
Learning to Reconstruct Missing Data from
Spatiotemporal Graphs with Sparse Observations

Ivan Marisca∗
1The Swiss AI Lab IDSIA,

Università della Svizzera italiana
ivan.marisca@usi.ch

Andrea Cini∗
1The Swiss AI Lab IDSIA,

Università della Svizzera italiana
andrea.cini@usi.ch

Cesare Alippi
1The Swiss AI Lab IDSIA,

Università della Svizzera italiana
2Politecnico di Milano

cesare.alippi@usi.ch

Abstract

Modeling multivariate time series as temporal signals over a (possibly dynamic)
graph is an effective representational framework that allows for developing models
for time series analysis. In fact, discrete sequences of graphs can be processed by
autoregressive graph neural networks to recursively learn representations at each
discrete point in time and space. Spatiotemporal graphs are often highly sparse,
with time series characterized by multiple, concurrent, and long sequences of
missing data, e.g., due to the unreliable underlying sensor network. In this context,
autoregressive models can be brittle and exhibit unstable learning dynamics. The
objective of this paper is, then, to tackle the problem of learning effective models
to reconstruct, i.e., impute, missing data points by conditioning the reconstruction
only on the available observations. In particular, we propose a novel class of
attention-based architectures that, given a set of highly sparse discrete observations,
learn a representation for points in time and space by exploiting a spatiotemporal
propagation architecture aligned with the imputation task. Representations are
trained end-to-end to reconstruct observations w.r.t. the corresponding sensor and its
neighboring nodes. Compared to the state of the art, our model handles sparse data
without propagating prediction errors or requiring a bidirectional model to encode
forward and backward time dependencies. Empirical results on representative
benchmarks show the effectiveness of the proposed method.

1 Introduction

Exploiting structure – both temporal and spatial – is arguably the key ingredient for the success of
modern deep learning architectures and models. Structure and invariances allow imposing inductive
biases to learning systems that act as strong regularizations, thus limiting the space of possible models
to the most plausible ones and, consequently, greatly reducing sample complexity. This is the case
with spatiotemporal graph neural networks (STGNNs) [1–3] which learn to process multivariate
time series while taking into account underlying space and time dependencies by encoding structural
spatiotemporal inductive biases in their architectures. In particular, graphs are used to model the
presence of spatial relationships which can be thought of as soft functional dependencies existing
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among the sensors generating the time series [4]. However, even when spatiotemporal relationships
are present, available data are almost always incomplete and irregularly sampled both spatially and
temporally. This is definitely true for data coming from real sensor networks (SNs), where the
presence of missing data is a phenomenon inherent to any data acquisition or communication process.
In this case, a common approach is to reconstruct missing time series observations with simple
interpolation strategies before proceeding with the downstream task. However, arguably, this induces
a bias in the inference procedure, possibly made even worse by the strong regularization imposed on
the model. More advanced methods deal with missing data by autoregressively replacing missing
observations with predicted ones, eventually using bidirectional architectures [5, 6] to exploit both
forward and backward temporal dependencies. To account also for spatial dependencies, Cini et al.
[4] introduced a method, named GRIN, combining a bidirectional autoregressive architecture with
message passing graph neural networks [7–10] for spatiotemporal imputation. Despite being the state
of the art in imputation, GRIN suffers from the error propagation typical of autoregressive models
that bootstrap future inferences from their own predictions. In fact, we argue that the propagation of
imputed (biased) values through space and time combined with noisy observations might exacerbate
error accumulation in highly sparse data and drive the hidden state of GRIN-like models to possibly
drift away. In this paper, we aim at tackling this problem by designing an architecture based on a novel
attention mechanism that takes spatiotemporal sparsity into account while learning representations
and imputing missing values.

