
Differentially Private Learning
with Margin Guarantees

Raef Bassily
The Ohio State University
& Google Research NY
bassily.1@osu.edu

Mehryar Mohri
Google Research

& Courant Institute
mohri@google.com

Ananda Theertha Suresh
Google Research, NY

theertha@google.com

Abstract

We present a series of new differentially private (DP) algorithms with dimension-
independent margin guarantees. For the family of linear hypotheses, we give a pure
DP learning algorithm that benefits from relative deviation margin guarantees, as
well as an efficient DP learning algorithm with margin guarantees. We also present
a new efficient DP learning algorithm with margin guarantees for kernel-based
hypotheses with shift-invariant kernels, such as Gaussian kernels, and point out how
our results can be extended to other kernels using oblivious sketching techniques.
We further give a pure DP learning algorithm for a family of feed-forward neural
networks for which we prove margin guarantees that are independent of the input
dimension. Additionally, we describe a general label DP learning algorithm, which
benefits from relative deviation margin bounds and is applicable to a broad family
of hypothesis sets, including that of neural networks. Finally, we show how our DP
learning algorithms can be augmented in a general way to include model selection,
to select the best confidence margin parameter.

1 Introduction

Preserving privacy is a crucial objective for machine learning algorithms. A widely adopted criterion
in statistical data privacy is the notion of differential privacy (DP) [DMNS06, Dwo06, DR14], which
ensures that the information gained by an adversary is roughly invariant to the presence or absence of
an individual in a dataset. Despite the remarkable theoretical and algorithmic progress in differential
privacy over the last decade or more, however, its application to learning still faces several obstacles. A
recent series of publications have shown that differentially private PAC learning of infinite hypothesis
sets is not possible, even for common hypothesis sets such as that of linear functions. In fact, this is
the case for any hypothesis set containing threshold functions [BNSV15, ALMM19]. These results
imply serious limitations for private agnostic learnability.

Another rich body of literature has studied differentially private empirical risk minimization (DP-
ERM) and differentially private stochastic convex optimization (DP-SCO) (e.g., [CMS11, JT14,
BST14, BFTT19, FKT20, SSTT21, BGN21, AFKT21, BGM21]). When the underlying optimization
problem is constrained (constrained setting), tight upper and lower bounds have been derived for
the excess empirical risk of DP-ERM [BST14] and for the excess population risk for DP-SCO
[BFTT19, FKT20]. These results show that learning guarantees necessarily admit a dependency on
the dimension d of the form

√

d�m, where m is the sample size. This dependency is persistent, even
in the special case of generalized linear losses (GLLs) [BST14], which limits the benefit of such
guarantees, since learning algorithms typically deal with high-dimensional spaces.

When the underlying optimization problem is unconstrained (unconstrained setting) and the loss
is a generalized linear loss, the bounds given by [JT14], [SSTT21] and [BGM21] are dimension-
independent but they admit a dependency on �w∗�2, where w

∗ is the unconstrained minimizer of the
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expected loss (population risk), or �ŵ�2, where ŵ is the unconstrained minimizer of the empirical loss.
Since the problem is unconstrained, the norm of these vectors can be very large, even for classification
problems for which the minimizer of the zero-one loss admits a relatively small norm. Thus, in
both the constrained and unconstrained settings, the learning guarantees derived from DP-ERM and
DP-SCO are weak for hypothesis sets commonly used in machine learning.

The results just mentioned raise some fundamental questions about private learning: is differentially
private learning with favorable (dimension-independent) guarantees possible for standard hypothesis
sets? Must one resort to distribution-dependent bounds instead? In view of the negative PAC-learning
results and other learning bounds mentioned earlier, we will seek instead optimistic margin-based
learning bounds.

In the context of classification, learning bounds for linear hypotheses based on the dimension or, more
generally, based on the VC-dimension of the hypothesis set are known to be too pessimistic since
they deal with the worst case. Instead, margin bounds have been shown to be the most informative
and useful guarantees [KP02, SFBL97]. This motivates our study of differentially private learning
algorithms with margin-based guarantees. Note that our confidence-margin analysis and guarantees
do not require the hard-margin separability assumptions adopted in [BDMN05, LNUZ20], which
is a strong assumption that typically does not hold in practice. Another existing study that deals
with somewhat related questions is that of [CHS14]. But, the paper deals with a specific class of
maximization problems and adopts a non-standard definition of margin. Another related line of work
is that of [RBHT09] and [CMS11] on DP Kernel classifiers. These works either provide suboptimal,
dimension-dependent learning guarantees or make strong assumptions about the Fourier coefficients
of the kernel predictors. We discuss these prior works in more detail in Section 1.1.

