence Functions:

Inf(x, x0) = �r⇥`(x,⇥)TH�1
⇥ r⇥`(x

0,⇥),

where H⇥ is the hessian
Pn

i=1 r2
⇥`(x,⇥) computed over the training examples. By an application of

the chain rule, we can see that Inf(x, x0) = L(x)S(x, x0)L(x0), with the similarity term S(x, x0) =
@f(x,⇥)

@⇥

T
H�1

⇥
@f(x0,⇥)

@⇥ , and the loss saliency terms L(x) = @`(x,⇥)
@f(x,⇥) . The work by Sui et al. (2021) is

very similar to extending the influence function to the last layer to satisfy the representer theorem.
Representer Points:

Rep(x, x0) = � 1

2�n

@`(x,⇥)

@fj(x,⇥)
a(x,⇥)Ta(x0,⇥), (1)

where a(x,⇥) is the final activation layer for the data point x, � is the strength of the `2 regularizer
used to optimize ⇥, and j is the targeted class to explain. The similarity term is S(x, x0) =

a(x,⇥)Ta(x0,⇥), and the loss saliency terms are L(x) = 1
2�n

@`(x,⇥)
@fj(x,⇥) , L(x0) = 1.

TracIn:

TracIn(x, x0) = �
dX

c=1

⌘cr⇥c`(x,⇥c)
Tr⇥c`(x

0,⇥c), (2)

where ⇥c is the weight at checkpoint c, and ⌘c is the learning rate at checkpoint c. In the remainder
of the work, in our notation, we suppress the sum over checkpoints of TracIn for notational simplicity.
(This is not to undermine the importance of summing over past checkpoints, which is a crucial compo-
nent in the working on TracIn.) For TracIn, the similarity term is S(x, x0) = r⇥f(x,⇥)Tr⇥f(x0,⇥),
while the loss terms are L(x) = @`(x,⇥)

@f(x,⇥) , L(x0) = @`(x0,⇥)
@f(x0,⇥) .

2.2 Evaluation: Case Deletion
We now discuss our primary evaluation metric, called case deletion diagnostics (Cook & Weisberg,
1982), which involves retraining the model after removing influential training examples and measuring
the impact on the model. This evaluation metric helps validate the efficacy of any data influence
method in detecting training examples to remove or modify for targeted fixing of misclassifications,
which is the primary application we consider in this work. This evaluation metric was also noted as
a key motivation for influence functions (Koh & Liang, 2017). Given a test example x0, when we
remove training examples with positive influence on x0 (proponents), we expect the prediction value
for the ground-truth class of x0 to decrease. On the other hand, when we remove training examples
with negative influence on x0 (opponents), we expect the prediction value for the ground-truth class
of x0 to increase.

An alternative evaluation metric is based on detecting mislabeled examples via self-influence (i.e.
influence of a training sample on that same sample as a test point). We prefer the case deletion
evaluation metric, as it more directly corresponds to the concept of data influence. Similar evaluations
that measure the change of predictions of the model after a group of points is removed is seen in
previous works. Han et al. (2020) measures the test point prediction change after 10% training data
with the most and least influence are removed, and Koh et al. (2019) measures the correlation of the
model loss change after a group of trained data is removed and the sum of influences of samples in
the group, where the group can be seen as manually defined clusters of data.
Deletion curve. Given a test example x0 and influence measure I, we define the metrics
DEL+(x0, k, I) and DEL�(x0, k, I) as the impact on the prediction of x0 (for its groundtruth class)
upon removing top-k proponents and opponents of x0 respectively:

DEL+(x
0, k, I) = E[fc(x0,⇥+;k)� fc(x

0,⇥)],

DEL�(x
0, k, I) = E[fc(x0,⇥�;k)� fc(x

0,⇥)],

where, ⇥+;k ( ⇥�;k) are the model weights learned when top-k proponents (opponents) according
to influence measure I are removed from the training set, and c is the groundtruth class of x0. The
expectation is over the number of retraining runs. We expect DEL+ to have large negative, and
DEL� to have large positive values. To evaluate the deletion metric at different values of k, we may
plot DEL+(x0, k, I) and DEL�(x0, k, I) for different values of k, and report the area under the curve
(AUC): AUC-DEL+ =