Attention-based models allow distributed representations to emerge by letting each discrete element –
representing an entity or point within a structured environment – interact with each other. In fact, these
mechanisms for propagating information through structures have been recently linked to collective
intelligence [11]. In our context, each token, represented as a node in a sequence of graphs, represents
a point in space and time. A trivial way to account for sparsity in this setting is to constrain the
attention coefficients of time steps corresponding to missing data to be zero or simply to add an
auxiliary token to indicate missing observations; basically, the resulting reconstruction model would
behave similarly to a denoising autoencoder, in the same spirit of BERT-like encoders popular
in natural language processing [12]. Conversely, we propose a novel architecture exploiting an
inter-node sparse spatiotemporal attention mechanism within the neural message-passing framework.
In particular, we seek to design an architecture where each processing stage is aligned with the
task of reconstructing missing spatiotemporal observations. Our model can be seen as a learned,
self-organizing, spatiotemporal propagation process that, as we will motivate throughout the paper, is
more apt to the purpose of missing data reconstruction than standard encoder-decoder architectures.
In fact, compared with the alternatives discussed so far, our method exploits the aforementioned
propagation process to learn a predictive representation for each missing observation by relying
only on observed values propagated through the spatiotemporal structure. This approach achieves
the twofold objective of avoiding propagating biased representation – typical in the autoregressive
framework – and reconstructing observations at arbitrary nodes in the sensor network. In summary,
our main contributions are as follows.

1. We introduce a sparse spatiotemporal attention mechanism to learn, from sparse data,
representations localized in time and space.

2. We design a novel graph neural network architecture based on the aforementioned spatiotem-
poral attention mechanism and equipped with inductive biases that make the model tailored
for the multivariate time series imputation task.

3. We empirically assess the proposed method, showing how it overcomes the limits of existing
approaches, particularly in settings with highly sparse data.

The paper is structured as follows. In Section 2 we discuss related works and contrast them with ours.
We formulate the problem of multivariate time series imputation in the context of spatiotemporal
graphs in Section 3, and present our approach in Section 4 by providing an in-depth discussion of
motivations, design choices, as well as methodological and technical issues. Finally, in Section 5,
we report the empirical results on several relevant benchmarks. Conclusions and future works are
discussed in Section 6.
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2 Related works

Multivariate time series imputation is a core task in time series analysis. Besides standard statistical
approaches based on linear autoregressive models [13–15] or interpolation [16], methods based on
matrix factorization are widely popular [17] and can also incorporate temporal [18] and graph-side
information [19]. Deep learning methods are also commonly used in this regard. In particular, deep
autoregressive models based on recurrent neural networkss (RNNs) are currently among the most
widely adopted methods [20, 5, 6, 21]. In this direction, BRITS [6] is archetypal of several related
works which exploit bidirectional RNNs to perform imputation. Notably, differently from a denoising
autoencoder, BRITS uses one-step-ahead forecasting as a surrogate task to learn an imputation model
while using a simple linear regression layer to incorporate spatial information. Several approaches in
the literature, then, rely on generative adversarial neural networks [22] – often paired with RNNs – to
generate imputed subsequences by matching the underlying data distribution [23, 24, 21]. Recently,
several attention-based imputation techniques have also been proposed [25–27], however, none of
these explicitly account for spatial dependencies within the graph processing framework and overlook
the spatial dimension of the problem. Other works, instead, address this problem in the context
of continuous-time models [28]. Huang et al. [29], in particular, exploit graph representations to
model spatial dynamics. The limits of deep autoregressive approaches in data reconstruction have
also been tackled by using hierarchical imputation methods [30, 31]. More related to our work,
GRIN [4] uses a bidirectional graph RNN, paired with a message passing spatial decoder, to impute
time series based on spatiotemporal dependencies. Other graph-based architectures have been used
in application-specific settings, such as traffic data [32, 33] and load profiles from smart grids [34].
While GRIN achieves remarkable performance, we argue that spatial regularization might not be
enough to prevent error compounding in the states of the recurrent graph network.