Main contributions. We present a series of new differentially private (DP) algorithms for learning
linear classifiers, kernel classifiers, and neural-network classifiers with dimension-independent,
confidence-margin guarantees. In Section 3, we study the family of linear hypotheses. We first give a
pure DP learning algorithm with relative deviation margin guarantees. Next, we present an efficient
DP learning algorithm with margin guarantees. Our algorithm is based on a faster construction for the
JL-transform and a faster DP-ERM algorithm. While the general structure of our algorithms for linear
classifiers is similar to that of [LNUZ20], our results require a new analysis that takes into account the
scale-sensitive nature of the margin loss and the ⇢-hinge loss. In Section 4, We present a new efficient
DP learning algorithm with margin guarantees for kernel-based hypothesis sets, assuming that the
positive definite kernel used is shift-invariant, as with the most commonly used Gaussian kernels.
Our algorithm combines kernel approximation with the use of the JL-transform. Our result is based
on a new style of analysis that uses regularized ERM as a reference. These ideas enable us to attain a
bound that nearly matches the non-private margin bound, without resorting to the strong assumptions
in prior work. Our confidence-margin bounds for DP learning of linear and kernel classifiers nearly
match the standard, non-private confidence-margin bounds. In Section 5, we initiate the study of
DP learning of neural networks with margin guarantees. We design a pure DP learning algorithm
for a family of feed-forward neural networks for which we prove a confidence-margin bound that is
independent of the input dimension and exhibits better dependence on the network parameters than
the bounds attained via uniform convergence. Our result entails a new analysis of embedding-based
“network compression” technique. Our margin bound for neural networks is the first of its type. The
bound is independent of the input dimension and scales only linearly with the number of activation
units. In Appendix E, We further present a label privacy learning algorithm, which we show benefits
from relative deviation margin bounds. The algorithm and its guarantee are applicable to a broad
family of hypothesis sets, including that of neural networks. Finally, we show in Appendix F how our
DP learning algorithms can be augmented in a general way to include model selection, to select the
best confidence margin parameter.

1.1 Related work
Prior work on unconstrained GLLs. [JT14] and [SSTT21] showed that it is possible to derive
dimension-independent risk bounds for DP-ERM and DP-SCO in the context of linear prediction,
when the parameter space is unconstrained and the loss function is convex and Lipschitz (GLL).
However, their bounds scale with �w∗�, the norm of the optimal unconstrained minimizer of the
expected surrogate loss such as the hinge loss. Also, using their techniques for unconstrained DP-
ERM for GLLs together with uniform convergence would yield generalization error bounds that scale
with the norm of the unconstrained empirical risk minimizer ŵ. The first issue with this line of work
is that the norms of such unconstrained solutions can be very large, thereby resulting in uninformative
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Figure 1: Simple example in dimension one for which the minimizer of the expected hinge loss E[` hinge(w)] is
w∗ = 1

�
and thus �w∗� = 1

�
� 1 for � � 1. Here, any other w > 0, in particular with a small norm, achieves the

same zero-one loss as w∗.

bounds. In fact, one can construct simple, low-dimensional examples, where �w∗� = ⌦(m) while
there is a predictor w with �w� = O(1) that attains the same expected zero-one error, see Figure 1 (a
detailed analysis of that example is given in Appendix H). More importantly, the paradigm adopted in
this line of work is to first devise an algorithm and next derive bounds for its excess risk. In contrast,
we start from strong generalization error bounds, which we use to guide the design of our algorithm.

Prior work on DP learning of hard-margin halfspaces. [BDMN05] and [LNUZ20] studied DP
learning of linear classifiers in the separable setting, that is with a hard- or geometric margin.
[BDMN05] gave a construction based on a private version of the Perceptron algorithm, which results
in a dimension-dependent bound on the expected error. This result was later improved by [LNUZ20]
who gave new constructions with dimension-independent guarantees based their nice idea of using
embeddings, namely, the Johnson-Lindenstrauss (JL) transform, to reduce the dimensionality of the
problem from d to 1��, where � is the geometric margin. Note that the hard-margin separability is
a strong assumption that typically does not hold in practice. Moreover, the constructions proposed
in [LNUZ20] require the knowledge of the margin for their guarantees to be valid. In contrast, our
work considers the more general notion of confidence margin, which does not require the existence
of a geometric margin and applies to realistic scenarios with non-separable data. Moreover, the
confidence-margin parameter, ⇢, in our algorithms is tunable and can be optimized. Importantly, our
algorithms still yield meaningful learning guarantees even if this parameter is not optimized. Our
algorithms for linear classifiers also make use of an embedding as a pre-processing step. However
despite the similar structure to that of [LNUZ20], our algorithm requires a new analysis and different
settings of parameters. This new analysis is necessary to deal with the scale-sensitive nature of our
bounds, due to the absence of a hard-margin.

