
A Supplementary Methods

A.1 Participants

The following description is quoted with citation from a previous study that used the same dataset [23]. The
dataset was publicly published under a CC0 license, and is publicly available (https://openneuro.org/
datasets/ds003701). All participant data on the public repository has been de-identified.

Data were collected from 106 human participants across two different sessions (a behavioral and an imaging
session). Technical error during MRI acquisition resulted in removing six participants from the study. Four
additional participants were removed from the study because they did not complete the behavior-only session.
fMRI analysis was performed on the remaining 96 participants (54 females). All participants gave informed
consent according to the protocol approved by the Rutgers University Institutional Review Board. The average
age of the participants that were included for analysis was 22.06, with a standard deviation of 3.84.

A.2 C-PRO task paradigm – additional details

The C-PRO cognitive paradigm permutes specific task rules from three different rule domains (logical decision,
sensory semantic, and motor response) to generate dozens of novel and unique task contexts. Visual stimuli
included either horizontally or vertically oriented bars with either blue or red coloring. Simultaneously presented
auditory stimuli included continuous (constant) or non-continuous (non-constant, i.e., “beeping”) tones presented
at high (3000Hz) or low (300Hz) frequencies. A given task context could be presented with 256 unique
stimulus combinations. This is because a given task context was presented with two sequentially presented
audiovisual stimuli, where each audiovisual stimulus varied in four dimensions: color (red/blue), orientation
(vertical/horizontal), pitch (high/low), continuity (continuous/beeping). This led to 28 = 256 possible stimulus
combinations. The paradigm was presented using E-Prime software version 2.0.10.353 [48].

Each rule domain (logic, sensory, and motor) consisted of four specific rules, while each task context was a
combination of one rule from each rule domain. A total of 64 unique task contexts (4 logic rules x 4 sensory rules
x 4 motor rules) were possible, and each unique task set was presented twice for a total of 128 task miniblocks.
This meant that there were 256 ⇤ 64 = 16384 unique trials (i.e., context-stimulus) combinations. Identical task
contexts were not presented in consecutive blocks. Each task miniblock included three trials, each consisting of
two sequentially presented instances of simultaneous audiovisual stimuli. A task block began with a 3925 ms
encoding screen (5 TRs), followed by a jittered delay ranging from 1570 ms to 6280 ms (2-8 TRs; randomly
selected). Following the jittered delay, three trials were presented for 2355 ms (3 TRs), each with an inter-trial
interval of 1570 ms (2 TRs). A second jittered delay followed the third trial, lasting 7850 ms to 12560 ms (10-16
TRs; randomly selected). A task block lasted a total of 28260 ms (36 TRs). Subjects were trained on four of the
64 task contexts for 30 minutes prior to the fMRI session. The four practiced rule sets were selected such that all
12 rules were equally practiced. There were 16 such groups of four task sets possible, and the task sets chosen
to be practiced were counterbalanced across subjects. Subjects’ mean performance across all trials performed
in the scanner was 84% (median=86%) with a standard deviation of 9% (min=51%; max=96%). All subjects
performed statistically above chance (25%).

A.3 Analysis of human task performance data

The corresponding results described in this section can be found in Fig. 1.

We calculated the average accuracy for each task miniblock (comprising three task trials). Note that each task
miniblock had the same task context (three-rule combination) for all three trials. This resulted in 128 task
accuracy scores for every subject. Task rule contexts were then sorted into three categories separately for every
subject: practiced, 2-rule overlap, and 1-rule overlap. Practiced task contexts were defined as the four task
contexts that were used to train participants on the C-PRO task outside of the MRI scanner. 2-rule overlap tasks
were task contexts that had at least 2 of the same rules overlapping with the previously seen practiced tasks, and
1-rule overlap tasks were tasks with only a 1-rule overlap with practiced tasks. Note that there were no 0-rule
overlap tasks, since subjects were trained on every rule prior to the test session. Moreover, there were no rule
overlaps across practiced task contexts. Finally, every participant was provided with a randomly selected set of
practiced task contexts. Behavioral accuracy was computed for every task context group for every subject (Fig.
1b).

We next evaluated the successive miniblock performance of each rule presented in a novel task context during the
fMRI scanning session (see Fig. 1c-d). This would capture a participant’s ability to use a previously seen rule in
a novel context as a function of the number of times it used the rule previously. The performance of an individual
rule (e.g., “BOTH”) was calculated separately per participant as a function of each novel context seen. Thus,
performance of each rule was calculated for exactly 15 miniblocks (each rule was presented 16 times, including
the practiced miniblock). For each rule, we then fit a linear regression model to assess whether performance
(dependent variable) could be calculated as function of miniblock presentation (independent variable) with a
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positive coefficient (i.e., increasing slope). A significant positive increase of performance (increasing positive
performance) was tested for significance by assessing the p-value of the beta coefficient (p<0.05 threshold). This
captured compositional learning – re-using a task rule (despite use in a novel context) indicated that participants
were learning to use previously learned rules in out-of-set novel contexts.

