
Contents of Appendix

A Useful Lemmas 17

B DP Algorithms for Linear Classification with Margin Guarantees 18
B.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.2 Algorithm 4 of Section 3.2 and Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . 20

B.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C DP Algorithms for Kernel-Based Classification with Margin Guarantees 24

D DP Algorithms for Learning Neural Networks with Margin Guarantees 25

E Label-Private Algorithms with Margin Guarantees 29

F Confidence Margin Parameter Selection 31

G Example of high error for exponential mechanism 34

H Example of a large norm hinge-loss minimizer 35

16



A Useful Lemmas

We use empirical Bernstein bounds, properties of exponential mechanism and Johnson-Lindenstrauss
lemmas which we state below.
Lemma A.1 (Relative deviation bound ). For any hypothesis set H of functions mapping from X to
R, with probability at least 1 − �, the following inequality holds for all h ∈H:

RD(h) ≤ R̂S(h) + 2

�

�
��

R̂S(h)
V (H) log(2m) + log 4

�

m
+ 4

V (H) log(2m) + log 4
�

m
,

where V (H) is the VC-dimension of class H.

The above lemma is obtained by combining [CGM19, Corollary 7] and VC-dimension bounds.
Lemma A.2 (Relative deviation margin bound [CMTS21]). Fix ⇢ ≥ 0. Then, for any hypothesis set
H of functions mapping from X to R with d = fat ⇢

16
(H), with probability at least 1−�, the following

holds for all h ∈H:

RD(h) ≤ R̂
⇢
S(h) + 2

�

R̂
⇢
S(h)

M

m
+
M

m
,

where M = 1 + d log2(2c
2
m) log2

2cem
d + log 1

� and c = 17.

Lemma A.3. Let �,� ∈ (0,1). Let T ⊂ Rd be any set of m vectors. There exists k = O�
log�m

� �

�2 �

such that for any random k×d matrix � with entries drawn i.i.d. uniformly from {± 1
√

k
}, the following

inequalities hold simultaneously with probability at least 1 − � over the choice of �:

• For any u ∈ T ,

�1 −
�

3
��u�

2
2 ≤��u�

2
2 ≤ �1 +

�

3
��u�

2
2.

• For any u, v ∈ T ,

���u,�v� − �u, v�� ≤
�

3
�u�2 �v�2.

Proof. The first property is simply the Johnson-Lindenstrauss (JL) property and follows from the
standard JL lemma (see, e.g., [JL84, LN17]). Below we show both first and second property holds
simultaneously. Define

T̃ � �z ∈ R
d
∶ z =

u

�u�2
±

v

�v�2
, u, v ∈ T� .

Note that the number of non-zero vectors in T̃ is at most m2. By the JL lemma [JL84, LN17] over

the set T ∪ T̃ , there exists k = O � log(m
2
��)

�2 � = O �
log�m

� �

�2 � and �′ such that with probability ≥ 1−�,

for all u, v ∈ T we have

�1 −
�

3
��ū + v̄�

2
2 ≤��

′
(ū + v̄)�

2
2 ≤ �1 +

�

3
��ū + v̄�

2
2, (3)

�1 −
�

3
��ū − v̄�

2
2 ≤��

′
(ū − v̄)�

2
2 ≤ �1 +

�

3
��ū − v̄�

2
2, (4)

�1 −
�

3
��u�

2
2 ≤��

′
u�

2
2 ≤ �1 +

�

3
��u�

2
2. (5)

where ū =
u
�u�2

and v̄ =
v
�v�2

. (5) implies the first result in the lemma. Now, fix any u, v ∈ T . Let
ū =

u
�u�2

and v̄ =
v
�v�2

. Observe that for any a,b ∈ Rd, we have �a,b� = 1
4
��a + b�22 − �a − b�

2
2�.

17



Hence, we have

��ū, v̄� − ��′ū,�′v̄�� ≤
1

4
��ū + v̄�

2
2 − ��

′
(ū + v̄)�

2
2� +

1

4
���′(ū − v̄)�22 − �ū − v̄�

2
2� ()

≤
�

12
��ū + v̄�

2
2 + �ū − v̄�

2
2�

≤
�

3
,

where the second inequality follows from (3) and (4) ’and the third inequality follows from the
triangle inequality and the fact that �ū�2 = �v̄�2 = 1. Hence, we finally have

��u, v� − ��′u,�′v�� ≤ �u�2�v�2 ��ū, v̄� − ��
′
ū,�′v̄�� ≤

�

3
�u�2�v�2.

The time complexity to apply the random matrix � in Lemma A.3 to a vector v is k ⋅ d, which can
be prohibitive in many cases. There are several works which provide � that support fast matrix
vector products. [AC06] provides a � which can be applied in time c

′
d log d + c′ log(d��) log2

(1��)
�2 ,

however the results are stated with constant probability. [Nel10] gave a slightly different construction
which can be applied in time c′d log d + c′ log(d��) log2

(1��)
�4 and the results hold with high probability.

[AL09] provided a construction which can be applied in time c
′
d log k for k = O(d0.499). [KW11]

showed that any RIP matrix can be used for JL-transform and provided JL-transform results for
several fast random projections. Since we need high probability bounds without any restrictions,
we use the following result, which is computationally efficient, but is suboptimal in the projection
dimension up to logarithmic factors.
Lemma A.4. Let �,� ∈ (0,1) and c and c

′ be sufficiently large constants. Let T ⊂ Rd be any set of

m vectors. Let k =
c log�m

� � log�
m
�� �

�2 . There exists a matrix � which can be applied to any vector v in
time c

′
d log d + c′k, such that the following inequalities hold simultaneously with probability at least

1 − � over the choice of �:

• For any u ∈ T ,

�1 −
�

3
��u�

2
2 ≤��u�

2
2 ≤ �1 +

�

3
��u�

2
2. (6)

• For any u, v ∈ T ,

���u,�v� − �u, v�� ≤
�

3
�u�2 �v�2. (7)

Property (6) in the above result follows directly from [Nel15] and the proof for property (7) is similar
to that of Lemma A.3 and is omitted.

B DP Algorithms for Linear Classification with Margin Guarantees

B.1 Proof of Theorem 3.1

Theorem 3.1. Algorithm 1 is "-differentially private. For any � ∈ (0,1), with probability at least
1 − � over the draw of a sample S of size m from D, the solution w

Priv it returns satisfies:

RD(w
Priv
) ≤ min

w∈Bd(⇤)

�
��
�
��
�

R̂
⇢
S(w) + Õ

�

�

�

R̂
⇢
S(w)

⇤2r2

m⇢2
+

⇤2
r
2

⇢2min(1, ")m

�

�

�
��
�
��
�

.

A more precise version of the above bound is given as follows:

RD(w
Priv
) ≤ min

w∈Bd(⇤)

�
�����
�
�����
�

R̂
⇢
S(w) +O

�

�
�
�

�

�

�
�
�
��R̂

⇢
S(w)

�

�

�

⇤2r2 log2�m� �

m⇢2
+

log� 1� �

m

�

�

�

+ �

�

�
�
�

�

�
�����
�
�����
�

,

where � =
⇤2

r
2 log�m� � log �

⇤r
�⇢�

⇢2"m
+

⇤2
r
2 log2�m� �

m⇢2
+

log� 1� �

m
.

18



Proof. The proof of privacy follows from combining the following two properties: w̃ is generated
via the exponential mechanism, which an "-differentially private mechanism, and � is generated
independently of S.

We now prove the accuracy guarantee of Algorithm 1. If m <
c⇤2r2 log�m

� � log�
20⇤r
�⇢ �

⇢2" , for some
constant c, the bound follow trivially. Hence in the rest of the proof we assume that m is at least
c⇤2r2 log�m

� � log�
20⇤r
�⇢ �

⇢2" for some large constant c. Let

↵ =

c⇤2
r
2 log�m� � log �

20⇤r
�⇢ �

⇢2"m
.

First, observe that

R̂S(w
Priv
) =

1

m
�

(x,y)∈S

1 �y�wPriv
, x��

=
1

m
�

(x,y)∈S

1 �y���w̃, x��

=
1

m
�

(x,y)∈S

1 (y�w̃,�x�)

=
1

m
�

(x�,y)∈S�

1 (y�w̃, x��)

= R̂
(k)
S�
(w̃).

Let ŵ ∈ argmin
w∈C

R̂
(k)
S�
(w). Note that �C� = �20⇤ r

⇢ �
k
, where k =

c′ ⇤2 r2 log�m
� �

⇢2 . Hence, by the

accuracy properties of the exponential mechanism and the fact that m ≥
4 log� 4�C�

� �

"↵ , we have that with
probability at least 1 − ��4,

R̂
(k)
S�
(w̃) ≤ R̂

(k)
S�
(ŵ) + ↵.