Pkm

k=k1

1
m DEL+(x0, k, I), and AUC-DEL� =

Pkm

k=k1

1
m DEL�(x0, k, I).
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We note that the case deletion diagnostics is different to the leave-one-out evaluation of Koh & Liang
(2017) by two points. First, leave-one-out evaluation focuses on removing one point, which is more
meaningful in the convex regime where the optimization is initialization-invariant. We consider the
leave-k-out evaluation which is closer to actual applications, as one may need to alter more than one
training data to fix a prediction. Second, we consider the expected value of leave-k-out, to hedge
the variance caused by specific model states, which was pointed out by Søgaard et al. (2021) to be a
major issue for leave-one-out evaluation (especially when the objective is no longer convex).

3 Cancellation Effect of Data Influence
The goal of a data influence method is to distribute the test data loss (prediction) across training
examples, which can be seen as an attribution problem where each training example is an agent.
We observe cancellation across the data influence attributions to training examples, i.e., the sign
of attributions across training examples disagree and cancels each other out. This leads to most
training examples having a large attribution magnitude, which reduces the discriminatory power of
attribution-based explanations.

Our next observation is that the cancellation effect varies across different weight parameters. In
particular, when a weight parameter is used by most of the training examples, the cancellation effect
is especially severe. One such parameter is the bias, whose cancellation effect is illustrated by the
following example:
Example 3.1. Consider an example where the input x 2 Rd is sparse, and xi has feature i with
value 1 and all other features with value 0. The prediction function has the form f(x) = x · w + b. It
follows that a set of optimal parameters are wi = yi, b = 0. We further assume that the parameter
b is initialized to 0 and has never changed during the gradient descent progress. In this case, it is
clear that the bias parameter b is irrelevant to the model (as removing it will not change the model
at all). However, the influence to individual examples caused by the bias b is still non-zero. This is
because even that the sum of gradient for bias b is 0, (s.t.

P
i
@L(f(xi),yi)

@b = 0), each individual term
@L(f(xi),yi)

@b = @L(f(xi),yi)
@f(xi)

is non-zero for most xi. Note that @L(f(xi),yi)
@b contributes to the influence

to data xi directly, and thus the bias parameter b will contribute to the influence of all the training
data. In the contrary, for each weight variable wj , @L(f(xi),yi)

@wj
is only non-zero for xj , and thus the

weight variable wj only contributes to the influence of one training data xj . Thus, the bias would
affect the influence for more training examples compared to the weights.
The above example illustrates that while the bias parameter is not important for the prediction model
(removing the bias can still lead to the same optimal solution), the total gradient that flows through
the bias still high. In fact, we find empirically that the total influence that flows through the bias is
larger than that flowing through the weight, since each training example’s gradient will affect the bias
but the total contribution will be cancelled out, so the bias will remain 0. We also note that even for
deep network models that do not have a sparse input, the neurons connected to the weight are often 0
(due to ReLU types of activation functions). Thus, the gradient of weight parameters is often sparser
compared to the gradient of bias parameters, and thus bias parameters would often have stronger
cancellations, which we validate empirically.
3.1 Measuring the Cancellation Effect
In the above example, we defined strong cancellation effect when some weight parameters does not
change a lot during training (or has saturated in the training process), but the total strength of the
gradient of the weight parameters summed over training data is large. For weights W , we first define
two terms �Wc and G(W )c,

�Wc = kWc+1 �Wck,

G(W )c =
X

xi,yi⇠D

⌘ck
@l(xi, yi)

@Wc
k,

where �W c measures the norm of weight parameter change between checkpoint c and c+ 1, and
G(W )c measures the sum of weight gradient norm times learning rate summed over all training
data. When �Wc is small, this means that the weight W may have saturated at checkpoint c, and the
weight may not actually affect the model output much (and thus the weight W is not important for
this epoch of training). When G(W )c is large, this means that the sum of gradient norm with respect
to Wc is still large, and the influence norm caused by @l(xi,yi)

@Wc
will also be large.
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To measure the cancellation effect, we define the cancellation ratio of a weight parameter W as:

C(W ) =

P
c G(W )cP
c �Wc

.