The attention mechanism has been exploited in several contexts within the graph deep learning
literature, in particular in anisotropic graph convolutional filters [35–38]. Among STGNNs, attention-
based architectures have been exploited in time series forecasting [37, 39–41]. In particular, Tra-
verseNet [41] is specially related to our work, since it relies on spatiotemporal autoregressive attention
to compute messages exchanged between nodes. One striking example of attention being used suc-
cessfully to process incomplete data is in pretraining routines for representation learning in natural
language processing [12, 42]. Finally, graph neural networks are also popular for reconstructing
missing features in static graphs [43–45].

3 Preliminaries

We model multivariate spatiotemporal time series as observations coming from a SNs. In a SN every
i-th node, i.e., sensor, acquires a d-dimensional xi

t ∈ Rd observation at each t-th time step. We
denote by Xt ∈ RNt×d the matrix collecting the measurements of Nt sensors at time step t, with
Xt:t+T being the sequence of T measurements collected in the time interval [t, t+ T ). We model
functional relationships among the sensors as graph edges. Relationships can be often inferred from
available side information, e.g., one can extract a graph from the position of each sensor and their
reciprocal physical proximity or the structure of the physical system where sensors are placed. In other
cases instead, functional dependencies can be inferred directly from data by exploiting some affinity
score (e.g., Pearson correlation, Granger causality [46], correntropy [47], etc.), or more advanced
techniques (e.g., graph learning methods [48]). We model the extracted relational information with a
weighted, possibly asymmetric adjacency matrix At ∈ RNt×Nt , in which each nonzero entry ai,jt
indicates the weight of the edge going from the i-th node to the j-th. While our framework can
account for dynamic relationships, we mostly focus on settings where the topology is static, i.e.,
At = A and Nt = N . Finally, we assume to have available sensor-level covariates Qt ∈ RN×dq

that act as spatiotemporal coordinates to localize a point in time and space (e.g., date/time features
and geographic location). Note that coordinates qi

t are assumed available for each node at each time
step; in section 4 we discuss how Qt can be learned as a spatiotemporal positional encoding. We then
model observations as a discrete sequence of spatiotemporal graphs, where each graph is a triplet
Gt = ⟨Xt,Qt,A⟩. Note that, in general, we indicate with capital letters network-level attributes,
while we use lowercase for the sensor level.

As already mentioned, observations might be incomplete due to faults, partial observability, and costs
of the data acquisition process. We model data availability with a binary mask mi

t ∈ {0, 1} which is
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1 if the measurements associated with the i-th sensor are valid at time step t. Conversely, if mi
t = 0,

we consider the measurements xi
t to be completely missing, with the exogenous variables qi

t being
instead available. Notice that usually, each mi

t is a realization of random variables with non-trivial
distributions exhibiting complex spatiotemporal dynamics and correlations. For instance, a sensor
fault may last for more than one time step, or spatially correlated errors may result in missing data in
an entire sub-region of the network.

Multivariate Time Series Imputation Given observations Xt:t+T with missing values indicated
by mask Mt:t+T , we denote by X̃t:t+T the unknown corresponding complete sequence, i.e., the
sequence where no observation is missing. Formally, the goal of multivariate time series imputation
(MTSI) is to find an estimate X̂t:t+T minimizing the reconstruction error

L
(
X̂t:t+T , X̃t:t+T ,Mt:t+T

)
=

t+T∑
τ=t

∑N
i=1 m

i
τ · ℓ

(
x̂i

τ , x̃
i
τ

)∑N
i=1 m

i
τ

, (1)

where ℓ( · , · ) is an element-wise error function and mi
τ is the logical binary complement of mi

τ .
Notice that, since X̃t:t+T is not available, one should find a surrogate objective or simulate the
presence of missing data, for which the reconstruction error can be computed.