Combining the above facts, we get that with probability at least 1 − ��4,

R̂S(w
Priv
) ≤ R̂

(k)
S�
(ŵ) + ↵. (8)

Let w∗ ∈ argmin
w∈Bd(⇤)

R̂
⇢
S(w) and let w∗� = �w

∗. Note that

�w
∗

��2 ≤

�

1 +
⇢

3⇤r
�w
∗
�2 ≤ 2�w

∗
�2 ≤ 2⇤,

and hence w
∗

� ∈ B
k
(2⇤). Since C is ⇢

10 r -cover of Bk
(2⇤), then there must be wc ∈ C such that

�wc −w
∗

��2 ≤
⇢

10 r . Hence, observe that for any (x�, y) ∈ S�,

y�wc, x�� = y�w
∗

�, x�� + y�wc −w
∗

�, x��

≥ y�w
∗

�, x�� − �wc −w
∗

��2 �x��2

≥ y�w
∗

�, x�� −
⇢

10 r
�x��2.

Now, by Lemma A.3, with probability at least 1 − ��4, for all x� s.t. (x�, y) ∈ S� we have
�x��2 ≤

�
1 + ⇢

3⇤r �x�2 ≤
�
1 + ⇢

3⇤r r. Hence, we get that with probability at least 1 − ��4 for all
(x�, y) ∈ S�

y�wc, x�� ≥ y�w
∗

�, x�� − 0.15⇢.

The last inequality implies that for any ⇢′ > 0, with probability at least 1− ��4 (over the choice of �),
we must have R̂

⇢′,(k)
S�

(wc) ≤ R̂
⇢′+0.15⇢,(k)
S�

(w
∗

�). In particular, with probability at least 1 − ��4 we
have

R̂
0.5⇢,(k)
S�

(wc) ≤ R̂
0.65⇢,(k)
S�

(w
∗

�). (9)

19



Moreover, by the definition of ŵ, we have R̂
(k)
S�
(ŵ) ≤ R̂

(k)
S�
(wc) ≤ R̂

0.5⇢,(k)
S�

(wc). Combining this
fact with (8) and (9), we get that with probability at least 1 − ��2

R̂S(w
Priv
) ≤ R̂

0.65⇢,(k)
S�

(w
∗

�) + ↵. (10)

Now, by Lemma A.3 and the fact that �w∗�2 ≤ ⇤ and �x�2 ≤ r, it follows that with probability at
least 1 − ��4 for all (x�, y) ∈ S�, we have

y�w
∗
, x� ≥ ⇢ �⇒ y�w

∗

�, x�� ≥ ⇢�3.

This directly implies that with probability at least 1 − ��4,

R̂
0.65⇢,(k)
S�

(w
∗

�) ≤ R̂
⇢
S(w

∗
).

Combining this with (10), we can assert that with probability at least 1 − 3
4�, we have

R̂S(w
Priv
) ≤ R̂

⇢
S(w

∗
) + ↵. (11)

In the final step of the proof, we rely on a standard uniform convergence argument to bound RD(w
Priv
)

in terms of R̂S(w
Priv
). Note that the VC-dimension of {sgn ○hw ∶ w ∈ C} is k. By Lemma A.1, with

probability at least 1 − ��4

RD(w
Priv
) − R̂S(w

Priv
) ≤ 2

�

R̂S(w
Priv)

k log(2m) + log(16��)

m
+ 4

k log(2m) + log(16��)

m
.

Combining the above two equations, we get with probability at least 1 − �,

RD(w
Priv
) ≤ R̂

⇢
S(w

∗
) + 2

�

R̂
⇢
S(w

∗)
k log(2m) + log(16��)

m
+ 2↵ + 8

k log(2m) + log(16��)

m
.

The lemma follows from observing that w∗ ∈ argmin
w∈Bd(⇤)

R̂
⇢
S(w) if and only if w∗ ∈ argmin

w∈Bd(⇤)
R̂
⇢
S(w) +

2
�

R̂
⇢
S(w)

k log(2m)+log(16��)
m .

B.2 Algorithm 4 of Section 3.2 and Proof of Lemma 3.1

Here, we give the details of Algorithm 4 invoked in step 4 of Algorithm 2. We describe here a more
general setup where the loss function is any (possibly non-smooth) convex generalized linear loss
(GLL). Given a parameter spaceW , feature space X , and label/target set Y , a GLL is a loss function
defined overW ×(X ×Y) that can be written as `(�w,x�, y), w ∈W , x ∈ X , y ∈ Y for some function
` ∶ R × Y → R. Here, we assume that for any y ∈ Y , `(⋅, y) is convex and 1

⇢ -Lipschitz. We also
assume thatW ⊆ Bk

(⇤) for some ⇤ > 0, X ⊆ Bk
(r̃) for some r̃ > 0, and Y ⊆ [−1,1]. Given a dataset

S̃ = ((x1, y1), . . . , (xm, ym)) ∈ (X ×Y)
m, we define the empirical risk of w ∈W with respect to S̃

as L̂S̃(w) �
1
m ∑

m
i=1 `(�w,xi�, y). Note that the setup in Algorithm 2 is a special case of the above.

Given an input dataset S̃ ∈ (X ×Y)m, Algorithm 4 below invokes the “Phased SGD algorithm for
GLL” [BGM21, Algorithm 2] on a set Ŝ of m samples drawn uniformly with replacement from S̃,
and hence obtain an output w̃ ∈W . In the sequel, we will refer to the algorithm in [BGM21] as AGLL.
Note that the expected loss with respect to the choice of Ŝ ← S̃ is the empirical risk with respect to
S̃. Hence, one can derive a bound on the expected excess empirical risk that is roughly the same as
the bound in [BGM21, Theorem 6] on the expected excess population risk. However, we note that
ensuring that Algorithm 4 is (", �)-DP does not follow directly from the privacy guarantee of the
AGLL since the sample Ŝ may contain duplicate entries from S̃. Nonetheless, we show that the privacy
guarantee can be attained by appropriately setting the input privacy parameters to AGLL together
with a careful privacy analysis. To transform the in-expectation bound into a high-probability bound,
we perform a standard confidence-boosting procedure [BST14, Appendix D], where the procedure
described above is repeated independently M = O(log(1��)) times to generate w̃

1
, . . . , w̃

M , and
finally, the exponential mechanism (with a score function −L̂S̃) is used to privately select a final
output w̃ ∈ {w̃1

, . . . , w̃
M
}.

20



Algorithm 4 DP-ERM algorithm for GLLs

Require: Private dataset S̃ = �(x1, y1), . . . , (xm, ym)� ∈ (X × Y)
m, where X ⊆ B

k
(r̃) and Y ⊆

[−1,1]; parameter spaceW ⊆ Bk
(⇤); privacy parameters (", �); confidence parameter � ∈ (0,1);

convex, 1
⇢ -Lipschitz loss function ` for some ⇢ > 0; Oracle access to algorithm AGLL [BGM21,

Algorithm 2].
1: Let M ∶= log(2��).
2: Let "′ ∶= "

4M log(2M��) .

3: Let �′ ∶= �2

4M log(2M��) .
4: for t = 1 to M do
5: Sample Ŝ

t
= �(x̂

t
1, ŷ

t
1), . . . �x̂

t
m, ŷ

t
m��← S̃ uniformly with replacement.

6: w̃
t
= AGLL(Ŝ

t; "′, �′), where AGLL is [BGM21, Algorithm 2] (the other obvious inputs to
AGLL are omitted; the smoothing parameter and the oracle accuracy parameter of AGLL are set
as in [BGM21, Theorem 6]).

7: Run the exponential mechanism with privacy parameter "�2 to select w̃ from the set
�w̃

1
, . . . , w̃

M
� associated with scores � − L̂S̃(w̃

t
) ∶ t ∈ [M]�.

8: return w̃

Lemma 3.1. Let m ∈ N, 0 < � < 1
m , and 0 < " ≤ log(1��). Algorithm 4 (Appendix B.2) is (", �)-DP.

Let � ∈ (0,1). Let k ∈ N, and r̃,⇤ > 0. Let S̃ ∈ �Bk
(r̃) × {±1}�

m
be the input dataset and B

k
(⇤)

be the parameter space. With probability 1 − � over the randomness in Algorithm 4, the output w̃
satisfies

L̂
⇢

S̃
(w̃) ≤ min

w∈Bk(⇤)
L̂
⇢

S̃
(w) +

⇤r̃

⇢
⋅O

�

�

�

1
√
m
+

√

k log
3
2 (

1
� ) log(

1
� )

"m

�

�

�

.

Moreover, Algorithm 2 requires O(m log(m) log(1��)) gradient computations.