A.4 fMRI acquisition

The following fMRI acquisition details are taken from a previous study that used the same data set [23].

Whole-brain multiband echo-planar imaging (EPI) acquisitions were collected with a 32-channel head coil on a
3T Siemens Trio MRI scanner with TR=785 ms, TE=34.8 ms, flip angle=55�, Bandwidth 1924/Hz/Px, in-plane
FoV read=208 mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceleration factor of 8. Whole-brain
high-resolution T1-weighted and T2-weighted anatomical scans were also collected with 0.8 mm isotropic
voxels. Spin echo field maps were collected in both the anterior to posterior direction and the posterior to anterior
direction in accordance with the Human Connectome Project preprocessing pipeline [14]. A resting-state scan
was collected for 14 minutes (1070 TRs), prior to the task scans. Eight task scans were subsequently collected,
each spanning 7 minutes and 36 seconds (581 TRs). Each of the eight task runs (in addition to all other MRI
data) were collected consecutively with short breaks in between (subjects did not leave the scanner).

A.5 fMRI preprocessing

The following details are quoted with citation from a previous study that used the same preprocessing scheme
[23].

Resting-state and task-state fMRI data were minimally preprocessed using the publicly available Human Connec-
tome Project minimal preprocessing pipeline version 3.5.0. This pipeline included anatomical reconstruction and
segmentation, EPI reconstruction, segmentation, spatial normalization to standard template, intensity normaliza-
tion, and motion correction. After minimal preprocessing, additional custom preprocessing was conducted on
CIFTI 64k grayordinate standard space for vertex-wise analyses using a surface based atlas [14]. This included
removal of the first five frames of each run, de-meaning and de-trending the time series, and performing nuisance
regression on the minimally preprocessed data [3]. We removed motion parameters and physiological noise
during nuisance regression. This included six motion parameters, their derivatives, and the quadratics of those
parameters (24 motion regressors in total). We applied aCompCor on the physiological time series extracted
from the white matter and ventricle voxels (5 components each extracted volumetrically) [1]. We additionally
included the derivatives of each component time series, and the quadratics of the original and derivative time
series (40 physiological noise regressors in total). This combination of motion and physiological noise regressors
totaled 64 nuisance parameters, and is a variant of previously benchmarked nuisance regression models [3].

A.6 fMRI activation estimation

We performed a within-subject task GLM on the vertex-wise fMRI time series to estimate task rule-related
activations on the CIFTI grayordinate space. To extract task activations for each task block, we performed a beta
series regression on every task miniblock [42]. Specifically, we fit an independent regressor to every encoding
period (3925ms, 5 TRs), resulting in 128 task regressors in total. Fitting regressors on the encoding period
was done primarily to isolate rule representations rather than the actual trial (stimulus-response) period. Each
regressor was a boxcar function that was a vector of 0s, except for the specified encoding period. This boxcar
function was then convolved with the SPM canonical hemodynamic response function [10]. A single activation
estimate (beta coefficient) was extracted for every encoding block at every surface vertex.

A.7 ANN construction and batch training

The primary ANN architecture was comprised of two hidden layers, each with 128 units. The output layer
was comprised of four units that corresponded to each motor response. The ANN transformed the trial input
vector into a 4-element response vector with the equation Y = fReLU (XhWh + bh), where Y corresponds to
the output vector, Wh is the weight matrix from the last hidden layer to the output layer, Xh is the activation
vector of the last hidden layer, and bh is the bias vector. The hidden unit activation vectors were defined as
Xi = fReLU (Xi�1Wi�1 + bi�1), where Xi is the activation vector for layer i. Weights and biases were
initialized from a uniform distribution U(�

p
1/k,

p
1/k), where k is the number of input features from the

previous layer.

The ANN was optimized by minimizing the cross entropy between the outputs and the correct target output (a
one-hot vector). Optimization was performed using Adam with a learning rate of 0.001 [27]. During training,
we used dropout (with probability 0.2 from input to hidden, and 0.5 within hidden layers).