When G(W )c is large and �Wc is small, this means that a non-important weight Wc greatly
influenced the total influence norm, which may be only possible if the influence contributed from Wc

to different examples cancelled each other out. Applying this interpretation to the cancellation of
bias parameters, the intuition is that the bias parameters are not mainly responsible for the reduction
of testing example loss change during the training process (since �Wc is small). However, they
dominate the total influence strength due to their dense nature (G(W )c is large). Parameters with
high cancellation may not be ideal to the calculation of influences.
3.2 Removing Bias In TracIn Calculation to Reduce Cancellation Effect
To investigate whether removing weights with high cancellation effect really helps improve influence
quality, we conducted an experiment on a CNN text classification on Agnews dataset with 87% test
accuracy. The model is defined as follows: first a token embedding with dimension 128, followed by
two convolution layers with kernel size 5 and filter size 10, one convolution layers with kernel size 1
and filter size 10, a global max pooling layer, and a fully connected layer; all weights are randomly
initialized. The first layer is the token embedding, the second layer is the convolution layer, and the
last layer is a fully connected layer. The model has 21222 parameters in total (excluding the token
embedding), in which 102 parameters are bias variables. We find C(bias) to be 16789, and C(weight)
to be 2555, which validates that the bias variables have a much stronger cancellation effect than the
weight variables. A closer analysis shows that G(bias) is similar to G(weight) (627206 and 559142),
but �(bias) is much smaller than �(weight) (0.74 and 4.37.) Even though the bias parameters has a
much smaller total change compared to the weight parameters, their impact on the gradient norm (and
thus influence norm) is even higher than the weight parameters. This verifies the intuition in Example
3.1 that the bias parameter has a stronger cancellation effect since the gradient to bias is almost
activated for all examples despite the actual bias change being small. To further verify that the TracIn
score contributed by the bias may lower the overall discriminatory power, we compute AUC-DEL+

and AUC-DEL� for TracIn and TracIn-weight on AGnews with our CNN model. The AUC-DEL+

for TracIn and TracIn-weight is �0.036 and �0.065 respectively, and the AUC-DEL+ for TracIn and
TracIn-weight is 0.011 and 0.046. The result shows that by removing the TracIn score contributed by
the bias (with only 102 parameters), the overall influence quality improves significantly. Thus, in all
future experiments, we remove the bias in calculation of data influence if not stated otherwise.
3.3 Influence of Latter Layers May Suffer from Cancellation
As mentioned in Section 1, for scalability reasons, most influence methods choose to operate only on
the parameters of the last fully-connected layer ⇥last. We argue that this is not a great choice, as the
influence scores that stems from the last fully-connected weight layer may suffer from cancellation
effect, as different examples “share logics” in the activation representation of this layer, and have a
higher gradient similarity for different examples. Early layers, where examples have unique logic,
may suffer less from the cancellation effect. We first measure the gradient similarity for different
examples for each layer, which is Exa,xbCOS-SIM[@l(xa)/@w, @l(xb)/@w], where COS-SIM is the
cosine similarity. This measures the expected gradient cosine similarity between two examples. The
expected gradient similarity for testing examples between different layers in the CNN classification
are: first 0.035, second 0.075, third 0.21, last 0.23. This verifies that the latter layers in the neural
network have more aligned gradients between examples, and thus share more logics between training
examples. We report the cancellation ratio for each of the TracIn layer varaint in Table 1, where
TracIn-first, TracIn-second, TracIn-third, TracIn-last, TracIn-All refer to TracIn scores based on
weights of the first layer, second layer, third layer, last layer, and all layers (the bias is always
omitted). As we suspected, early layers suffers less from cancellation, and latter layers suffers
more from cancellation. To assess the impact on influence quality, we evaluate the AUC-DEL+ and
AUC-DEL� score for TracIn calculated with different layers on the AGnews CNN model in Tab. 1.
We observe that removing examples based on influence scores calculated using parameters of later
layers (with more “shared logic"") leads to worse deletion score compared to removing examples
based on influence scores calculated using parameters of earlier layers (with more “unique logic”).
Interestingly, the performance of TracIn-first even outperforms TracIn-all where all parameters are
used. 3 We hypothesize that since the TracIn score based on later layers contain too much cancellation,

3We note that our investigation of last layer cancellation is limited to the setting when the whole model is
trained to produce a single classification score, which may not hold in the setting where only the last layer is
fine-tuned or tasks with a generative output.
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Table 1: Cancellation Ratio and AUC-DEL table for various layers in CNN model in AGnews.