4 Learning representations from sparse spatiotemporal data

The autoregressive approach to reconstruction consists in directly modeling distributions p
(
xi
t |X<t

)
and using one-step-ahead forecasting as a surrogate objective to learn how to recover missing
observations. To exploit available data subsequent to the target time step, it is common to use a
bidirectional architecture, i.e., to mirror time w.r.t. the time step of interest and have a second model
for estimating p

(
xi
t |X>t

)
[49, 6]. Here we use the shorthand X<t and X>t to denote observations

collected before and after time step t, respectively. Moreover, a third component p
(
xi
t | {x

j ̸=i
t }

)
must be introduced to account for spatial information at each step. Architectures like GRIN, follow
exactly this scheme with different components dedicated to model each of these three aspects. While
being effective in practice, these approaches can have multiple drawbacks. Besides the computational
overhead of having three separate components and the compounding of prediction errors typical
of autoregressive models, the modular approach can fall short in capturing global context, as the
processing of the structural information is decomposed. Furthermore, integrating the information
coming from the different modules is also problematic, yielding further compounding of errors.
Finally, in the case of highly sparse observations, the spatial processing should be dealt with special
care as propagating information through partially observed spatiotemporal graphs adds another layer
of complexity. For instance, simply masking out faulty sensors would compromise the flow of
information through message-passing layers [9].

Model overview To address the limitations of existing methods, we act on the problem more
directly by aligning the structure of our proposed architecture closely with the reconstruction
task. We denote as observed set Xt:t+T =

{〈
xi
τ , q

i
τ

〉
| mi

τ = 1, τ ∈ [t, t+ T )
}

the set of all
observations, paired with their spatiotemporal coordinates. Conversely, we name target set
Yt:t+T =

{
qi
τ |mi

τ = 0, τ ∈ [t, t+ T )
}

the complement set collecting the coordinates of the dis-
crete spatiotemporal points for which we want to reconstruct an observation. We refer to the set
of observed and target points of the i-th node as X i

t:t+T and Yi
t:t+T , respectively. Then, for all

qi
τ ∈ Yt:t+T , we aim at learning a structured model for

p
(
xi
τ | qi

τ ,Xt:t+T ,A
)
. (2)

Our approach, named Spatiotemporal Point Inference Network (SPIN), is a graph attention network
for MTSI, designed to learn representations of discrete points associated with nodes of a sequence of
spatiotemporal graphs. Given disjoint observed and target sets Xt:t+T and Yt:t+T , SPIN is trained to
learn a model

fθ(q
i
τ | Xt:t+T ,A) ≈ E

[
p
(
xi
τ | qi

τ ,Xt:t+T ,A
)]

(3)

for all discrete points qi
τ ∈ Yt:t+T . To this end, SPIN learns a parameterized propagation process

where each representation, corresponding to a specific node and time step, is updated by aggregating
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Figure 1: The architecture of SPIN. At first, we encode observations Xt:t+T and spatiotemporal
coordinates Qt:t+T , obtaining initial representations H(0)

t:t+T . The representations are updated by a
stack of L sparse spatiotemporal attention blocks. Final imputations are obtained from H

(L)
t:t+T with

a nonlinear readout.

information from all the available observations acquired at neighboring nodes weighted by input-
dependent attention coefficients. Figure 1 shows an overview of the architecture. In the next
paragraphs, we will go through each component explaining it in detail and providing motivations for
each design choice. We start by describing how we set up the propagation process.

Sparse spatiotemporal attention The core component of SPIN is a novel sparse spatiotemporal
attention layer used to propagate information at the level of single observations. Indeed, leveraging
on the attention mechanism, we learn representations for each i-th node at each τ -th time step by
simultaneously aggregating information from (1) the observed set of i-th node X i

t:t+T (2) the observed
set X j

t:t+T of its neighbors j ∈ N (i). Figure 2 shows a schematic representation of this procedure.

Temporal Self-attention

  time  

Spatiotemporal Cross-attention

+ MLP

Valid / missing observation  Encoding (valid / missing observation)

Skip Connection

Spatiotemporal point (missing query / valid key / missing key)/ / //

Figure 2: Example of the sparse spatiotemporal attention layer. On the left, the input spatiotemporal
graph, with time series associated with every node. On the right, how the layer acts to update
target representation h

i,(l)
τ (highlighted by the green box), by simultaneously performing inter-node

spatiotemporal cross-attention (red block) and intra-node temporal self-attention (violet block).