Training on the C-PRO task was performed in a sequential learning paradigm. Initially, an arbitrary set of four
practiced contexts were selected with the constraint that no set of four practiced contexts had any overlapping
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rules. (This was randomly selected across different ANN initializations). Then, novel task contexts were
incrementally added (by 1) into the set of training contexts, and performance (and ANN analysis) was performed
after the addition of each task context. Training stopped once all 64 task contexts had been fully trained on. We
used batch training. Each batch contained a single task context with all possible stimulus (256) combinations.
Thus, each batch contained 256 trials in total.

To stop training we set criteria for two different experiments. The first experiment required that performance
on each task context (each batch) in the training set achieved a baseline performance accuracy or better (90%).
Once this criterion was satisfied, a novel task context would be added into the training. The second experiment
kept fix the number of batches/gradient steps each task context took prior to adding a new task context. This was
set to 200 gradient steps per task context.

A.8 ANN pretraining description

There were two pretraining paradigms: Primitives pretraining and Simple task pretraining.

Primitives pretraining focused on training individual rules within each rule domain, enabling ANNs to learn
individual rule Primitives (e.g., the notion of what “RED” is). This is consistent with how humans enter the
full C-PRO experiment – most participants already know what the primitives “RED”, “LEFT MIDDLE”, or
“BOTH” refer to. While C-PRO task contexts activated 3 rules out of 12 possible task rules, Primitives tasks only
activated 1/12 rules. Primitives pretraining was performed for each of the rule domains separately.

Motor Primitives pretraining involved making motor responses given a motor rule. This involved activating
one motor rule in the input vector at a time. If the “LEFT MIDDLE” rule was activated, a LEFT MIDDLE
output response would be expected. In addition, if the “NOT” unit was activated in conjunction with the “LEFT
MIDDLE” rule, then the “LEFT INDEX” output response would be expected, which is the analogous rule
instruction that participants received prior to performing the C-PRO task.

Sensory Primitives pretraining involved making True/False statements on whether a specific sensory stimulus
feature was presented. This involved activating one sensory rule and one sensory stimulus feature at a time. For
example, for the sensory rule “RED”, either a RED/BLUE sensory stimulus would activate. During pretraining,
we included two additional output units that corresponded to True/False units. If a “RED” stimulus was presented
in conjunction with “RED” sensory rule, the output should be “True”; otherwise, “False”. In addition, we also
presented sensory rules with the “NOT” negation. In other words, if the rule was “NOT RED” and the sensory
stimulus presented was RED, then the network should produce “False”.

Logic Primitives pretraining involved learning the abstract logical relations between different logic rules.
The logic rules “BOTH” and “EITHER” could be equivalently interpreted as “AND” and “OR” logic rules,
respectively. The “NOT BOTH” and “NEITHER” rules were analogous to the negations of those rules. This was
operationalized by presenting two stimuli from a specific feature domain (e.g., color). Using stimuli from the
color feature domain as an example, for “BOTH” Primitive training, if RED-then-RED stimuli were presented,
this would result in a “True” boolean. In contrast, if RED-then-BLUE stimuli were presented, then this would
result in a “False” boolean. This intuition was derived from conditional logic (where “BOTH” is equivalent to
the concept of “SAME”), where the statement x == x is True. In contrast, “EITHER” (i.e., “OR”) was coded
as “True” for any combination features of a color stimuli. The negations “BOTH” and “EITHER” resulted in
the negation of the produced boolean (i.e., “NEITHER” produced “False” for all stimulus pairs). The most
critical point, however, is that the responses for all logic rules were distinct among each other, and described
equivalent logical relations between rules. Previous theoretical work in cognitive science suggests that symbolic
computation emerges by learning the relational representations between symbolic operations [38]. This Logic
Primitives pretraining approach captures the relations amongst symbolic operations.

Simple task pretraining involved combining two-rule task context, rather than the full three-rule task context in
the C-PRO task. We designed two variants of simple tasks: a sensorimotor task that combined a sensory and
motor rule, and a logical-sensory task that combined a logic and sensory rule. The sensorimotor task activated a
sensory rule, motor rule, and one sensory stimulus unit. The response output was a motor response. For example,
if the rules were “RED” and “LEFT MIDDLE”, and the stimulus was “RED”, ANNs were taught to respond
with the Left Middle response unit. If the stimulus was anything other than “RED”, then ANNs were taught to
respond with the Left Index response unit. The sensorimotor task was used to teach ANNs simple mappings
between sensory input and motor responses in the simplest possible paradigm.