Dataset Metric TR-first TR-second TR-third TR-last TR-all

AGnews Cancellation # 1863 2019 3126 2966 2368
AUC-DEL+ # �0.077 �0.075 0.012 �0.016 �0.065
AUC-DEL� " 0.045 0.022 0.006 �0.032 0.046

Table 2: Examples for word similarity for different examples containing word “not”.
Example Premise Hypothesis Label

S1 I think he is very annoying. I do not like him. Entailment
S2 I think reading is very boring. I do not like to read. Entailment
S3 I think reading is very boring. I do not hate burying myself in books. Contradiction
S4 She not only started playing the piano before

she could speak, but her dad taught her to
compose music at the same time.

She started to playing music and mak-
ing music from very long ago.

Entailment

S5 I think he is very annoying. I don’t like him. Entailment
S6 She thinks reading is pretty boring She doesn’t love to read Entailment
S7 She not only started playing the piano before

she could speak, but her dad taught her to
compose music at the same time

She started to playing music and mak-
ing music from quite long ago

Entailment

it is actually harmful to include these weight parameters in the TracIn calculation. In the following,
we develop data influence methods by only using the first layer of the model, which suffers the least
from cancellation effect.

4 Word Embedding Based Influence
In the previous section, we argue that using the latter layers to calculate influence may lead to the
cancellation effect, which over-estimates influence. Another option is to calculate influence on all
weight parameters, but may be computational infeasible when larger models with several millions of
parameters are used. To remedy this, we propose operating on the first layer of the model, which
contains the less cancellation effect since early layers encodes “unique logit”. The first layer for
language classification models is usually the word embedding layer in the case of NLP models.
However, there are two questions in using the first layer to calculate data influence: 1. the word
(token) embedding contains most of the weight parameters, and may be computational expensive 2.
the word embedding layer may not capture influential examples through high-level information. In
the rest of this section, we develop the idea of word embedding layer based training-data influence
in the context of TracIn. We focus on TracIn due to challenges in applying the other methods to
the word embedding layer: influence functions on the word embedding layer are computationally
infeasible due to the large size (vocab size ⇥ embedding_dimension) of the embedding layer, and
representer is designed to only use the final layer. We show that our proposed influence score is
scalable thanks to the sparse nature of word embedding gradients, and contains both low-level and
high-level information since the gradient to the word embedding layer can capture both high-level
and low-level information about the input sentence.
4.1 TracIn on Word Embedding Layer
We now apply TracIn on the word embedding weights, obtaining the following expression:

TracIn-WE(x, x0) = �@`(x,⇥)

@⇥WE

T @`(x0,⇥)

@⇥WE
, (3)

Implementing the above form of TracIn-WE would be computationally infeasible as word embedding
layers are typically very large (vocab size ⇥ embedding dimension). For instance, a BERT-base
model has 23M parameters in the word embedding layer. To circumvent this, we leverage the sparsity
of word embedding gradients @`(x,⇥)

@⇥WE
, which is a sparse vector where only embedding weights

associated with words that occur in x have non-zero value. Thus, the dot product between two
word embedding gradients has non-zero values only for words w that occur in both x, x0. With this
observation, we can rewrite TracIn-WE as:

TracIn-WE(x, x0) = �
X

w2x\x0

@`(x)

@⇥w

T

· @`(x
0)

@⇥w
, (4)

where ⇥w are the weights of the word embedding for word w. We call the term @`(x)
@⇥w

T
· @`(x0)

@⇥w
the

word gradient similarity between sentences x, x0 over word w.
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Table 3: Word Decomposition Examples for TracIn-WE
Sentence content Label

Test Sentence 1 - T1 I can always end my conversations so you would not get any answers because
you are too lazy to remember anything

Toxic

Test Sentence 2 - T2 For me, the lazy days of summer is not over yet, and I advise you to please kindly
consider to end one’s life, thank you

Toxic

Train Sentence - S1 Oh yeah, if you’re too lazy to fix tags yourself, you’re supporting AI universal
takeover in 2020. end it. kill it now.