Proof. First, we show the privacy guarantee. Fix a round t ∈ [M] of Algorithm 4. We will show that
the t-th round is ( "

2M ,
�
M )-DP. Suppose we can do that. Then, by the basic composition property

of DP, the entire M rounds of the algorithm is ( "2 , �)-DP. Next, we note that step 7 is ( "2 ,0)-DP by
the privacy guarantee of the exponential mechanism. Hence, again by basic composition of DP, we
conclude that Algorithm 4 is (", �)-DP. Thus, it remains to show that for any fixed t ∈ [M], the t-th
round is ("̂, �̂)-DP, where "̂ = "

2M and �̂ = �
M . Fix any data point (xi, yi) ∈ S̃. Let J denote the

number of appearances of (xi, yi) in Ŝ
t. Note that J ∼ Bin(m,1�m). Hence, using the multiplicative

Chernoff’s bound, J ≤ 2 log(2��̂) with probability at least 1 − �̂�2. We will show that conditioned
on this event, the t-th round is ("̂, �̂�2)-DP, which suffices to prove our privacy claim for round t.
Given that J ≤ 2 log(2��̂) and since AGLL is ( "̂

2 log(2��̂)
,

��̂
4 log(2��̂)

)-DP with respect to to its input

dataset Ŝt, then by the group-privacy property of DP [DR14], round t is ("̂, �′′)-DP with respect to
the dataset S̃, where

�
′′
=

��̂

4 log(2��̂)
⋅

2 log(2��̂)

�

j=0

e
"̂

2 log(2��̂) j

=
��̂

4 log(2��̂)
⋅

e
"̂
− 1

e
"̂

2 log(2��̂) − 1

≤
��̂�e

"̂
− 1�

2"̂

≤
�̂

2
,

where the third inequality follows from the fact that e
"̂

2 log(2��̂) −1 ≥ "̂
2 log(2��̂)

, and the last step follows

from the fact that ea−1
a is increasing in a > 0 and the assumption that " ≤ log(1��) (and hence

21



"̂ < " ≤ log(1��)). Hence, we have shown that any given round of the algorithm is (", �̂)-DP. This
concludes the proof of the privacy guarantee.

We now prove the bound on the excess empirical risk. Fix any round t. Let D̂S̃ denote the empirical
distribution of S̃. Note that Ŝt

∼ D̂
m
S̃

, i.e., Ŝt is comprised of m independent samples from D̂S̃ .
Hence, E

(x,y)∼D̂S̃

[`(�w,x�, y)] = L̂S̃(w). Thus, by the excess risk guarantee of AGLL [BGM21,

Theorem 6], we have

E �L̂
⇢

S̃
(w̃)� − min

w∈Bk(⇤)
L̂
⇢

S̃
(w) =

⇤r̃

⇢
⋅O

�

�

�

1
√
m
+

�

k log( 1�′ )
"′m

�

�

�

=
⇤r̃

⇢
⋅O

�

�

�

1
√
m
+

√

k log
3
2 (

1
� ) log(

1
� )

"m

�

�

�

,

where the expectation is with respect to the sampling step (step 5 of Algorithm 4) and the randomness
in AGLL. Note the last step follows from the setting of "′ and �′ in Algorithm 4 and the fact that
log(log(1��)��) = O(log(1��)), which follows from the assumption � < 1�m (in the statement of
the lemma) and log(1��) <m (since the bound would be trivial otherwise). Given this expectation
guarantee on the output of each round, the final selection step (step 7) returns a parameter w̃ that
satisfies the bound above with probability at least 1 − �. This can be shown by following the same
argument in [BST14, Appendix D] while noting that the sensitivity of the score function −L̂S̃ is
bounded by ⇤r̃

m .

Finally, the running time of AGLL, measured in terms of gradient computations, is O(m log(m))
[BGM21, Theorem 6]. Hence, the gradient complexity of Algorithm 4 is bounded by
O(m log(m) log(1��)).

B.3 Proof of Theorem 3.2

Theorem 3.2. Let 0 < � < 1
m and 0 < " ≤ log(1��). Algorithm 2 is (", �)-DP. Let � ∈ (0,1). Let

S ∼ D
m for a distribution D over B

d
(r) × {±1}. Algorithm 2 outputs w

Priv
∈ R

d such that with
probability at least 1 − �, we have

RD(w
Priv
) ≤ min

w∈Bd(⇤)
L̂
⇢
S(w) + Õ

�

�

⇤r

⇢

�

min(1, ")m

�

�
.

Moreover, Algorithm 2 runs in time O�md log(max(d,m)) + "m2 log(m)� log
3
2 (1��)�.

A more precise version of the above bound is given as follows:

RD(w
Priv
) ≤ min

w∈Bd(⇤)
L̂
⇢
S(w) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

.

Proof. The proof of privacy follows directly from the (", �)-DP guarantee of Algorithm 4 (step 4)
and the fact that DP is closed under post-processing.

Next, we will prove the claimed margin bound. For simplicity and without loss of generality, we will
set ⇤ = 1. For the general setting of ⇤, the claimed bound follows by rescaling the parameter vectors
in the proof.

Recall that x� � �x. Let w∗ ∈ argmin
w∈Bd

L̂
⇢
S(w). Define w

∗

� � �w∗. By Lemma A.4, there is

� = O
�

�

�

log�m
� �

k

�

�
= O�

�
log(1��)
"m log

3
4 (1��)� such that with probability at least 1 − ��3 over the

22



randomness of �, for every feature vector x in the training set S, we have

�x��
2
2 ≤ �1 +

�

3
��x�

2
2 (12)

1 −
y�w

∗

�, x��

⇢
≤ 1 −

y�w
∗
, x�

⇢
+
r�

⇢
(13)

We condition on this event for the remainder of the proof.

Note that (12) implies that
S� = {(x�, y) ∶ (x, y) ∈ S};

that is, for all feature vectors x in the dataset S, x� ∈ B
k
(2r) (i.e., ⇧Bk(2r)(x�) = x�).

Let D� denote the distribution of the pair (x�, y), where (x, y) ∼D. Via a standard margin bound
[MRT18, Theorems 5.8 & 5.10], with probability at least 1 − ��3 over the choice of the training set
S, we have

∀w ∈ B
k

RD�(w) ≤ L̂
⇢
S�
(w) +

4r

⇢
√
m
+ 2

�

log(6��)

m

It follows that with probability at least 1 − ��3, we have

RD�(w̃) ≤ L̂
⇢
S�
(w̃) +

4r

⇢
√
m
+ 2

�

log(6��)

m
,

where w̃ is the output of step 4 of Algorithm 2. Moreover, note that
RD(w

Priv
) = P

(x,y)∼D
�y�w

Priv
, x� ≤ 0�

= P
(x�,y)∼D�

[y�w̃, x�� ≤ 0]

= RD�(w̃)

Thus, we get that with probability at least 1 − ��3,

RD(w
Priv
) ≤ L̂

⇢
S�
(w̃) +

4r

⇢
√
m
+ 2

�

log(6��)

m
. (14)

By Lemma 3.1, with probability at least 1 − ��3 over the randomness of Algorithm 4 (step 4 of
Algorithm 2), we have that

L̂
⇢
S�
(w̃) ≤ L̂

⇢
S�
(ŵ) +

⇤r

⇢

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

, (15)

where ŵ ∈ argmin
w∈Bk

L̂
⇢
S�
(w). Moreover, (13) implies

L̂
⇢
S�
(w
∗

�) ≤ L̂
⇢
S(w

∗
) +

r

⇢
⋅O
�

�

�

log(1��)

"m
log

3
4 (1��)

�

�

Note that by definition of ŵ, we have L̂
⇢
(ŵ;S) ≤ L̂⇢S�

(w
∗

�). Hence, we have

L̂
⇢
S�
(ŵ) ≤ L̂

⇢
S(w

∗
) +

r

⇢
O
�

�

�

log(1��)

"m
log

3
4 (1��)

�

�
(16)

Now, by combining (14), (15), and (16), we reach the desired bound.

Finally, concerning the running time, observe that the Fast JL-transform (steps 2 and 3) takes
O(md log(d) + "m2 log(m)� log3�2(1��)) (follows from Lemma A.4), the DP-ERM algorithm (Al-
gorithm 4) invoked in step 4 has O(m) gradient steps; each of which takes involves O(k+ log(m)) =
O("m log(m)� log3�2(1��)) operations. That is, the total number of operations of this step is
O("m

2 log(m)� log3�2(1��)). Finally, the step 5 requires O(dk) = O("dm log(m)� log3�2(1��)).
Thus, the overall running time is O�md log(max(d,m)) + "m2 log(m)� log

3
2 (1��)�.