The logical-sensory task was designed to teach ANNs logical inferences over sensory stimuli in the simplest
possible manner. Like the sensorimotor task, the logical-sensory task included two rules: a logic and sensory
rule. However, unlike the sensorimotor task, it activated two stimulus units from the same feature domain (e.g.,
the color domain). For example, for the logic rule was “BOTH” and sensory rule “RED”, if the first stimulus
was red and second stimulus red, the ANN would be taught to respond with the True output unit. If any of the
stimuli were not red (e.g., blue), then the ANN would be taught to respond with the False output unit.
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Primitives pretraining was always performed prior to Simple task pretraining, except for SFig. 4, which
investigated the effect of reversing the order of pretraining tasks. Pretraining procedures were blocked together,
such that all conditions within the Primitives pretraining paradigm (i.e., Logic, Sensory, and Motor primitives
pretraining) were trained until all three tasks achieved 99% accuracy. Simple task pretraining was subsequently
performed until both Logical-Sensory and Sensory-Motor tasks were performed at 99% accuracy. This ordering
is consistent with prior work, suggesting that ANNs are more sample efficient when transitioning from easier
to more difficult tasks [47]. Conditions within each pretraining protocol were interleaved [11], ensuring that
catastrophic forgetting was not an issue, as is common in continual learning paradigms [7]. We also performed a
simple control experiment demonstrating that when pretraining was reversed in the Combined condition (i.e.,
Simple task pretraining followed by Primitives pretraining), generalization performance was reduced to chance
(SFig. 4). This suggests that the ordering of pretraining paradigms is crucial for generalization performance and
sample efficiency, which future work should explore.

After pretraining, the additional True/False output units were lesioned from the network.

A.9 ANN analysis

Analysis of ANNs was carried out in a similar manner to how empirical fMRI data and behavior was analyzed.
ANN analysis was performed to infer how the structure of their internal representations was associated with
task generalization performance and sample efficiency. Task generalization performance was calculated as the
performance on novel contexts (i.e., novel recombinations of task rules). This was independent of whether or not
ANNs had learned/seen individual rules previously. To estimate task sample efficiency, we calculated the number
of trial samples required to achieve a baseline task accuracy percentage (on contexts in the training set). Note
that for a fixed number of trial samples, the number of gradient steps were the same (batch sizes were always the
same). Generalization inefficiency was measured as the ratio of the number of samples trained on (normalized
between 0 and 1) and the generalization performance on novel contexts (normalized to 0 to 1 + a fixed constant).

PS in ANNs was calculated separately from the training procedure. Since we were only interested in the PS of
rule representations, only input units associated with the task rules were activated, while stimulus inputs were
set to 0. This ensured that the hidden activations were not contaminated by stimulus-related activations when
calculating PS in the hidden layers. Otherwise, PS in ANNs was calculated in a similar manner to the empirical
fMRI data, where the spatial features (dimensions) were the units within a given hidden layer (like voxels within
a brain parcel).

In addition, Supplementary Figures 7, 8, and 9 illustrate that pairwise PS scores for all pairs of rule dichotomies
in both ANNs and human fMRI data.

A.10 Computing resources

fMRI analyses were carried out on a local server with 24 cores and 320GB of RAM. ANN training, while not
required, was performed on an NVIDIA P100 GPU. A single ANN initialization can be successfully trained on a
CPU in under 2 minutes.

B Supplementary Figures
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Supplementary Figure 1: Standard decoding of multivariate activation patterns reveals more dis-
tributed patterns of decodability than identified with PS. These findings suggest that of the regions
that contain task information, only a subset of these regions contain abstract representations. a)
Sensory, b) logic, and c) motor rule decoding at the group level (n=96). Decoding was performed
using a distance-based classifier (Pearson correlation), and significance was assessed using a binomial
test against chance (25%). Significance was assessed using multiple comparisons-corrected threshold
(False Discovery Rate) of p<0.05.

Supplementary Figure 2: a) Generalization performance on novel contexts after training on n/64
contexts (x-axis). b) Number of total trials/samples shown to each model type. c) The generalization
inefficiency of each model. Generalization inefficiency was measured as the ratio of the number of
samples shown (normalized between 0 and 1) and the performance on novel tasks (normalized to 0 to
1 + a fixed constant). See SFig. 3 for model performance using a fixed number of samples per trained
context.
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Supplementary Figure 3: Novel context performance as function of learned contexts in the C-PRO
task in the ANN model. Similar to SFig. 2, but we trained the model using a fixed number of
samples per learned context (200 epochs per context) and evaluated generalization performance. a)
We systematically trained each type of ANN on a range from 0-63 of the C-PRO task contexts, and
assessed its generalization on the remaining (novel) contexts. We trained the model on a fixed number
of samples per learned context. Learned contexts were sequentially introduced, and novel context
performance was assessed on the remaining (excluded from training) contexts. b) The number of
total trials/samples shown to each model type. Since the number of samples shown to the model for
each context was fixed, training samples linearly increased as a function of learned contexts. c) As in
SFig. 2c, we measured the generalization inefficiency of each model. Thus, while the Vanilla model
was initially more efficient, pretrained models quickly learned more efficiently as evidenced by better
generalization accuracies with fewer samples.