Non-Toxic

Word Importance Total

TracIn-WE(S1, T1) [S]: �0.28, [E]: �0.07, to: �0.15, lazy: �7.6, you: �0.3, end:�0.3, too:�0.3 �9.2

TracIn-WE(S1, T2) [S]: �0.17, [E]: �0.23, to: 0.54, lazy: �0.25, you: 0.25, end: �3.12 �3.45

4.2 Interpreting Word Gradient Similarity
Equation 4 gives the impression that TracIn-WE merely considers a bag-of-words style similarity
between the two sentences, and does not take the semantics of the sentences into account. This is
surprisingly not true! Notice that for overlapping words, TracIn-WE considers the similarity between
gradients of word embeddings. Since gradients are back-propagated through all the intermediate
layers in the model, they take into account the semantics encoded in the various layers. This is
aligned with the use of word gradient norm k@f(x)

@⇥w
k as a measure of importance of the word w to the

prediction f(x) (Wallace et al., 2019; Simonyan et al., 2013). Thus, word gradient similarity would
be larger for words that are deemed important to the predictions of the training and test points.

Word gradient similarity is not solely driven by the importance of the word. Surprisingly, we find
that word gradient similarity is also larger for overlapping words that appear in similar contexts
in the training and test sentences. We illustrate this via an example. Table 2 shows 4 synthetic
premise-hypothesis pairs for the Multi-Genre Natural Language Inference (MNLI) task (Williams
et al., 2018). An existing pretrained model (He et al., 2020) predicts these examples correctly with
softmax probability between 0.65 and 0.93. Notice that all examples contain the word ‘not’ once.
The word gradient importance k@f(x)

@⇥w
k for “not” is comparable in all 4 sentences. The value of word

gradient similarity for ‘not’ is 0.34 for the pair S1-S2, and �0.12 for S1-S3, while it is �0.05 for
S1-S4. This large difference stems from the context in which ‘not’ appears. The absolute similarity
value is larger for S1-S2 and S1-S3, since ‘not’ appears in a negation context in these examples. (The
word gradient similarity of S1-S3 is negative since they have different labels.) However, in S4, ‘not’
appears in the phrase “not only ... but”, which is not a negation (or can be considered as double
negation). Consequently, word gradient similarity for ‘not’ is small between S1 and S4. In summary,
we expect the absolute value of TracIn-WE score to be large for training and test sentences that have
overlapping important words in similar (or strongly opposite) contexts. On the other hand, overlap of
unimportant words like stop words would not affect the TracIn-WE score.
4.3 Word-Level Decomposition for TracIn-WE
An attractive property of TracIn-WE is that it decomposes into word-level contributions for both the
testing point x0 and the training point x. As shown in (4), word w in x contributes to TracIn-WE(x, x0)

by the amount @`(x)
@⇥w

T
· @`(x0)

@⇥w
[w 2 x0]; a similar word-level decomposition can be obtained for

x0. Such a decomposition helps us identify which words in the training point (x) drive its influence
towards the test point (x0). For instance, consider the example in Table. 3, which contains two test
sentences (T1, T2) and a training sentence S1. We decompose the score TracIn-WE(S1, T1) and
TracIn-WE(S1,T2) into words contributions, and we see that the word “lazy” dominates TracIn-
WE(S1, T1), and the word “end” dominates TracIn-WE(S1, T2). This example shows that different
key words in a training sentence may drive influence towards different test points. The feature-
decomposition for influence introduces additional interpretability to why two examples are highly
influenced. This is demonstrated in a case study where we cluster difficult training examples based
on a normalized TracIn-WE score in Sec. A.
4.4 An approximation for TracIn-WE
As we note in Sec. 4.1, the space complexity of saving training and test point gradients scales with
the number of words in the sentence. This may be intractable for tasks with very long sentences.
We alleviate this by leveraging the fact that the word embedding gradient for a word w is the sum
of input word gradients from each position where w is present. Given this decomposition, we can
approximate the word embedding gradients by saving only the top-k largest input word gradients for

7



Figure 1: Deletion Curve for removing opponents (top figure, larger better) and proponents (bottom
figure, smaller better) on Toxicity (left), AGnews (mid), and MNLI (right).

each sentence. (An alternative is to save the input word gradients that are above a certain threshold.)
Formally, we define the approximation