Let hi,(l)
τ ∈ Rdh be the learned representation for the i-th node and time step τ at the l-th layer. The

encoding is initialized as

hi,(0)
τ =

{
MLP

(
qi
τ

)
qi
τ ∈ Yt:t+T

MLP
(
xi
τ , q

i
τ

) 〈
xi
τ , q

i
τ

〉
∈ Xt:t+T

(4)

where qi
τ indicates a positional encoding, as previously anticipated, and MLP is a generic multi-

layer perceptron. The representation is then updated by joint temporal and spatiotemporal attention
operations. To describe the inner working of the proposed attention mechanism, we adopt the
terminology of Vaswani et al. [50] and indicate as query the token for which we want to compute an
updated representation, key a representation of the source tokens, and value the content representation
of each token. The next steps involve computations of spatiotemporal messages, i.e., representations
computed to propagate information from one discrete space-time point to another. We indicate the
propagation along the temporal dimension from time step s to time step τ with subscripts s → τ .
Similarly, superscripts j → i indicate messages sent from the j-th node to the i-th. To avoid
overloading the notation, we omit the layer superscript in the following. The message rj→i

s→τ ∈ Rdh

from the j-th node at time step s to the i-th node at time step τ is computed as
rj→i
s→τ = MLP

(
hj
s,h

i
τ

)
, (5)

where, following the adopted terminology, target point representation hi
τ acts as query, source point

representation hj
s as key and the computed message rj→i

t→τ is the value. Notice that, differently from
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the dot-product attention mechanism by Vaswani et al. [50], we take into account both source and
target representations to compute the value, similarly to the Bahdanau attention [51]. To account for
spatial information, this mechanism is used to perform an inter-node temporal cross-attention. More
precisely, for every neighbor j ∈ N (i), we use hi

τ to query – separately – every encoding in hj
t:t+T

associated with a valid observation, and collect the messages in the set

Rj→i
τ = {rj→i

s→τ |
〈
xj
s, q

j
s

〉
∈ Xt:t+T }. (6)

Then, we linearly transform messages in Rj→i
τ (using trainable weights Wα ∈ R1×dh) and obtain

message scores αj→i
s→τ with a softmax layer, i.e.,

αj→i
s→τ =

exp(Wαr
j→i
s→τ )∑

r∈Rj→i
τ

exp(Wαr)
. (7)

Then, we aggregate temporal messages coming from each j-th node separately, and obtain an
edge-level context vector ej→i

τ

ej→i
τ =

∑
s: rj→i

s→τ∈Rj→i
τ

αj→i
s→τ · rj→i

s→τ , (8)

which encodes the observed sequence at each j-th node w.r.t. the i-th node and time step τ . Anal-
ogously, to account for the observed sequence w.r.t. the i-th node itself, we exploit an intra-node
temporal self-attention mechanism to query the encodings hi

t:t+T corresponding to valid observations.
Then, the resulting representations are weighted and aggregated to obtain a temporal context vector
ciτ as

ris→τ = MLP
(
hi
s,h

i
τ

)
(9)

Ri
τ = {ris→τ |

〈
xi
s, q

i
s

〉
∈ Xt:t+T } (10)

ciτ =
∑

s: ri
s→τ∈Ri

τ

αi
s→τ · ris→τ (11)

where message score αi
s→τ is obtained similarly as Eq. (7). Note that parameters are not shared

between the cross-attention and self-attention blocks. After having obtained context vectors ciτ,(l)
and e

j→i,(l)
τ , the encoding h

i,(l)
τ is updated with a final aggregation step as

hi,(l+1)
τ = MLP

(
hi,(l)

τ , ci,(l)τ ,
∑

j∈N (i)
ej→i,(l)
τ

)
. (12)

After L layers, we obtain imputations for all spatiotemporal points in Yt:t+T with a nonlinear readout