Prior work on DP Kernel classifiers. [RBHT09] were the first to provide differentially private
constructions for SVMs in both the finite-dimensional feature space and kernel settings. However,
their constructions are suboptimal and the resulting bounds suffer from a polynomial dependence on
the dimension of the feature space. In addition, their error bound has a sub-optimal dependence on
the sample size m and also has an explicit dependence on the `1-norm of the dual variables of the
SVM. In general, this norm can be as large as

√
m, in which case their error bound becomes vacuous.

[CMS11] gave a similar construction for shift-invariant kernels. However, their error guarantees are
based on the kernel approximation results of [RR08] and hence entail a relatively strong condition on
the Fourier coefficients of the kernel predictors and the kernel density. We note that the standard
assumption of bounded Reproducing Kernel Hilbert Space (RKHS) norm does not imply such a
condition. [JT13] gave algorithms for DP predictions with kernels, where the goal is to privately
generate predictions (labels) on a small test set that admits no privacy constraints. In such scenarios,
their algorithms do not output a classifier. [JT13] also gave a construction for private learner that
outputs a kernel classifier, however, their construction is computationally inefficient and the resulting
error guarantees are dimension-dependent.

2 Preliminaries

We consider an input space X , a binary output space Y = {−1,+1} and a hypothesis set H of
functions mapping from X to R. We denote by D a distribution over Z = X × Y and denote by
RD(h) the generalization error and by R̂S(h) the empirical error of a hypothesis h ∈H:

RD(h) = E
z=(x,y)∼D

[1yh(x)≤0] R̂S(h) = E
z=(x,y)∼S

[1yh(x)≤0],

where we write z ∼ S to indicate that z is randomly drawn from the empirical distribution defined by
S. Given ⇢ ≥ 0, we similarly define the ⇢-margin loss and empirical ⇢-margin loss of h ∈H:

R
⇢
D
(h) = E

z=(x,y)∼D
[1yh(x)≤⇢] R̂

⇢
S(h) = E

z=(x,y)∼S
[1yh(x)≤⇢].
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The ⇢-margin loss is not convex. Hence, we also consider the ⇢-hinge loss to provide computationally-
efficient algorithms. For any ⇢ > 0, define the ⇢-hinge loss as `⇢(u) � max (1 − u�⇢, 0) , u ∈ R.
Similar to the above definitions, given ⇢ > 0, for a sample S, we define the expected and the empirical
⇢-hinge losses as follows:

L
⇢
D
(w) = E

z=(x,y)∼D
[`
⇢
(yi �w,xi�)] L̂

⇢
S(w) = E

z=(x,y)∼S
[`
⇢
(yi �w,xi�)].

In the context of learning, differential privacy is defined as follows.

Definition 2.1 (Differential privacy). Let ", � ≥ 0. LetA∶ (X ×Y)m →H be a randomized algorithm.
We say that A is (", �)-DP if for any measurable subset O ⊂H and all S,S′ ∈ (X ×Y)m that differ
in one sample, the following inequality holds:

P(A(S) ∈ O) ≤ e
"
P(A(S

′
) ∈ O) + �. (1)

If � = 0, we refer to this guarantee as pure differential privacy.

3 Private Algorithms for Linear Classification with Margin Guarantees

In this section, we present two private learning algorithms for linear classification with margin
guarantees: first, a computationally inefficient pure DP algorithm, which we show benefits from
relative deviation margin bounds, next, a computationally efficient DP algorithm with a dimension-
independent bound expressed in terms of the empirical ⇢-hinge loss.

Let Bd
(r) � �x ∈ R

d
∶ �x�2 ≤ r� denote the Euclidean ball in R

d of radius r and let X ⊆ Bd
(r) denote

the feature space. We will use the shorthand B
d for Bd

(1). We consider the class of linear predictors
over X defined by HLin = �hw ∶x� �w,x� � w ∈ B

d
(⇤)�. Note that one can represent the general

class of affine functions over Rd as linear functions over Rd+1 by simply mapping each x ∈ R
d to

x̃ = (x,1) ∈ Rd+1. Thus, without loss of generality, we will consider HLin. Here, we view d as
possibly much larger than the sample size m. We also note that even though the predictors in the
input classHLin admit ⇤-bounded norm, we do not constrain the algorithm to output a predictor with
bounded norm, which circumvents the necessary dependence on the dimension in constrained DP
optimization [BST14].

3.1 Pure DP Algorithm for Linear Classification

A standard method for designing differentially private algorithms for a continuous hypothesis class
is to apply the exponential mechanism [MT07] to a cover of the hypothesis class. Since HLin is
d-dimensional, the size of a useful cover is about 2⌦(d), thus, a direct application of the exponential
mechanism yields an ⌦(d)-bound; we give a simple example illustrating that in Appendix G. Thus,
instead, we seek to reduce the size of the cover without impacting its accuracy, using random
projections. This results in a mapping � from R

d to a lower-dimensional space R
k.