23



C DP Algorithms for Kernel-Based Classification with Margin Guarantees

Theorem 4.2. Let r > 0. Let K ∶ X × X → R be a shift-invariant, positive definite kernel, where
K(x,x) = r

2 for all x ∈ X . For any " > 0 and � ∈ (0,1), Algorithm 3 is (", �)-differentially private.
DefineH⇤ � {h ∈ H ∶ �w�H ≤ ⇤}, where �⋅�H is the norm corresponding to the reproducing kernel
Hilbert space (RKHS) H associated with the kernel K. Let � ∈ (0,1). Given an input sample S of m
examples drawn i.i.d. from a distribution D over X × {±1}, Algorithm 3 outputs h ̂

wPriv such that with
probability at least 1 − �, we have

RD(h
 ̂
wPriv) ≤ min

h∈H⇤

L̂
⇢
S(h) + Õ

�

�

⇤r

⇢

�

min(1, ")m

�

�
,

where, for any h ∈H⇤, L̂⇢S(h) �
1
m ∑

m
i=1 `

⇢
(yi �h, (xi)�H), where  is the feature map associated

with the kernel K and �⋅, ⋅�H is the inner product associated with the RKHS H.

A more precise version of the above bound is given as follows:

RD(h
 ̂
wPriv) ≤ min

h∈H⇤

L̂
⇢
S(h) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

,

Proof. Let S ̂ be as defined in step 4 in Algorithm 3. Note that by Theorem 4.1, we have � ̂(xi)�2 = r

for all i ∈ [m]. Moreover, the output of Algorithm 3 depends only on S ̂ . Thus, the privacy guarantee
follows directly from the privacy guarantee of Algorithm 2 (Theorem 3.2).

Next, we turn to proving the claimed margin bound. First, note that using the margin bound attained
by Algorithm 2 (Theorem 3.2), it follows that for any fixed realization of the randomness in  ̂, with
probability 1 − ��2 over the choice of S ∼ Dm and the internal randomness of Algorithm 2, we have

RD(h
 ̂
wPriv) ≤ min

w∈B2D (2⇤)
L̂
⇢
S ̂
(w) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

.

(17)

The essence of the proof is to show that with probability ≥ 1 − ��2 over the randomness in  ̂ (i.e.,
over the choice of !1, . . . ,!D), we have

min
w∈B2D (2⇤)

L̂
⇢
S ̂
(w) ≤ min

h∈H⇤

L̂
⇢
S(h) +

2⇤r

⇢
√
m
. (18)

Combining (17) and (18) yields the desired bound.

To prove the bound in (18), we will use the following fact. .

Fact C.1. Let µ > 0. Let  ∶X → R denote the feature map associated with the kernel K. Let
hµ = argminh∈H⇤

�L̂
⇢
S(h) + µ�h�

2
H
�. Then, hµ = ∑

m
i=1 ↵i (xi) for some ↵i, i ∈ [m], that satisfy:

0 ≤ yi↵i ≤
1

2mµ⇢ .

This fact simply follows from the dual formulation of the optimization problem for kernel support
vector machines (see, e.g., [MRT18, Section 6.3]) . The fact asserts that the minimizer hµ of the
regularized empirical hinge loss can be expressed as a linear combination of ( (xi) ∶ i ∈ [m]) (such
assertion also follows from the representer theorem) where the coefficients of the linear combination
(the dual variables) ↵ = (↵1, . . . ,↵m) are bounded; namely, �↵�1 ≤ 1

2µ⇢ .

Below, we set µ = r
⇤⇢
√
m

. Let ŵ = ∑m
i=1 ↵i ̂(xi) be a 2D-dimensional approximation of hµ. Observe

that

L̂
⇢
S ̂
(ŵ) − L̂

⇢
S(hµ) =

1

m

m

�

i=1

�`
⇢
(yi�ŵ,  ̂(xi)�) − `

⇢
(yi�hµ, (xi)�H)�

≤
1

⇢m
�

i,j∈[m]

�↵j � ⋅ �� ̂(xi),  ̂(xj)� − � (xi), (xj)�H�

24



↵i where the inequality in the second line follows from the fact that `⇢ is 1
⇢ -Lipschitz. Hence, by

Theorem 4.1, with probability ≥ 1 − ��2 with respect to the randomness in  ̂, we have

L̂
⇢
S ̂
(ŵ) − L̂

⇢
S(hµ) ≤

2r2

⇢

�

log(2m��)

D
�↵�1

≤
r
2

⇢2µ

�

log(2m��)

D

≤
⇤r

⇢
√
m
,

where the second inequality follows from the fact that �↵�1 ≤ 1
2µ⇢ , which follows from Fact C.1,

and the third inequality follows from the setting of D in step 2 in Algorithm 3 and the setting of
µ =

r
⇤⇢
√
m

. Moreover, we note that ŵ ∈ B2D
(2⇤). Indeed, conditioned on the same event above (the

kernel matrix is well approximated via  ̂), observe that

�ŵ�
2
2 =�

i,j

↵i↵j� ̂(xi),  ̂(xj)�

≤�

i,j

↵i↵j� (xi), (xj)�H + 2r
2

�

log(2m��)

D
�↵�

2
1

≤ �h�
2
H
+
⇤2

2
≤
3

2
⇤2

.

Thus, we have �ŵ�2 < 2⇤. Hence, we can assert that with probability ≥ 1 − ��2 over the randomness
in  ̂, we have

min
w∈B2D (2⇤)

L̂
⇢
S ̂
(w) ≤ L̂

⇢
S ̂
(ŵ) ≤ L̂(hµ;S) +

⇤r

⇢
√
m
.

Finally, note that L̂⇢S(hµ) ≤ min
h∈H⇤

L̂
⇢
S(h) + µ⇤2

= min
h∈H⇤

L̂
⇢
S(h) +

⇤r
⇢
√
m

. Hence, we arrive at the

claimed bound (18), and thus, the proof is complete.

D DP Algorithms for Learning Neural Networks with Margin Guarantees

Theorem 5.1. Let " > 0,� ∈ (0,1), and ⇢ > 0. Then, there is an "-DP algorithm which returns an
L-layer network h

Priv with N neurons per layer that with probability at least 1 − � over the draw of
a sample S ∼D

m and the internal randomness of the algorithm admits the following guarantee:

RD(h
Priv
) ≤ min

h∈HNN⇤

R̂
⇢
S(h) +O�

r(2⌘⇤)L
√

N✓

⇢
√
m

+
r
2
(2⌘⇤)2LN✓

⇢2"m
�,

where ✓ = log(Lm��) log(r(⌘⇤)L�⇢).

Proof. First, note that our construction is indeed "-DP by the properties of the exponential mechanism.
Thus, we now turn to the proof of the margin bound. Our proof relies on the following properties of
the JL-transform.

Lemma D.1 (Follows from Theorem 109 in [Nel10]). Let p,N,m, k ∈ N. Let W ∈ R
p×N . Let

z1, . . . , zm ∈ R
p. Let � be a random k × p matrix with entries drawn i.i.d. uniformly from {± 1

√

k
}.

Let � ∈ (0,1). There is a constant c > 0 such that the following inequalities hold simultaneously with
probability at least 1 − �:

��W �2F ≤ �W �
2
F

�

�
1 + c

�

log(m��)

k

�

�
,

∀i ∈ [m] ∶ �W
����zi −W

�
zi�2 ≤ c�W �F �zi�2

�

log(m��)

k

25



Consider the algorithmic construction described earlier. Let h∗ ∈ argmin
h∈HNN

R̂
⇢
S(h). Let W ∗

1 , . . . ,W
∗

L

denote the weight matrices of h∗. Let h�
∗
∈ H

�
NN be the network specified by the matrices�W1 �

�0W
∗

1 , . . . ,
�WL � �L−1W

∗

L. That is, the weight matrices of h�
∗

are given by ��0
�W1 = �

�

0�0W
∗

1 , . . . ,

��L−1
�WL = �

�

L−1�L−1W
∗

L.

We make the following four claims. Combining those claims together with the union bound im-
mediately yields the margin bound of the theorem. We first state those claims and then prove
them.

Claim D.2. There is a setting k = O�
r2(2⌘⇤)2L log(Lm��)

⇢2 � such that with probability 1 − ��4 over
the choice of �0, . . . ,�L−1, we have h

�
∗
∈H

�
NN2⇤ and for all i ∈ [m]

�h∗(xi) − h
�
∗
(xi)� = O

�

�
r(2⌘⇤)L

�

log(Lm��)

k

�

�
.

Consequently, with probability 1 − ��4,

R̂
0.5⇢
S (h

�
∗
) ≤ R̂

⇢
S(h∗).

Claim D.3. Let ĥ�
∈ argmin

h∈Ĥ�
NN2⇤

R̂S(h). There exists a setting k = O�
r2(2⌘⇤)2L log(Lm��)

⇢2 � for the

embedding parameter such that with probability 1 − ��4

R̂S(ĥ
�
) ≤ R̂

0.5⇢
S (h

�
∗
).