Ŷt:t+T = {x̂i
τ = MLP

(
hi,(L)
τ

)
| qi

τ ∈ Yt:t+T }. (13)

Two-phase propagation Masking out tokens in the target set allows SPIN to propagate only valid
information. As a downside, this results in blocking the flow of information on paths through points in
the target set. This can be problematic when the input observations are extremely sparse. Nonetheless,
it is reasonable to assume that, after only a few propagation steps, the available information has
already been partially diffused to locations with missing observations. At this point, interrupted paths
can be unlocked, allowing for reaching higher-order neighborhoods. In practice, we introduce a
hyperparameter η to control the number of layers with masked connections and effectively split the
propagation process into two phases. It is important to notice that what is being propagated in the
second phase are learned representations, not observations (unavailable for masked tokens).

Graph subsampling and hierarchical attention Roughly speaking, the proposed spatiotemporal
attention mechanism can be viewed as performing attention over the spatiotemporal graph S , obtained
by considering the product graph between space and time dimensions – with some connections pruned
w.r.t. unavailable data. Let Nmax, Emax be the largest number of nodes and edges, respectively,
among graphs in Gt:t+T . Performing graph attention on the surrogate graph S has time and memory
complexities that scale with O

(
(Nmax + Emax)T

2
)

(sparse implementations can alleviate this
complexity by replacing T 2 with the number of valid time step pairs). To reduce this computational
burden – which undermines the application of the proposed method to large graphs and long time

6



horizons – we propose two different approaches. The straightforward approach consists in training
the model by exploiting graph subsampling, using one of the many possible subsampling strategies
from the literature (e.g., [52]). In practice, at training time, we sample a k-hop subgraph centered on
n target nodes and then compute the loss only w.r.t. these n nodes. In this way, we can reduce the
amount of computation required by acting on n and k. This type of subsampling can also be seen as
a form of regularization [53].

A more interesting and orthogonal approach to reduce complexity is to rewire the attention mechanism
to be hierarchical [54]. We do this by adding K dummy nodes that act as hubs for propagating
information. Let Zi ∈ RK×dz be the hub nodes’ representations for central node i, and then, for hub
k proceed as follows.

1. Update zi
k by querying {hi

τ |
〈
xi
τ , q

i
τ

〉
∈ Xt:t+T }, i.e., node encodings associated with

valid observations, obtaining z̃i
k;

2. Update node encoding hi
τ by querying updated Z̃i and Z̃j of every j-th neighbor in N (i).

The spatiotemporal attention is effectively split into two phases. At first, we update each hub node
representation similarly as Eq. (9-11):

riτ,k = MLP
(
hi
τ , z

i
k

)
(14)

Ri
k = {riτ,k |

〈
xi
τ , q

i
τ

〉
∈ Xt:t+T } (15)

cik =
∑

τ : ri
τ,k∈Ri

k

αi
τ,k · riτ,k (16)

z̃i
k = MLP

(
zi
k, c

i
k

)
(17)

Then, we obtain context vectors from the updated hub representations as:

rik,τ = MLP
(
z̃i
k,h

i
τ

)
(18)

ciτ =
∑
k

αi
k,τ · rik,τ (19)

rj→i
k,τ = MLP

(
z̃j
k,h

i
τ

)
(20)

ej→i
τ =

∑
k

αj→i
k,τ · rj→i

k,τ (21)

and update node representation hi
τ as in Eq. (12). In this way, we can reduce the spatiotemporal atten-

tion complexity to O ((Nmax + Emax)KT ) with K ≪ T , at the cost of introducing an information
bottleneck. We initialize the hub representations at layer l = 0 with random trainable parameters.