For linear classification, we wish to preserve intra-point distances and angles, that is x ⋅ x
′
≈

�x ⋅ �x′ for points x and x
′. It is known that this property can be fulfilled as a corollary of the

Johnson-Lindenstrauss lemma [Nel11, Theorem 109]. For completeness, we provide a full proof in
Appendix A. More interestingly, we show that we can reduce the dimension to Õ(⇤2

r
2
�⇢

2
), without

the error decreasing significantly. We then run the exponential mechanism in this lower-dimensional
space and next compute a classifier w̃ in that space. We finally derive a classifier in the original space
by applying the transpose of the original projection matrix �T

w̃. Note that the final output �T
w̃ has

expected norm Õ�

√

d⇢
r � and may not lie in B

d
(⇤).

Algorithm 1 gives the pseudocode of the full algorithm. The algorithm and the analysis in this
section include a dimensionality reduction technique for mapping the feature vectors from the input
d-dimensional space to a k-dimensional space, where k = Õ(⇤2

r
2
�⇢

2
) for some ⇢ ∈ (0,⇤r]. Hence,

we will be dealing with “compressed” parameter vectors in R
k. To distinguish these two spaces,

we will denote the empirical error and the empirical ⇢-margin error in this k-dimensional space as
R̂
(k)
S′ (w

′
) and R̂

(k),⇢
S′ (w

′
), respectively, where w

′
∈ B

k and S
′
∈ �R

k
×Y�

m
.
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Algorithm 1 APrivMrg: Private Learner of Linear Classifiers with Margin Guarantees

Require: Dataset S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {±1})
m; privacy parameter " > 0; margin

parameter ⇢ ∈ (0,⇤r]; confidence parameter � > 0.

1: Let k = O �
⇤2 r2 log�m

� �

⇢2 �.

2: Let � be a random k × d matrix with entries drawn i.i.d. uniformly from {± 1
√

k
}.

3: Let S� = {(x�, y)∶ (x, y) ∈ S}, where for any x ∈ R
d
, x� � �x ∈ R

k.
4: Let C be a ⇢

10 r -cover of Bk
(2⇤).

5: Run the Exponential mechanism over C with privacy parameter ", sensitivity 1�m, and score
function −R̂(k)S�

(w) for w ∈ C, to select w̃ ∈ C.
6: return w

Priv
= ��w̃, where �� denotes the transposition of �.

Theorem 3.1. Algorithm 1 is "-differentially private. For any � ∈ (0,1), with probability at least
1 − � over the draw of a sample S of size m from D, the solution w

Priv it returns satisfies:

RD(w
Priv
) ≤ min

w∈Bd(⇤)

�
��
�
��
�

R̂
⇢
S(w) + Õ

�

�

�

R̂
⇢
S(w)

⇤2r2

m⇢2
+

⇤2
r
2

⇢2min(1, ")m

�

�

�
��
�
��
�

.

The proof is given in Appendix B.1. The theorem provides a margin guarantee for the private
solution. Note that no assumption is made about separability or the existence of a favorable hard-
margin. Instead, through the first term, the bound is based on the distribution of the empirical margins
y(w ⋅ x). The theorem suggests that, when the empirical ⇢-margin loss remains small for a relatively
large value of the confidence margin parameter ⇢, then w

Priv benefits from a strong generalization
guarantee. These comments hold similarly for other margin bounds presented in this paper.

This result, although given for a computationally inefficient method, is stronger than several previ-
ously known ones: First, it is an (",0)-pure differential privacy guarantee; second, it is dimension-
independent and furthermore, unlike prior work, the norm of the optimal hypothesis does not appear
in the bound. Furthermore, since it is a relative deviation margin bound, it smoothly interpolates
between the realizable case of R̂⇢S(w) = 0 and the case of R̂⇢S(w) > 0. For a sample of size m,
the bound is based on an interpolation between a 1�

√
m-term that includes the square-root of the

empirical margin loss as a factor and another term in 1�m. In particular, when the empirical margin
loss is zero, the bound only admits the 1�m fast rate term. As a corollary, note that, up to constants,
one can always obtain privacy for " > 1 essentially for free.

Dependence on ⇤�⇢: Our bound depends on the choice of ⇤�⇢. We note that this is fundamentally
different from the dependence on �w∗� in prior works on GLLs [JT14, SSTT21] for two reasons:
First, unlike �w∗�, ⇤�⇢ is a measurable and, more importantly, tunable quantity, which we can select
an optimal setting for1 (as we do in Appendix F). Second, the optimal choice for this parameter can
be much smaller than �w∗� as demonstrated in Appendix H.