Claim D.4. Let ĥ�
∈ argmin

h∈Ĥ�
NN2⇤

R̂S(h). Let k = O�
r2(2⌘⇤)2L log(Lm��)

⇢2 �. With probability 1 − ��4

over the randomness of the exponential mechanism, we have

R̂S(h
Priv
) ≤ R̂S(ĥ

�
) +O�

r
2
(2⌘⇤)2LN log(Lm��) log(r(4⌘⇤)L�⇢)

⇢2"m
�.

Claim D.5. Let k = O� r
2
(2⌘⇤)2L log(Lm��)

⇢2 �. With probability 1 − ��4 over the choice of S ∼ Dm,
we have

RD(h
Priv
) ≤ R̂S(h

Priv
) +O

�

�

r(2⌘⇤)L
�

N log(Lm��) log(r(⌘⇤)L�⇢)

⇢
√
m

�

�
.

Recall that Ĥ�
NN2⇤ is a finite approximation of H�

NN2⇤ constructed via a �-cover C for Bk×N
(2⇤) ×

. . . × B
k
(2⇤), where we choose � = ⇢

10r(4⌘⇤)L−1 . In particular, for any W = (W1, . . . ,WL),W
′
=

(W
′

1, . . . ,W
′

L) ∈ C, we have �W −W ′
�F =

�

∑
L
j=1�Wj −W

′

j�
2
F ≤ �. Given that C is a �-cover, we

have �Ĥ�
NN2⇤ � = �C� = O��

√
L⇤
� �

k×N
�. Namely, log(�Ĥ�

NN2⇤ �) = O�kN log( r(⌘⇤)
L

⇢ )�. Given this,

together with the setting of k in Claim D.5 and the fact that hPriv is in Ĥ
�
NN2⇤ , note that Claim D.5

follows from a straightforward uniform convergence bound for the hypotheses in Ĥ
�
NN2⇤ . Note also

that the proof of Claim D.4 follows directly from the standard accuracy guarantee of the exponential
mechanism when instantiated on Ĥ

�
NN2⇤ . In particular, since the score function is −R̂S(⋅), with

probability at least 1 − ��4, the excess empirical loss of hPriv is bounded by O�
log(�C���)

"m �, which
yields the bound claimed in Claim D.4 given the bound on �C� above and the setting of k.

We now turn to the proofs of Claims D.2 and D.3. We start with the proof of Claim D.2.

For each i ∈ [m] and each j ∈ [L], let vi,j ∈ RN denote the output of the j-th layer of h∗ on
input xi prior to activation (i.e., vi,j is the input to the neurons of layer j + 1 when the input to the
network h∗ is the i-th feature vector xi in the dataset S). Analogously, for each i ∈ [m] and each
j ∈ [L], let v�i,j denote the output of the j-th layer of h�

∗
on input xi prior to activation. Also, let

ui,j �  (vi,j) −  (v
�
i,j), i ∈ [m], j ∈ [L].

26



As a direct corollary of Lemma D.1, by applying the union bound over the choice of �0, . . . ,�L−1,
there is a constant ĉ > 0 such that with probability 1 − ��4 over the choice of �0, . . . ,�L−1, for all
i ∈ [m], j ∈ [L], we have

��j−1W
∗

j �
2
F ≤ ⇤

2�

�
1 + ĉ

�

log(Lm��)

k

�

�
, (19)

�(W
∗

j )
���j−1�j−1 (vi,j−1) − (W

∗

j )
�
 (vi,j−1)�2 ≤ ĉ⇤� (vi,j−1)�2

�

log(Lm��)

k
, j ≠ 1, (20)

�(W
∗

j )
���j−1�j−1ui,j−1 − (W

∗

j )
�
ui,j−1�2 ≤ ĉ⇤�ui,j−1�2

�

log(Lm��)

k
, j ≠ 1, (21)

�(W
∗

1 )
���0�0xi − (W

∗

1 )
�
xi�2 ≤ ĉ⇤r

�

log(Lm��)

k
(22)

We now condition on the event where all the above inequalities are satisfied for the remainder of the

proof. Below, we let ⌧ = ĉ
�

log(Lm��)
k < 1. First, from (19), there is a setting k as indicated in the

statement of the claim, where ��j−1W
∗

j �F < 2⇤. Thus, h�
∗
∈H

�
NN2⇤ .

Now, fix any i ∈ [m]. Define �j � �(W
∗

j )
�
 (vi,j−1) − (W

∗

j )
���j−1�j−1 (v

�
i,j−1)�2 for j ∈ [L].

Observe that
�h∗(xi) − h

�
∗
(xi)� = �L

=�(W
∗

L)
�
 (vi,L−1) − (W

∗

L)
���L−1�L−1 (v

�
i,L−1)�

≤�(W
∗

L)
�
 (vi,L−1) − (W

∗

L)
���L−1�L−1 (vi,L−1)�

+ �(W
∗

L)
���L−1�L−1 (vi,L−1) − (W

∗

L)
���L−1�L−1 (v

�
i,L−1)�

≤⌧⇤� (vi,L−1)�2 + �(W
∗

L)
���L−1�L−1 � (vi,L−1) −  (v

�
i,L−1)�� �follows from (20) and the fact W ∗

L ∈ B
N
(⇤)�

=⌧⇤� (vi,L−1)�2 + �(W
∗

L)
���L−1�L−1ui,L−1� �by definition of ui,L−1 given above�

≤⌧⇤� (vi,L−1)�2 + (1 + ⌧)⇤�ui,L−1�2 �follows from (21)�

≤⌧⇤� (vi,L−1)�2 + 2⇤� (vi,L−1) −  (v
�
i,L−1)�2

≤⌧⌘⇤�vi,L−1�2 + 2⌘⇤�vi,L−1 − v
�
i,L−1�2 �since  is ⌘-Lipschitz and  (0) = 0�

=⌧⌘⇤�vi,L−1�2 + 2⌘⇤�(W
∗

L−1)
�
 (vi,L−2) − (W

∗

L−1)
���L−2�L−2 (v

�
i,L−2)�2

=⌧⌘⇤�vi,L−1�2 + 2⌘⇤�L−1

Hence, we obtain �L ≤ ⌧⌘⇤�vi,L−1�2 + 2⌘⇤�L−1. Before we solve this recurrence, we first unravel
the term �vi,L−1�2. Note that

�vi,L−1�2 = �(W
∗

L−1)
�
 (vi,L−2)�2

≤ �W
∗

L−1�F ⋅ � (vi,L−2)�2

≤ ⌘⇤�vi,L−2�2

Proceeding recursively, we obtain

�vi,L−1�2 ≤ ⌘
L−2⇤L−1

�xi�2 ≤ r⌘
L−2⇤L−1

.

Plugging this in the recurrence for �L above yields

�L ≤ ⌧r⌘
L−1⇤L

+ 2⌘⇤�L−1.

Unraveling this recursion (and using (22) in the last step of the recursion) yields

�h∗(xi) − h
�
∗
(xi)� = �L ≤ r(2⌘⇤)

L−1⇤ ⌧ = ĉ

�

log(Lm��)

k
r(2⌘⇤)L−1⇤.

Note that choosing k =
10ĉ2r2(2⌘⇤)2(L−1)⇤2 log(Lm��)

⇢2 guarantees �h∗(xi) − h
�
∗
(xi)� <

⇢
2 for all

i ∈ [m]. Hence, as in the argument of the proof of Theorem 3.1, this implies that for all i ∈ [m],
yih∗(xi) > ⇢⇒ yih

�
∗
(xi) >

⇢
2 . Thus, R̂0.5⇢

S (h
�
∗
) ≤ R̂

⇢
S(h∗). This concludes the proof of Claim D.2.

27



Finally, we prove Claim D.3.

As shown in Claim D.2, we have h
�
∗
∈H

�
NN2⇤ . Since Ĥ

�
NN2⇤ is a �-cover of H�

NN2⇤ , there exists h̃ ∈
Ĥ

�
NN2⇤ that “approximates” h

�
∗

. Namely, there is h̃ ∈ Ĥ�
NN2⇤ defined by matrices (�W1, . . . ,

�WL) ∈ C

such that
L

�

j=1

��Wj −�j−1W
∗

j �
2
F ≤ �

2
,

where, as defined before, (�0W
∗

1 , . . . ,�L−1W
∗

L) are the matrices defining h
�
∗

. We choose � =
⇢

10r(4⌘⇤)L−1 .

To simplify notation, we will denote

W
�,∗
j � �j−1W

∗

j , ∀ j ∈ [L].

As before, for each i ∈ [m], j ∈ [L], we let v�i,j ∈ R
N denote the output of the j-th layer of h�

∗
on

input xi prior to activation, and let ṽi,j denote the output of the j-th layer of h̃ on input xi prior to
activation.