@`(x,⇥)

@⇥w
|top-k =

X

i2xtop-k ^ xi=w

@`(x,⇥)

@xi
(5)

where xi is the word at position i, and xtop�k is the set of top-k input positions by gradient norm.
We then propose

TracIn-WE-Topk(x, x) = �
X

w2x\x0

@`(x,⇥w)

@⇥w
|Ttop-k ·

@`(x0,⇥w)

@⇥w
|top-k. (6)

Computational complexity Let L be the max length of each sentence, d be the word embedding
dimension, and o be the average overlap between two sentences. If the training and test point
gradients are precomputed and saved then the average computation complexity for calculating
TracIn-WE for m training points and n testing points is O(mnod). This can be contrasted with
the average computation complexity for influence functions on the word embedding layer, which
takes O(mnd2v2 + d3v3), where v is the vocabulary size which is typically larger than 104, and o is
typically less than 5. The approximation for TracIn-We-Topk drops the computational complexity
from O(mnod) to O(mnokd) where ok is the average overlap between the sets of top-k words from
the two sentences. It has the additional benefit of preventing unimportant words (ones with small
gradient) from dominating the word similarity by multiple occurrences, as such words may get pruned.
In all our experiments, we set k to 10 for consistency, and do not tune this hyper-parameter.
4.5 Influence without Word-Overlap
One potential criticism of TracIn-WE is that it may not capture any influence when there are no
overlapping words between x and x0. To address this, we note that modern NLP models often include
a “start” and “end” token in all inputs. We posit that gradients of the embedding weights of these
tokens take into account the semantics of the input (as represented in the higher layers), and enable
TracIn-WE to capture influence between examples that are semantically related but do not have any
overlapping words. We illustrate this in S5-S7 in Tab. 2 via examples for the MNLI task. Sentence
S5 has no overlapping words with S6 and S7. However, the word gradient similarity of “start” and
“end” tokens for the pair S5-S6 is 1.15, while that for the pair S5-S7 is much lower at �0.05. Indeed,
sentence S5 is more similar to S6 than S7 due to the presence of similar word pairs (e.g., think and
thinks, annoying and boring), and the same negation usage. We further validate that TracIn-WE can
capture influence from examples without word overlap via a controlled experiment in Sec. 5.
5 Experiments
We evaluate the proposed influence methods on 3 different NLP classification datasets with BERT
models. We choose a transformer-based model as it has shown great success on a series of down-
stream tasks in NLP, and we choose BERT model as it is one of the most commonly used transformer
model. For the smaller Toxicity and AGnews dataset, we operate on the Bert-Small model, as it
already achieves good performance. For the larger MNLI dataset, we choose the Bert-Base model
with 110M model parameters, which is a decently large model which we believe could represent the
effectiveness of our proposed method on large-scale language models. As discussed in Section 2.2,
we use the case deletion evaluation and report the metrics on the deletion curve in Table 4 for various
methods and datasets. The standard deviation for all AUC values all methods is reported in Table 7.
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Table 4: AUC-DEL table for various methods in different datasets. Highest number is bold.
Dataset Metric Inf-Last Rep TR-last TR-WE TR-WE-topk TR-TFIDF TR-common

Toxic AUC-DEL+ # �0.008 �0.008 �0.013 �0.100 �0.099 �0.067 0.016
Bert AUC-DEL� " 0.014 0.021 0.023 0.149 0.151 0.063 0.014

AGnews AUC-DEL+ # �0.018 �0.016 �0.021 �0.166 �0.174 �0.090 �0.017
Bert AUC-DEL� " 0.033 0.028 0.028 0.130 0.131 0.072 0.023

MNLI AUC-DEL+ # 0.006 �0.198 �0.004
Bert AUC-DEL� " 0.026 0.169 0.005

Toxic AUC-DEL+ # �0.011 �0.004 0.001 �0.030 �0.038 �0.001 �0.001
Roberta AUC-DEL� " 0.023 0.012 0.003 0.033 0.030 0.006 0.010

Dataset Metric Inf-Last Rep TR-last TR-WE TR-WE-topk TR-WE-NoC TR-common

Toxic AUC-DEL+ # �0.009 �0.008 �0.006 �0.018 �0.016 0.003 �0.008
Nooverlap AUC-DEL� " 0.008 0.007 0.010 0.026 0.026 0.001 0.015

Baselines One question to ask is whether the good performance of TracIn-WE is a result that it
captures the low-level word information well. To answer this question, we design a synthetic data
influence score as the TF-IDF similarity Salton & Buckley (1988) multiplied by the loss gradient
dot product for x and x0. TR-TFIDF can be understood by replacing the embedding similarity of
TracIn-Last by the TF-IDF similarity, which captures low level similarity.