3.2 Efficient Private Algorithm for Linear Classification

The ⇢-margin loss is not convex and it is known that its minimization is generally intractable. Instead,
we devise a computationally efficient algorithm, whose guarantees are expressed in terms of the
empirical ⇢-hinge loss. Algorithm 2 shows the pseudocode of our algorithm. We now discuss the key
steps of the algorithm.

Fast JL-transform. Our algorithm entails a dimensionality reduction step (step 3) as in Algorithm 1.
Here, we note that the new dimension k is chosen to be Õ(m"), which enables us to control the
influence of the dimensionality reduction on the empirical hinge loss. We also note that this step is
carried out via a fast construction for the JL-transform (Lemma A.4), which takes O(d log(d)) time,
assuming d > "m.

1Note that, without loss of generality, we can set ⇤ = 1 and optimize only with respect to ⇢.
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Algorithm 2 AE↵PrivMrg: Efficient Private Learner of Linear Classifiers with Margin Guarantees

Require: Dataset S = ((x1, y1), . . . , (xm, ym)) ∈ �B
d
(R) × {±1}�

m
; privacy parameters ", �; norm

bound ⇤; margin parameter ⇢ ∈ (0,⇤r]; confidence parameter � > 0.
1: Let k = "m log(m��)

log
3
2 (1��) log(1��)

.

2: Let � be a random k × d matrix from the construction in Lemma A.4.
3: Let S� = ��⇧Bk(2r)(x�), y�∶ (x, y) ∈ S�, where for any x ∈ R

d
, x� � �x ∈ R

k and ⇧Bk(2r) is
the Euclidean projection on B

k
(2r).

4: Privately solve the convex ERM problem: argmin
w∈Bk(2⇤)

L̂
⇢
S�
(w) via Algorithm 4 (Appendix B.2)

and return w̃ ∈ B
k
(2⇤).

5: return w
Priv
= ��w̃, where �� denotes the transposition of �.

Near linear-time DP convex ERM. After this step, we invoke an efficient algorithm for DP-ERM
(step 4 in Algorithm 2) to find an approximate minimizer of the empirical ⇢-hinge loss L̂

⇢
S�
(w),

rather than using the exponential mechanism to find an approximate minimizer for the empirical
zero-one loss R̂S�(w). To improve the running time of step 4, we use the construction in [BGM21,
Algorithm 2] to solve DP-ERM in near-linear time and with high-probability guarantee on the excess
empirical risk (see Algorithm 4 in Appendix B.2). The algorithm of [BGM21] is devised for DP-SCO
with respect to non-smooth generalized linear losses. It is based on a combination of a smoothing
technique via proximal steps and the phased SGD algorithm [FKT20, Algorithm 2] for smooth
DP-SCO. The algorithm of [BGM21] can be used for DP-ERM if it is fed with a sample from the
empirical distribution of the dataset. However, the privacy guarantee requires a careful privacy
analysis to deal with the fact that this sample may contain duplicate entries from the original dataset.

Moreover, since the original algorithms in [FKT20, BGM21] provide only expectation guarantees
and we aim at high-probability learning bounds, we use a standard private confidence-boosting
technique to provide a high-probability guarantee on the excess risk of our variant. We summarize
the guarantees of this variant in the following lemma. The details of the construction and the proof of
the lemma below can be found in Appendix B.2.
Lemma 3.1. Let m ∈ N, 0 < � < 1

m , and 0 < " ≤ log(1��). Algorithm 4 (Appendix B.2) is (", �)-DP.
Let � ∈ (0,1). Let k ∈ N, and r̃,⇤ > 0. Let S̃ ∈ �Bk

(r̃) × {±1}�
m

be the input dataset and B
k
(⇤)

be the parameter space. With probability 1 − � over the randomness in Algorithm 4, the output w̃
satisfies

L̂
⇢

S̃
(w̃) ≤ min

w∈Bk(⇤)
L̂
⇢

S̃
(w) +

⇤r̃

⇢
⋅O

�

�

�

1
√
m
+

√

k log
3
2 (

1
� ) log(

1
� )

"m

�

�

�

.

Moreover, Algorithm 2 requires O(m log(m) log(1��)) gradient computations.

We now state our main result in this section, which we prove in Appendix B.3.
Theorem 3.2. Let 0 < � < 1

m and 0 < " ≤ log(1��). Algorithm 2 is (", �)-DP. Let � ∈ (0,1). Let
S ∼ D

m for a distribution D over B
d
(r) × {±1}. Algorithm 2 outputs w

Priv
∈ R

d such that with
probability at least 1 − �, we have

RD(w
Priv
) ≤ min

w∈Bd(⇤)
L̂
⇢
S(w) + Õ

�

�

⇤r

⇢

�

min(1, ")m

�

�
.