Again, as a corollary of Lemma D.1 (by applying the union bound over the choice of �0, . . . ,�L−1),
there is a constant ĉ > 0 such that with probability 1 − ��4 over the choice of �0, . . . ,�L−1, for all
i ∈ [m], j ∈ [L], we have

��j−1 (ṽi,j−1)�
2
2 ≤� (ṽi,j−1)�

2
2

�

�
1 + ĉ

�

log(Lm��)

k

�

�
, j ≠ 1 (23)

��j−1 � (ṽi,j−1) −  (v
�
i,j−1)��

2
2 ≤� (ṽi,j−1) −  (v

�
i,j−1)�

2
2

�

�
1 + ĉ

�

log(Lm��)

k

�

�
, j ≠ 1 (24)

��0xi�
2
2 ≤r

2�

�
1 + ĉ

�

log(Lm��)

k

�

�
(25)

We will condition on the event above for the remainder of the proof. Note that for the setting of k as

in Claim D.2, we have �1 + ĉ
�

log(Lm��)
k � < 2.

For each j ∈ [L], define

�j � �
�W
�

j �j−1 (ṽi,j−1) −W
�,∗
j �j−1 (v

�
i,j−1)�2.

Fix any i ∈ [m]. Observe

�h̃(xi) − h
�
∗
(xi)� =�L

≤��W
�

L�L−1 (ṽi,L−1) − (W
�,∗
L )

��L−1 (ṽi,L−1)�

+ �(W
�,∗
L )

��L−1 (ṽi,L−1) − (̃W
�,∗
L )

��L−1 (v
�
i,L−1)�

≤��WL −W
�,∗
L �F ��L−1 (ṽi,L−1)�2 + �W

�,∗
L �F ��L−1 � (ṽi,L−1) −  (v

�
i,L−1)��2

≤� ��L−1 (ṽi,L−1)�2 + 2⇤ ��L−1 � (ṽi,L−1) −  (v
�
i,L−1)��2 �C is �-cover and W

�,∗
L ∈ B

k×N
(2⇤)�

≤

√

2� � (ṽi,L−1)�2 + 2
√

2⇤ � (ṽi,L−1) −  (v
�
i,L−1)�2 �follows from (23)-(24)�

≤

√

2�⌘ �ṽi,L−1�2 + 2
√

2⌘⇤ �ṽi,L−1 − v
�
i,L−1�2 � is ⌘-Lipschitz and  (0) = 0�

≤

√

2�⌘ ��W �

L−1�L−2 (ṽi,L−2)�2 + 2
√

2⌘⇤ ��W �

L−1�L−2 (ṽi,L−2) −W
�,∗
L−1�L−2 (v

�
i,L−2)�2

=

√

2�⌘ ��W �

L−1�L−2 (ṽi,L−2)�2 + 2
√

2⌘⇤�L−1

Hence, we arrive at a recursive bound

�L ≤
√

2�⌘ ��W �

L−1�L−2 (ṽi,L−2)�2 + 2
√

2⌘⇤�L−1.

28



Before proceeding, we first unravel the term ��W �

L−1�L−2 (ṽi,L−2)�2. Let’s denote this term as
BL−1. Observe that

BL−1 =�
�W
�

L−1�L−2 (ṽi,L−2)�2

≤��WL−1�F ��L−2 (ṽi,L−2)�2

≤2
√

2⇤� (ṽi,L−2)�2

≤2
√

2⌘⇤�ṽi,L−2�2

=2
√

2⌘⇤��W �

L−2�L−3 (ṽi,L−3)�2

=2
√

2⌘⇤BL−2

Thus, continuing recursively, we get BL−1 ≤ r⌘
L−2
(2
√
2⇤)L−1 (where in the last step of the recursion,

we use (25)). Plugging this back in the recursive bound for �L, we get

�L ≤
√

2�r(2
√

2⌘⇤)L−1 + 2
√

2⌘⇤�L−1

Unraveling this recurrence yields

�L ≤
√

2�rL(2
√

2⌘⇤)L−1

≤2
√

2�r(4⌘⇤)L−1

Thus, by the choice of �, we have �h̃(xi) − h
�
∗
(xi)� <

⇢
2 for all i ∈ [m]. Hence, as before, we have

�yih
�
∗
(xi) > ⇢�2�⇒ �yih̃(xi) > 0� for all i ∈ [m], which implies that

R̂S(h̃) ≤ R̂
0.5⇢
S (h

�
∗
).

Since ĥ
�
∈ argmin
h∈Ĥ�

NN2⇤

R̂S(h), then we have R̂S(ĥ
�
) ≤ RS(h̃). Therefore, we can write

R̂S(ĥ
�
) ≤ R̂

0.5⇢
S (h

�
∗
).

This concludes the proof of Claim D.3 and completes the proof of Theorem 5.1.

E Label-Private Algorithms with Margin Guarantees

In many tasks, the features are public information and only the labels are sensitive and need to
be protected. Several recent publications have suggested to train learning models with differential
privacy for labels for these tasks, while treating features as public information [GGK+21, EMSV21].
This motivates the following definition of label differential privacy.
Definition E.1 (Label differential privacy). Let ", � ≥ 0. Let A∶ (X × Y)m → H be a (potentially
randomized) mechanism. We say that A is (", �)-label-DP if for any measurable subset O ⊂H and
all S,S′ ∈ (X ×Y)m that differ in one label of one sample, the following inequality holds:

P(A(S) ∈ O) ≤ e
"
P(A(S

′
) ∈ O) + �. (26)

[GGK+21] gave an algorithm for deep learning with label differential privacy in the local differential
privacy model. [YSMN21] proposed and evaluated algorithms for label differential privacy in
conjunction with secure multiparty computation. [EMSV21] presented a clustering-based algorithm
for label differential privacy. There are several other works which show pitfalls on label differential
privacy [BFSV+21a, BFSV+21b].

Here, we design a simple algorithm for label differential privacy, which we show benefits from margin
guarantees for any hypotheses class with finite fat-shattering dimension, including the class of linear
classifiers, neural networks, and ensembles [BST99].

We first introduce some definitions needed to describe our algorithm. Fix ⇢ > 0. Define the ⇢-
truncation function �⇢∶R→ [−⇢,+⇢] by �⇢(u) =max{u,−⇢}1u≤0 +min{u,+⇢}1u≥0, for all u ∈ R.
For any h ∈H, we denote by h⇢ the ⇢-truncation of h, h⇢ = �⇢(h), and define H⇢ = {h⇢∶h ∈H}. For
any family of functions F, we also denote byN∞(F, ", xm

1 ) the empirical covering number of F over
the sample (x1, . . . , xm) and by C(F, ", x

m
1 ) a minimum empirical cover. With these definitions, the

algorithm is given in Algorithm 5. The algorithm uses an exponential mechanism over a cover of
truncated hypotheses sets.

29



Algorithm 5 ALabMarg: Private learning algorithm under label-privacy

Require: Dataset S = ((x1, y1), . . . , (xm, ym)) ∈ �B
d
× {±1}�

m
; privacy parameter " > 0; margin

parameter ⇢.
1: Compute the ⇢�2 minimal cover Ĥ⇢ = C(H⇢,⇢�2, x

m
1 ).

2: Run the Exponential mechanism with privacy parameter ", sensitivity 1�m, and score function
−R̂

⇢�2
S (h), h ∈ Ĥ⇢ to select hpriv

∈ Ĥ⇢.
3: return h

priv.

Theorem E.1. Algorithm 5 is "-label-DP. Let D be a distribution on X ×Y and suppose S ∼ D
m.

Let c = 17 and d = fat ⇢
32
(H) and M = 1 + d log2(2c

2
m) log2

2cem
d + log 2

� . For any � ∈ (0,1), with
probability at least 1 − �, the output wPriv satisfies:

RD(h
priv
) ≤min

h∈H

�

�
R̂
⇢
S(h) + 2

�

min
h∈H

R̂
⇢
S(h)

�

M

m

�

�
+
2M

m
+

64M log� 2� �

"m
.

Before we prove the above theorem, we first want to remark that while our algorithm is computa-
tionally inefficient, it admits strong theoretical guarantees. First, it is an (",0) pure label-differential
privacy guarantee. Second, it is dimension-independent. Furthermore, our algorithm benefits from a
relative deviation margin bound that smoothly interpolates between the realizable case of R⇢S(w) = 0
and the case of R⇢S(w) > 0. As a corollary, note that up to constants one can always get privacy for
" > 1 for free. Finally, observe that this bound holds not only for linear classes, but also for any hy-
pothesis set with favorable ⇢-fat-shattering dimension. In particular, we can use known upper bounds
for the ⇢-fat-shattering dimension of feed-forward neural networks [BST99] to derive label-privacy
guarantees for training neural networks.

We now prove Theorem E.1.

Proof. The "-differential privacy guarantee follows directly from the properties of the exponential
mechanism. In particular, given the finite class Ĥ⇢ and the score function −R̂⇢�2S (h), h ∈ Ĥ⇢, the
algorithm becomes an instantiation of the exponential mechanism [MT07].