TR-TFIDF(x, x0) = �Tf-Idf(x, x0)
@`(x,⇥)

@f(x,⇥)

T @`(x0,⇥)

@f(x,⇥)
. (7)

Toxicity. We first experiment on the toxicity comment classification dataset (Kaggle.com, 2018),
which contains sentences that are labeled toxic or non-toxic. We randomly choose 50, 000 training
samples and 20, 000 validation samples. We then fine-tune a BERT-small model on our training set,
which leads to 96% accuracy. Out of the 20, 000 validation samples, we randomly choose 20 toxic
and 20 non-toxic samples, for a total of 40 samples as our targeted test set. For each example x0 in
the test set, we remove top-k proponents and top-k opponents in the training set respectively, and
retrain the model to obtain DEL+(x0, k, I) and DEL�(x0, k, I) for each influence method I. We vary
k over {10, 20, . . . , 100}. For each k, we retrain the model 10 times and take the average result, and
then average over the 40 test points. We implement the methods Influence-last, Representer Points,
TracIn-last, TracIn-WE, TracIn-WE-Topk, TracIn-TFIDF (introduced in Sec. G), TracIn-common
(which is a variant of TracIn only using the start token and end token to calculate gradient), and
abbreviate TracIn with TR in the experiments. We see that our proposed TracIn-WE method, along
with its variants TracIn-WE-Topk outperform other methods by a significant margin. As mentioned
in Sec. 3.3, TF-IDF based method beats the existing data influence methods using last layer weights
by a decisive margin as well, but is still much worse compared to TracIn-WE. Therefore, TracIn-WE
did not succeed by solely using low-level information. Also, we find that TracIn-WE performs much
better than TracIn-common, which uses the start and end tokens only. This shows that the keyword
overlaps (such as lazy, end in Table 3) is crucial to the great performance of TracIn-WE.

AGnews. We next experiment on the AG-news-subset (Gulli, 2015; Zhang et al., 2015), which
contains a corpus of news with 4 different classes. We follow our setting in toxicity and choose
50, 000 training samples, 20, 000 validation samples, and fine-tune with the same BERT-small model
that achieves 90% accuracy on this dataset. We randomly choose 100 samples with 25 from each
class as our targeted test set. The AUC-DEL+ and AUC-DEL� scores for k 2 {10, 20, . . . , 100} are
reported in Table 4. Again, we see that the variants of TracIn-WE significantly outperform other
existing methods applied on the last layer. In both AGnews and Toxicity, removing 10 top-proponents
or top-opponents for TracIn-WE has more impact on the test point compared to removing 100
top-proponents or top-opponents for TracIn-last.