Moreover, Algorithm 2 runs in time O�md log(max(d,m)) + "m2 log(m)� log
3
2 (1��)�.

4 Private Algorithms for Kernel-Based Classifiers with Margin Guarantees

In this section, we present private algorithms with margin guarantees for kernel-based predictors
[SS02, STC04]. We first consider a continuous, positive definite, shift-invariant kernel K ∶X ×X → R,
where K(x,x) = r

2 for all x ∈ X . The associated feature map is defined as  (x) �K(⋅, x), x ∈ X ,
where X ⊆ Bd

(r).
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Overview of the technique. Our approach is based on approximating the feature map  by a
finite-dimensional feature map  ̂ ∶ X → B

2D
(r) determined via Random Fourier Features (RFFs).

The dimension 2D of the approximate feature map is chosen to be sufficiently large to ensure
that for all pairs of feature vectors xi, xj in a training set S = ((x1, y1), . . . , (xm, ym)), we have
�� ̂(xi),  ̂(xj)� −K(xi, xj)� �

1
m with high probability over the randomness of  ̂ (due to RFFs).

This suffices to derive an upper bound (margin bound) on the true error of a finite-dimensional linear
predictor trained on the sample made of the labeled points � ̂(x), y�, (x, y) ∈ S, that is essentially
the same as the margin bound known for the kernel classifier. Hence, in effect, we reduce the problem
to that of learning a linear classifier in a 2D-dimensional space, which we can solve privately using
Algorithm 2. Note that the output predictor in this case is a finite-dimensional linear function rather
than a function in the Reproducing Kernel Hilbert Space. A full description of our DP learner of
kernel classifiers is given in Algorithm 3 below.

Bochner’s Theorem and RFFs. Since the kernel K is shift-invariant, it can be expressed as
K(x,x

′
) = r

2
K̄(x − x

′
), x, x

′
∈ X for some function K̄ ∶Z → R, where Z = {z = x − x′∶x,x′ ∈ X}.

Moreover, since K is positive-definite, K̄ is the Fourier transform of a probability distribution PK̄ :

K̄(x) = �
X

e
i�!,x�

PK̄(!)d!.

This follows from Bochner’s Theorem [Rud17]. Random Fourier Features (RFFs) provide a simple
method introduced in [RR07] to approximate kernel feature maps in a data-independent fashion. The
idea is based on Bochner’s theorem. In particular, we first sample !1, . . . ,!D independently from
the probability distribution PK̄ . Then, we define an approximate feature map as follows:

 ̂(x) �
r
√
D
(cos �!1, x�, sin �!1, x�, . . . cos �!D, x�, sin �!D, x�) , ∀x ∈ X . (2)

For D sufficiently large, it can be shown that � ̂(x),  ̂(x′)� concentrates around K(x,x
′
) for all

pairs x,x′ ∈ X [MRT18, Theorem 6.28]. In our analysis below, we only need that concentration to
hold uniformly over pairs x,x′ from a fixed training set rather than uniformly over all pairs x,x′ ∈ X .
This leads to a simpler approximation guarantee, which we formally state below.
Theorem 4.1. Let SX = (x1, . . . , xm) ∈ X

m. Let K be a shift-invariant, positive definite kernel,
where K(x,x) = r

2
, ∀x ∈ X . Let PK̄ be the probability distribution associated with K. Suppose

!1, . . . ,!D are drawn independently from PK̄ . With probability 1, we have � ̂(x)�2 = r, ∀x ∈ X .
For any � ∈ (0,1), with probability at least 1 − �, for all i, j ∈ [m] such that i ≠ j we have

�� ̂(xi),  ̂(xj)� −K(xi, xj)� ≤ 2r
2

�

�
�� log�m� �

D
.

Proof. The first assertion related to � ̂(x)�2 ∀x ∈ X follows directly from the definition of  ̂(x)
and a basic trigonometric identity. The proof of the second assertion about the inner products follows
from the identity E

!1,...,!D

�� ̂(xi),  ̂(xj)�� =K(xi, xj) that holds for all xi, xj , the application of

Hoeffding’s bound combined with the union bound over all ≈m2 pairs xi, xj ∈ SX . The unbiasedness
of � ̂(xi),  ̂(xj)� follows from the fact that the expectation is the Fourier transform of r2PK̄(!),
which, by Bochner’s Theorem, is r2K̄(xi − xj) =K(xi, xj).