We focus on proving the utility guarantee in the rest of the proof. If m < 64M log(2��)
" , then the

bound follows trivially. Hence in the rest of the paper, we focus on the regime m ≥
64M log(2��)

" . By
definition of Ĥ⇢, for any h ∈H there exists g ∈ Ĥ⇢ such that for any x ∈ x

m
1 ,

�g(x) − h(x)� ≤
⇢

2
.

Thus, for any y ∈ {−1,+1} and x ∈ x
m
1 , we have �yg(x) − yh(x)� ≤ ⇢�2, which implies:

1yg(x)≤⇢�2 ≤ 1yh(x)≤⇢.

Let h∗S ∈ argmin
h∈H

R̂
⇢
S(h). By the construction of Ĥ⇢ and the above argument,

min
h∈Ĥ⇢

R̂
⇢�2
S (h) ≤ R̂

⇢
S(h

∗

S). (27)

We now bound the size Ĥ⇢.
�Ĥ⇢� =N∞(H⇢,⇢�2, x

m
1 ).

By [Bar98, Proof of theorem 2], we have

logmax
xm
1

[N∞(H⇢,
⇢
2 , x

m
1 )] ≤ 1 + d

′ log2(2c
2
m) log2

2cem

d′
,

where d′ = fat ⇢
32
(H⇢) ≤ fat ⇢

32
(H) = d and c = 17. Given the bound on the sample size in the theorem

statement and the properties of the exponential mechanism [MT07], value of m, with probability at

30



Algorithm 6 APrivMrg: Algorithm to select confidence margin

Require: Dataset S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {±1})
m; algorithm A; bound F (⇢, g⇢(S));

hmax an upper bound on ⇢; privacy parameters " > 0, � ≥ 0; and confidence parameter � > 0.
1: Let V � �⇢j � 2−j hmax ∶ j ∈ [J]� , where J =

1
2 log(m).

2: Run the generalized exponential mechanism [RS16, Algorithm 1] over V with privacy parameter
" and score function −F (⇢j ; g⇢j(S)) for ⇢j ∈ V , to select ⇢∗ ∈ V .

3: Run A on the dataset S with margin parameter ⇢∗ and privacy parameters (", �), confidence
parameter �, and return its output wPriv.

least 1 − ��2,

R̂
⇢�2
S (h

priv
) ≤ min

h∈Ĥ⇢
R̂
⇢
S(h) +

32M log(2��)

"m

≤ R̂
⇢
S(h

∗

S) +
32M log(2��)

"m
. (28)

By Lemma A.2, with probability at least 1 − ��2,

RD(h
priv
) ≤ R̂

⇢�2
S (h

priv
) + 2

�

R̂
⇢�2
S (h)

M

m
+
M

m
, (29)

where M = 1+d log2(2c2m) log2
2cem

d + log 2
� , c = 17, and d = fat ⇢

32
(H). Combining (28) and (29)

yields

RD(h
priv
) ≤ R̂

⇢
S(h

∗

S) + 2

�

R̂
⇢
S(h

∗

S)
M

m
+
2M

m
+
64M log(2��)

"m
.

The lemmas follows by observing that if h∗ ∈ argmin
h∈H

R̂
⇢
S(h), if and only if h∗ ∈ argmin

h∈H
R̂
⇢
S(h) +

2
�

R̂
⇢
S(h)

M
m .

F Confidence Margin Parameter Selection

The algorithms of Sections 3, 4, 5 and Appendix E can all be augmented to include the selection of the
confidence margin parameter ⇢ by using an exponential mechanism. All of the proposed algorithms
in the previous sections output wPriv such that

RD(w
Priv
) ≤ F (⇢, g⇢(S)),

where g⇢(S) is either the minimum ⇢-margin loss or the minimum ⇢-hinge loss. Furthermore, in all
our results, for any fixed t, F (⇢, t) is a non-increasing function of ⇢ and g⇢(S) is a non-decreasing
function of ⇢ for any S. Suppose we have an algorithm A such that the above inequality holds.
We can then augment it with an exponential mechanism algorithm to select a near-optimal margin
⇢. Let hmax be an upper bound on maxx∈X maxh∈H �h(x)�. For example, hmax = ⇤r for linear
classifiers. If hmax > ⇢, then the bound F (⇢; g⇢(S)) becomes trivial (i.e., ⌦(1)). Similarly, the
bound typically becomes trivial when ⇢ � hmax√

m
. It is easy to see this property for linear classifiers,

for other models such as neural networks with label privacy it can be obtained by bounds on fat-
shattering dimension [BST99]. Hence, without loss of optimality, we will seek an approximation for
⇢opt that minimizes F (⇢; g⇢(S)) for ⇢ ∈ � hmax√

m
, hmax�. To do this, we define a finite grid over the

above interval: V � �⇢j � 2−j hmax j ∈ [J]� , where J =
1
2 log(m). We use an instantiation of the

generalized exponential mechanism, with score function −F (⇢; g⇢(S)), ⇢ ∈ V and privacy parameter
", to select ⇢∗ ∈ V that approximately minimizes F (⇢; g⇢(S)) over ⇢ ∈ V . We use the generalized
exponential mechanism as the sensitivity of −F (⇢j ; g⇢j(S)) depends on ⇢j . We then run A with
margin parameter ⇢ = ⇢∗ to output the final parameter vector wPriv. For clarity, we include a formal
description of the full algorithm in Algorithm 6. We now state the guarantee of the augmented
algorithms.

31



Lemma F.1. Let � ∈ (0,1). Suppose S ∼ D
m for some distribution D over X × Y . Suppose A

is (", �) differentially private and its output satisfies RD(w
Priv
) ≤ F (⇢, g⇢(S)) with probability at

least 1 − �. Furthermore, for any t, let F (⇢, t) be a non-increasing function of ⇢ and g⇢(S) is a
non-decreasing function of ⇢ for any S. Then, Algorithm 6 is (2", �)-differentially private and with
probability at least 1 − 2�, the output wPriv satisfies:

RD(w
Priv
) ≤ min

⇢∈� hmax√
m

,hmax�

F (⇢�2, g⇢(S)) +
�⇢�2(F )

"
⋅ log�

log(m)

�
� ,

where �⇢(F ) is a non-decreasing function of ⇢ and is an upper bound on the sensitivity of F given
by �⇢(F ) =maxS,S′∶d(S,S′)=1 �F (⇢, g⇢(S)) − F (⇢, g⇢(S′))� and d(S,S

′
) is the number of samples

in which S and S
′ differ.

Proof. The privacy guarantee follows from the basic composition property of differential privacy
together with the fact that the generalized exponential mechanism invoked in step 2 is "-differentially
private and A is (", �)-differentially private.

We now turn to the proof of the error bound. Note that there exists ⇢̂ ∈ V such that ⇢̂ ≤ ⇢opt < 2 ⋅ ⇢̂. By
the properties of the generalized exponential mechanism [RS16, Theorem I.4] and the fact that the
sensitivity of F (⇢, g⇢(S)) is �⇢(F ), with probability at least 1 − � we have

F (⇢
∗; g⇢∗(S)) ≤min

⇢∈V
F (⇢; g⇢(S)) +

�⇢(F )

"
⋅ log�

log(m)

�
�

≤ F (⇢̂; g⇢̂(S)) +
�⇢̂(F )

"
⋅ log�

log(m)

�
�

≤ F (⇢̂; g⇢̂(S)) +
�⇢opt�2(F )

"
⋅ log�

log(m)

�
�

≤ F (⇢̂; g⇢opt(S)) +
�⇢opt�2(F )

"
⋅ log�

log(m)

�
�

≤ F (⇢opt�2; g⇢opt(S)) +
�⇢opt�2(F )

"
⋅ log�

log(m)

�
� , (30)

where the last two inequalities follow from the fact that for any t, let F (⇢, t) be a non-increasing
function of ⇢ and g⇢(S) is a non-decreasing function of ⇢ for any S. By the assumption on A, with
probability 1 − �,

RD(w
Priv
) ≤ F (⇢

∗; g⇢∗(S)). (31)
Combining (30) and (31) yields the lemma. The error probability follows by the union bound.

The above lemma can be combined with any of the algorithms of Section 3, 4 and Appendix E. We
instantiate it for AE↵PrivMrg in the following corollary. Below, we compute sensitivity for the bounds
on other algorithms, which can be used to get similar guarantees.
Corollary F.2. Let � ∈ (0,1) and m ∈ N. Suppose S ∼ D

m for some distribution D over X × Y .
Recall that by Theorem 3.2, the output of Algorithm 2 (denoted by w′) with probability at least 1−��2
satisfies, RD(w

′
) ≤ F (⇢, g⇢(S)), where g⇢(S) = min

w∈Bd(⇤)
L̂
⇢
S(w) and

F (⇢
′
, t) = t +O

�

�

�

�

log(1��)

m
+
⇤r

⇢′

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

.