MNLI. Finally, we test on a larger scale dataset, Multi-Genre Natural Language Inference
(MultiNLI) Williams et al. (2018), which consists of 433k sentence pairs with textual entailment
information, including entailment, neutral, and contradiction. In this experiment, we use the full
training and validation set, and BERT-base which achieves 84% accuracy on matched-MNLI valida-
tion set. We choose 30 random samples with 10 from each class as our targeted test set. We only
evaluate TracIn-WE-Topk, TracIn-last and TracIn-TFIDF as those were the most efficient methods to
run at large scale. We vary k 2 {20, . . . , 5000}, and the AUC-DEL+ and AUC-DEL� scores for our
test set are reported in Table 4. Unlike previous datasets, here TracIn-TFIDF does not perform better
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than TracIn-Last, which may be because input similarity for MNLI cannot be merely captured by
overlapping words. For instance, a single negation would completely change the label of the sentence.
However, we again see TracIn-WE-Topk significantly outperforms TracIn-Last and TracIn-TFIDF,
demonstrating its efficacy over natural language understanding tasks as well. This again provides
evidence that TracIn-WE can capture both low-level information and high-level information. The
deletion curve of Toxicity, AGnews, MNLI is in shown in Fig. 4.5 and Fig. 1.
Toxicity-Roberta. To additionally test whether our experiment results apply to more modern
models, we repeat our experiments on the toxicity dataset with a Roberta model Liu et al. (2019),
while fixing other settings. We find that the TracIn-WE and TracIn-WE-Topk still significantly
outperforms other results.
No Word Overlap. To assess whether TracIn-WE can do well in settings where the training and
test examples do not have overlapping words, we construct a controlled experiment on the Toxicity
dataset. We follow all experimental setting for Toxicity classification with the Bert model, but making
two additional changes – (1) given a test sentence x0, we only consider the top-5000 training sentences
(out of 50, 000) with the least word overlap for computing influence. We use TF-IDF similarity
to rank the number of word overlaps so that stop word overlap will not be over-weighted. (2) We
also fix the token embedding during training (result when word-embedding is not fixed is in the
appendix, where removing examples based on any influence method does not change the prediction),
as we find sentence with no word overlaps carry more influence when the token embedding is fixed.
The AUC-DEL+ and AUC-DEL� scores are reported in the lower section of Table 4. We find that
TracIn-WE variants can outperform last-layer based influence methods even in this controlled setting,
showing that TracIn-WE can retrieve influential examples even without non-trivial word overlaps. In
Section 4.5, we claimed that this gain stems from the presence of common tokens (“start”, “end”,
and other frequent words). To validate this, we compared with a controlled variant, TracIn-WE-
NoCommon (TR-WE-NoC) where the common tokens are removed from TracIn-WE. As expected,
this variant performed much worse on the AUC-DEL+ and AUC-DEL�scores, thus confirming our
claim. We also find that the result of TracIn-WE is better than TracIn-common (which is TracIn-WE
with only “start” and “end” tokens), which shows that the common tokens such as stop words and
punctuation may also help finding influential examples without meaningful word overlaps.

6 Related Work
In the field of explainable machine learning, our works belongs to training data importance (Koh &
Liang, 2017; Yeh et al., 2018; Jia et al., 2019; Pruthi et al., 2020; Khanna et al., 2018; Sui et al., 2021).
Other forms of explanations include feature importance feature-based explanations, gradient-based
explanations (Baehrens et al., 2010; Simonyan et al., 2013; Zeiler & Fergus, 2014; Bach et al., 2015;
Ancona et al., 2018; Sundararajan et al., 2017; Shrikumar et al., 2017; Ribeiro et al., 2016; Lundberg
& Lee, 2017; Yeh et al., 2019; Petsiuk et al., 2018) and perturbation-based explanations (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Yeh et al., 2019; Petsiuk et al., 2018), self-explaining models (Wang &
Rudin, 2015; Lee et al., 2019; Chen et al., 2019), counterfactuals to change the outcome of the model
(Wachter et al., 2017; Dhurandhar et al., 2018; Hendricks et al., 2018; van der Waa et al., 2018; Goyal
et al., 2019), concepts of the model (Kim et al., 2018; Zhou et al., 2018). For applications on applying
data importance methods on NLP tasks, there have been works identifying data artifacts (Han et al.,
2020; Pezeshkpour et al., 2021) and improving models (Han & Tsvetkov, 2020, 2021) based on
existing data importance method using the influence function or TracIn. In this work, we discussed
weight parameter selection to reduce cancellation effect for training data attribution. There has been
works that discuss how to cope with cancellation in the context of feature attribution: Liu et al. (2020)
discusses how regularization during training reduces cancellation of feature attribution, Kapishnikov
et al. (2021) discusses how to optimize IG paths to minimize cancellation of IG attribution, and
Sundararajan et al. (2019) discusses improved visualizations to adjust for cancellation.

7 Conclusion
In this work, we revisit the common practice of computing training data influence using only last layer
parameters. We show that last layer representations in language classification models can suffer from
the cancellation effect, which in turn leads to inferior results on influence. We instead recommend
computing influence on the word embedding parameters, and apply this idea to propose a variant of
TracIn called TracIn-WE. We show that TracIn-WE significantly outperforms last versions of existing
influence methods on three different language classification tasks for several models, and also affords
a word-level decomposition of influence that aids interpretability.
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