We now state our main result, which we prove in Appendix C.
Theorem 4.2. Let r > 0. Let K ∶ X × X → R be a shift-invariant, positive definite kernel, where
K(x,x) = r

2 for all x ∈ X . For any " > 0 and � ∈ (0,1), Algorithm 3 is (", �)-differentially private.
DefineH⇤ � {h ∈ H ∶ �w�H ≤ ⇤}, where �⋅�H is the norm corresponding to the reproducing kernel
Hilbert space (RKHS) H associated with the kernel K. Let � ∈ (0,1). Given an input sample S of m
examples drawn i.i.d. from a distribution D over X × {±1}, Algorithm 3 outputs h ̂

wPriv such that with
probability at least 1 − �, we have

RD(h
 ̂
wPriv) ≤ min

h∈H⇤

L̂
⇢
S(h) + Õ

�

�

⇤r

⇢

�

min(1, ")m

�

�
,

7



Algorithm 3 APrivKerMrg: Efficient Private Learner of Kernel Classifiers with Margin Guarantees

Require: Dataset S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {±1})
m; shift-invariant, positive definite

kernel K ∶ X × X → R with K(x,x) = r
2 for all x ∈ X , privacy parameters ", �; Reproduc-

ing kernel Hilbert space (RKHS) norm bound ⇤; margin parameter ⇢ ∈ (0,2⇤r]; confidence
parameter � > 0.

1: Let PK̄ be the probability distribution associated with K.
2: Let D =m2 log(2m��).
3: Draw !1, . . . ,!D independently from PK̄ .
4: Let S ̂ = �( ̂(xi), yi)∶ i ∈ [m]�, where  ̂ is as defined in (2).
5: w

Priv
← AE↵PrivMrg �S ̂ , ", �,2⇤, ⇢,��2�, where AE↵PrivMrg is the private learner described in

Algorithm 2. Note that the input dimension to AE↵PrivMrg is 2D rather than d, and the norm
bound parameter is 2⇤.

6: return Private predictor hwPriv ∶ X → R defined as ∀x ∈ X , h ̂
wPriv(x) � �w

Priv
,  ̂(x)�.

where, for any h ∈H⇤, L̂⇢S(h) �
1
m ∑

m
i=1 `

⇢
(yi �h, (xi)�H), where  is the feature map associated

with the kernel K and �⋅, ⋅�H is the inner product associated with the RKHS H.

Polynomial kernels: Our results can be extended to polynomial kernels using a different approach to
construct a finite-dimensional approximation of the kernel. A polynomial kernel of degree p, denoted
as p, can be expressed as p(x,x′) = (�x,x′� + c)

p
, x, x

′
∈ X and c > 0 is some constant. Note that a

feature map  p associated with such a kernel can be expressed as a vector in R
d̄
, where d̄ = O(dp). In

particular,  p(x) is the vector of all monomials of a p-th degree polynomial. Ignoring computational
efficiency considerations (or when p is a small constant), there is a simpler private construction
than the one used for shift-invariant kernels. In that case, we can directly use the JL-transform
to embed { p(x1), . . . , p(xm)} into a k-dimensional subspace exactly as in Section 3.2, which
would result in a k-dimensional approximation of the kernel (by the properties of the JL-transform).
Hence, we can directly use Algorithm 2 on the dataset S p � (( p(x1), y1), . . . , p(xm), ym)). We
therefore obtain the same bound on the expected error as above except that r would then be r

p. That
dependence on r

p is inherent in this case even non-privately since p(x,x) can be as large as rp.
However, as discussed below, more efficient solutions can be designed for approximating these and
many other kernels.

Further extensions. Our work can directly benefit from the method of [LSS13], which is computa-
tionally faster than that of [RR07], O((m+d) log d), instead of O(md). Their technique also extends
to any kernel that is a function of an inner product in the input space. We can further use, instead
of the JL-transform, the oblivious sketching technique of [AKK+20] from numerical linear algebra,
which builds on previous work by [PP13] and [ANW14], to design sketches for polynomial kernel
with a target dimension that is only polynomially dependent on the degree of the kernel function, as
well as a sketch for the Gaussian kernel on bounded datasets that does not suffer from an exponential
dependence on the dimensionality of input data points. More recently, [SWYZ21] presented new
oblivious sketches that further considerably improved upon the running-time complexity of these
techniques. Their method also applies to other slow-growing kernels such as the neural tangent (NTK)
and arc-cosine kernels.

5 Private Algorithms for Learning Neural Networks with Margin
Guarantees

In this section, we describe a private learning algorithm that benefits from favorable margin guarantees
when run with a family of neural networks with a very large input dimension.