Let wPriv be the output of Algorithm 6 with inputs S, privacy parameters "�2, �, bound F (⇢, g⇢(S)) ,
algorithm AE↵PrivMrg, confidence parameter ��2, and hmax = ⇤r. Then w

Priv is (", �) differentially
private. Furthermore, with probability at least 1 − �,

RD(w
Priv
) ≤ min

⇢∈� ⇤r√
m

,⇤r�
F (⇢�2, g⇢(S)) +O �

⇤r

m⇢"
⋅ log�

log(m)

�
�� .

32



Lemma F.3. Fix ⇢ > 0. Let the functions F1, F2, F3, F4 and F5 are defined as follows:

F1(⇢
′
, g⇢(S)) = min

w∈Bd(⇤)
R̂
⇢
S(w) +O

�

�
�
�

�

�

�
�
�
��R̂

⇢
S(w)

�

�

�

⇤2r2 log2�m� �

m(⇢′)2
+

log� 1� �

m

�

�

�

+ �

�

�
�
�

�

,

F2(⇢
′
, g⇢(S)) = min

w∈Bd(⇤)
L̂
⇢
S(w) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢′

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

,

F3(⇢
′
, g⇢(S)) = min

h∈H⇤

L̂
⇢
S(h) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢′

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

,

F4(⇢
′
, g⇢(S)) =min

h∈H
R̂
⇢
S(h) + 2

�

min
h∈H

R̂
⇢
S(h)

�

M

m
+
2M

m
+

64M log� 2� �

"m
,

F5(⇢
′
, g⇢(S)) = min

h∈HNN⇤

R̂
⇢
S(h) +O�

r(2⌘⇤)L
√

N✓

⇢′
√
m

+
r
2
(2⌘⇤)2LN✓

(⇢′)2"m
�,

where M is defined in Theorem E.1 and � is defined in Theorem 3.1. Then

�⇢(F1) = O

�

�
�
�

�

1

m
+

1

m

�

�
�
��

⇤2r2 log2�m� �

⇢2
+ log�

1

�
�

�

�
�
�

�

.

�⇢(F2) = O �
⇤r

m⇢
� .

�⇢(F3) = O �
⇤r

m⇢
� .

�⇢(F4) = O �
1 +
√
M

m
� .

�⇢(F5) = O �
1

m
� .

Proof. We provide the proof for the bound on �⇢(F2). The proof for other quantities is similar and
omitted. Let S′ and S

′′ be two samples that differ in at most one sample. Without loss of generality,
let F1(⇢, g⇢(S

′
)) ≥ F2(⇢, g⇢(S

′′
)). Let

w
′
∈ argmin
w∈Bd(⇤)

L̂
⇢
S′(w) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

and

w
′′
∈ argmin
w∈Bd(⇤)

L̂
⇢
S′′(w) +O

�

�

�

�

log(1��)

m
+
⇤r

⇢

�

�

�

1
√
m
+

�

log(m� ) log(
1
� ) log

3
4 (

1
� )

√
"m

�

�

�

�

�

�

.

Then

F1(⇢, g⇢(S
′
)) − F2(⇢, g⇢(S

′′
)) = L̂

⇢
S′(w

′
) − L̂

⇢
S′′(w

′′
)

≤ L̂
⇢
S′(w

′′
) − L̂

⇢
S′′(w

′′
)

≤
2

m⇢
max

w∈Bd(⇤),x∈Bd(r)
�w ⋅ x�

≤
2

m⇢
⇤r.

33



G Example of high error for exponential mechanism

Lemma G.1. Let d ≥ c for some constant c and ⇢ ∈ [0,1]. There exists a distribution D over Bd and
a subsetH ∈HLin such that the following hold:

• Realizable setting: There exists a h
∗ inH such that RD(h

∗
) = 0.

• Only one good hypothesis: For any h inH � {h∗}, RD(h) = 1.

• A good cover: For any two hw, hw′ ∈H, their corresponding weights satisfy ��w,w′�� ≥ 1�8.

• Exponential mechanism incurs high error: Given m < c
′
⋅d�" samples D, with probability

at least 9�10, the exponential mechanism on −R̂⇢S(h) will select a h such that RD(h) = 1.

Proof. Let D be defined as follows. Let D(x) be a uniform distribution over {−1�
√

d,1�
√

d}
d and

y = 1 if x1 > 0, 0 otherwise. The optimal hypothesis h∗(x) = 1x1>0 and satisfies RD(h
∗
) = 0. Let

H = {h
∗
} ∪ {hw ∶ w ∈W}, whereW is the largest set such that for all w ∈W , w1 = −1�

√

d and for
any two w,w

′
∈W , ��w,w′�� ≥ 1�8. Bythe Gilbert-Varshamov bound, the size of such a set is at least

2c⋅d for some constant c. Note that for anyH � {h∗}, RD(h) = 1.

Now suppose we use the exponential mechanism with score −R̂⇢S(h). The probability of selecting
the correct hypothesis is at most

1

∑h∈{hw ∶w∈W} exp(−R̂
⇢
S(h)"�2m)

≤
1

2c⋅de−"m�2
= e

"m�2−c′d
.

Hence if m < c′�d", then the probability of choosing h
∗ is at most e−c

′d�2
≤ 1�10 for d ≥ 2

c′ + 3.

34



0 +��� +r�r

�
2

1 � �
2

�
2

1 � �
2distribution mass

positions
+ +� �

Figure 3: Simple example in dimension one for which the minimizer of the expected hinge loss E[` hinge(w)] is
w∗ = 1

�
and thus �w∗� = 1

�
� 1 for � � 1.

H Example of a large norm hinge-loss minimizer

Fix ↵ ∈ [0,1] and � ∈ (0, r). Consider the distribution D on the real line (dimension one) defined as
follows: there is a probability mass of ↵2 at coordinate (+r,−1), a probability mass of ↵2 at (−r,+1),
a probability mass of 1−↵

2 at (+�,+1), and a probability mass of 1−↵
2 at (−�,−1). Figure 3 illustrates

this distribution. We first examine the expected hinge loss ` hinge(w) of an arbitrary linear classifier
w ∈ R in dimension one:

`
hinge
(w) =

↵

2
[max{0,1 +wr} +max{0,1 +wr}] +

1 − ↵

2
[max{0,1 −w�} +max{0,1 −w�}]

= ↵max{0,1 +wr} + (1 − ↵)max{0,1 −w�}.

Thus, distinguishing cases based on the value of scalar w, we can write:

`
hinge
(w) =

�
�������
�
�������
�

↵(1 +wr) + (1 − ↵)(1 −w�) if w ∈ �0, 1
� �

↵(1 +wr) if w ≥ 1
�

↵(1 +wr) + (1 − ↵)(1 −w�) if w ∈ �−1
r ,0�

(1 − ↵)(1 −w�) if w ≤ −1
r .

=

�
�������
�
�������
�

w(↵r − (1 − ↵)�) + 1 if w ∈ �0, 1
� �

↵(1 +wr) if w ≥ 1
�

w(↵r − (1 − ↵)�) + 1 if w ∈ �−1
r ,0�

(1 − ↵)(1 −w�) if w ≤ −1
r .

To simplify the discussion, we will set r = 1 and ↵ = �
2 , with � � 1. This, implies (↵r − (1−↵)�) =

↵(−1 + 2↵) < 0. As a result of this negative sign, the best solution for the first two cases above is
w =

1
� , w = 0 in the third case, and w = −

1
r in the last case. The loss achieved in the two latter cases

is 1 and (1 −↵)(1 + �
r ), both larger than the loss ↵�1 + r

�
� obtained in the first two cases. In view of

that, the overall minimizer of ` hinge(w) is given by w
∗
=

1
� , with ` hinge(w∗) = 1

2(1 + �). Note that
the zero-one loss of w∗ is `(w∗) = ↵ = �

2 .

Thus, for this example, the norm of the hinge-loss minimizer is arbitrary large: �w∗� = 1
� � 1. In

particular, for a sample size m, we could choose � < 1
m , leading to �w∗� >m. Note that, here, any

other positive classifier, w > 0, achieves the same zero-one loss as w∗. For example, w = 1 achieves
the same performance as w∗ with a more favorable norm.

Our analysis was presented for the population hinge loss but a similar result holds for the empirical
hinge loss.

35


	Useful Lemmas
	DP Algorithms for Linear Classification with Margin Guarantees
	Proof of Theorem 3.1
	Algorithm 4 of Section 3.2 and Proof of Lemma 3.1
	Proof of Theorem 3.2

	DP Algorithms for Kernel-Based Classification with Margin Guarantees
	DP Algorithms for Learning Neural Networks with Margin Guarantees
	Label-Private Algorithms with Margin Guarantees
	Confidence Margin Parameter Selection
	Example of high error for exponential mechanism
	Example of a large norm hinge-loss minimizer