Supplementary Figure 4: Order of pretraining paradigms drastically affects generalization perfor-
mance and sample efficiency. In the Combined pretraining regimen, we first implemented Primitives
pretraining followed by Simple task pretraining. However, prior curriculum learning research suggests
that the order of task learning can significantly impact generalization performance [47]. Thus, we
compared the Combined pretraining protocol to a Reverse-combined protocol, where Simple task pre-
training was performed prior to Primitives pretraining. a) We found that generalization performance
on the unseen C-PRO tasks was significantly impaired in the Reverse-combined condition. b) We
also measured the sample efficiency of only the pretraining trials. We found that Reverse-combined
pretraining required more samples than Combined pretraining, despite the stopping criterion for each
pretraining task remaining the same. (ANNs were required to perform either Primitives pretraining
or Simple task pretraining with at least 99% accuracy prior to moving on to the next pretraining
task.) This suggests that ordering of pretraining tasks can significantly impact the learning and
generalization dynamics of simple ANNs.
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Supplementary Figure 5: Convergent hierarchical organization of abstract representations in humans
and ANNs. a) We compared the topographic differences in PS across cortex with a well-known
sensory-to-motor hierarchical gradient identified during resting-state fMRI [32]. b) We compared how
content-specific abstractions (PS) differed across this hierarchical gradient, finding that sensory rule
abstractions were highest in the lower part of the gradient (sensory systems), logic rule abstractions
were highest across association cortex, and motor rule abstractions were highest across motor cortex.
c) For an analogous analysis, we plotted how domain-specific abstraction differed across different
hidden layer depths in the pretrained ANN with 3 hidden layers. We identified similar patterns of
parallelism across the 3 hidden layers for each of the rule domains.

Supplementary Figure 6: a) A network partition of cortical parcels using resting-state fMRI [24].
b) To match the number of layers in the ANN, we created three discretized systems based on the
functional network partition – sensory, association, and motor – that followed the sensory-to-motor
hierarchy (Fig. 8) [32, 21]
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Supplementary Figure 7: A pairwise comparison of PS for all possible dichotomies in the Logic
rule condition. a) We computed the PS for every pairwise dichotomy in the Logic rule domain, and
computed the average PS across brain regions within each cortical system (Sensory, Association,
and Motor cortex). The average PS for each cortical system was computed by averaging the PS
across all regions within that cortical system for every dichotomy. b) To compare how the pairwise
dichotomies matched in pretrained ANNs (Combined pretrained only; no training on full C-PRO
trials), we computed the PS for all dichotomies in each layer. In this particular experiment we used
an ANN with three hidden layers to compare with Sensory, Association, and Motor cortical systems.
c) The sensory, association, and motor cortical systems can be analogized to hidden layer depths in
the ANN.

Supplementary Figure 8: A pairwise comparison of PS for all possible dichotomies in the Sensory
rule condition. a) We computed the PS for every pairwise dichotomy in the Sensory rule domain,
and computed the average PS across brain regions within each cortical system (Sensory, Association,
and Motor cortex). The average PS for each cortical system was computed by averaging the PS
across all regions within that cortical system for every dichotomy. b) To compare how the pairwise
dichotomies matched in pretrained ANNs (Combined pretrained only; no training on full C-PRO
trials), we computed the PS for all dichotomies in each layer. In this particular experiment we used
an ANN with three hidden layers to compare with Sensory, Association, and Motor cortical systems.
c) The sensory, association, and motor cortical systems can be analogized to hidden layer depths in
the ANN.
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Supplementary Figure 9: A pairwise comparison of PS for all possible dichotomies in the Motor
rule condition. a) We computed the PS for every pairwise dichotomy in the Motor rule domain, and
computed the average PS across brain regions within each cortical system (Sensory, Association,
and Motor cortex). The average PS for each cortical system was computed by averaging the PS
across all regions within that cortical system for every dichotomy. b) To compare how the pairwise
dichotomies matched in pretrained ANNs (Combined pretrained only; no training on full C-PRO
trials), we computed the PS for all dichotomies in each layer. In this particular experiment we used
an ANN with three hidden layers to compare with Sensory, Association, and Motor cortical systems.
c) The sensory, association, and motor cortical systems can be analogized to hidden layer depths in
the ANN.
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