We consider a family HNN of L-layer feed-forward neural networks defined over B
d
(r), with

d potentially very large compared to the sample size m. A function h in HNN can be viewed
as a cascade of linear maps composed with a non-linear activation function (see Figure 2, left
column). Here, W1, . . . ,WL are the weight matrices defining the network and  is a non-linear
activation. For simplicity, the width (number of neurons) in each hidden layer, denoted by N , is
assumed to be the same for all the layers. Also, we assume that the output of the network is a
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real scalar and hence we have WL ∈ R
N . Furthermore, we assume no activation in the output

layer. We also assume the same activation  ∶RN
→ R

N for all layers and choose it to be a sigmoid
function: for any u = (u1, . . . , uN) ∈ R

N
,  (u) = (�⌘(u1), . . . ,�⌘(uN)), for some ⌘ > 0, where

�⌘(a) =
1−e− ⌘a

2

1+e− ⌘a
2

, a ∈ R. Note that �⌘ is ⌘-Lipschitz and thus  is ⌘-Lipschitz with respect to �⋅�2: for

any u, v ∈ R
N
, � (u) − (v)�2 ≤ ⌘�u − v�2. A typical choice for ⌘ in practice is ⌘ = 1, but we will

keep the dependence on ⌘ for generality. We define HNN⇤ as the subset of HNN with weight matrices
that are ⇤-bounded in their Frobenius norm: for all j ∈ [L], �Wj�F ≤ ⇤ for some ⇤ > 0.

Figure 2: Illustration of the
neural networks before and af-
ter JL-transforms.

We design a pure DP algorithm for learning L-layer feed-forward net-
works in HNN⇤ that benefits from the following margin-based guarantee.

Theorem 5.1. Let " > 0,� ∈ (0,1), and ⇢ > 0. Then, there is an "-DP
algorithm which returns an L-layer network h

Priv with N neurons per
layer that with probability at least 1 − � over the draw of a sample
S ∼ D

m and the internal randomness of the algorithm admits the
following guarantee:

RD(h
Priv
) ≤ min

h∈HNN⇤

R̂
⇢
S(h) +O�

r(2⌘⇤)L
√

N✓

⇢
√
m

+
r
2
(2⌘⇤)2LN✓

⇢2"m
�,

where ✓ = log(Lm��) log(r(⌘⇤)L�⇢).

Note that this guarantee is independent of d and, assuming L is a
constant, the bound scales roughly as

�
N
⇢2m +

N
⇢2"m , where ⇢ is the

confidence-margin parameter and " is the privacy parameter. Note that,
for " ≈ 1, the bound scales with

√
# neurons, which is more favorable

than standard bounds obtained via a uniform convergence argument,
which depend on d, as well as the total number of edges ⌦(N2

), in
addition to a similar dependence on ⇤L.

Our construction. Our DP learner is based on using L embeddings �0 ∈ R
k×d

, . . . , �L−1 ∈ R
k×N

given by data-independent JL-transform matrices to reduce the dimension of the inputs in each layer,
including the input layer, to k = O�

r2(2⌘⇤)2L

⇢2 �. We randomly generate a set � = (�0, . . . ,�L−1)

of L independent JL matrices whose dimensions are described as above. We let H�
NN denote the

family of L-layer neural networks, where each network h
�
∈H

�
NN is associated with weight matrices

��0
�W1, . . . ,�

�

L−1
�WL for �Wj ∈ R

k×N
, j ∈ [L − 1], and �WL ∈ R

k×1 (see Figure 2, right column).
We define H

�
NN2⇤ ⊂ H

�
NN where ��Wj�F ≤ 2⇤ for all j ∈ [L]. We start by creating a �-cover C

of the product space of the matrices�W1, . . . ,
�WL associated with H

�
NN2⇤ , where � = O� ⇢

r(4⌘⇤)L �.

C is a �-cover of Bk×N
(2⇤) × . . . × Bk×N

(2⇤) × Bk
(2⇤) with respect to

�

∑
L
j=1�⋅�

2
F . We define

Ĥ
�
NN2⇤ ⊂ H

�
NN2⇤ to be the corresponding family of networks whose associated matrices are in

C. Given an input dataset S = ((x1, y1), . . . , (xm, ym)) ∈ �B
d
(r) × {±1}�

m
, we then run the

exponential mechanism over S with privacy parameter ", the score function being the empirical
zero-one loss R̂S(h)∶h ∈ Ĥ

�
NN2⇤ , and the sensitivity 1�m, to return a neural network h

Priv
∈ Ĥ

�
NN2⇤ .

6 Conclusion

We presented a series of new differentially private algorithms with dimension-independent margin
guarantees, including algorithms for linear classification, kernel-based classification, or learning
with a family of feed-forward neural networks, and label DP learning with general hypothesis sets.
Our kernel-based algorithms can be extended to non-linear classification with many other kernels,
including a variety of kernels that can be approximated using polynomial kernels, using techniques
based on oblivious sketching. Our study of DP algorithms with margin guarantees for a family of
neural networks can be viewed as an initiatory step that could serve as the basis for a more extensive
analysis of DP algorithms for broader families of neural networks.
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