Spatiotemporal positional encoding We now come back to the problem of learning the spatiotem-
poral positional encodings Qt:t+T . The encoding has to capture both spatial and temporal structure
and be decoupled from the observations xi

t to allow inference for points in the target set. These
encodings can be directly extracted from available exogenous information (e.g., sensor location and
date/time features) or learned end-to-end jointly with the other model parameters. We propose a
spatiotemporal positional encoding qi

t = ρ(ut,v
i) obtained by combining a temporal encoding

U ∈ RT×du and a spatial encoding V ∈ RN×dv with a non linear transformation ρ, e.g.,

qi
t = MLP

(
ut,v

i
)
. (22)

For the temporal encoding ut, we use sine and cosine transforms of the time step t w.r.t. a period of
interest (e.g., day and/or week), to account for seasonalities. For the spatial encoding vi, we resort
to a vector of learnable parameters different for each i-th node. More advanced methods could be
considered [55, 56].

5 Empirical evaluation

In this section, we evaluate our method on three real-world datasets and compare the performance
against state-of-the-art methods and standard approaches for MTSI. As the objective of our approach
is to address the imputation problem in highly sparse settings, in a second experiment we assess how
performance changes as the percentage of missing values increases.

5.1 Experimental setting

In the following experiments, we consider both SPIN and the hierarchical version SPIN-H (Sec. 4).
The figure of merit used is the mean absolute error (MAE), averaged across imputation windows.
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Table 1: Performance (in terms of MAE) averaged over 5 independent runs.

Block missing Point missing Simulated failures

PEMS-BAY METR-LA PEMS-BAY METR-LA AQI-36 AQI

Mean 5.46 ± 0.00 7.48 ± 0.00 5.42 ± 0.00 7.56 ± 0.00 53.48 ± 0.00 39.60 ± 0.00

KNN 4.30 ± 0.00 7.79 ± 0.00 4.30 ± 0.00 7.88 ± 0.00 30.21 ± 0.00 34.10 ± 0.00

MF 3.28 ± 0.01 5.46 ± 0.02 3.29 ± 0.01 5.56 ± 0.03 30.54 ± 0.26 26.74 ± 0.24

MICE 2.94 ± 0.02 4.22 ± 0.05 3.09 ± 0.02 4.42 ± 0.07 30.37 ± 0.09 26.98 ± 0.10

VAR 2.09 ± 0.10 3.11 ± 0.08 1.30 ± 0.00 2.69 ± 0.00 15.64 ± 0.08 22.95 ± 0.30

rGAIN 2.18 ± 0.01 2.90 ± 0.01 1.88 ± 0.02 2.83 ± 0.01 15.37 ± 0.26 21.78 ± 0.50

BRITS 1.70 ± 0.01 2.34 ± 0.01 1.47 ± 0.00 2.34 ± 0.00 14.50 ± 0.35 20.21 ± 0.22

SAITS 1.56 ± 0.01 2.30 ± 0.01 1.40 ± 0.03 2.26 ± 0.00 18.16 ± 0.42 21.33 ± 0.15

Transformer 1.70 ± 0.02 3.54 ± 0.00 0.74 ± 0.00 2.16 ± 0.00 11.98 ± 0.53 18.11 ± 0.25

GRIN 1.14 ± 0.01 2.03 ± 0.00 0.67 ± 0.00 1.91 ± 0.00 12.08 ± 0.47 14.73 ± 0.15

SPIN 1.06 ± 0.02 1.98 ± 0.01 0.70 ± 0.01 1.90 ± 0.01 11.77 ± 0.54 13.92 ± 0.15

SPIN-H 1.05 ± 0.01 2.05 ± 0.02 0.73 ± 0.01 1.96 ± 0.03 10.89 ± 0.27 14.41 ± 0.13

We consider only the out-of-sample scenario [4], in which every parametric model is trained and
tested on disjoint sets. All the baselines have been implemented in PyTorch [57] using the Torch
Spatiotemporal library2 [58] and, whenever possible, open-source code provided by the authors. The
code to reproduce the experiments of the paper is available online3. Please refer to the appendix for
more details about the experimental setup.

Datasets We consider three openly available datasets coming from real-world SNs. The first
two, namely PEMS-BAY and METR-LA [2], are two widely used benchmarks in spatiotemporal
forecasting literature. Each of them records traffic measurements every 5 minutes from 325 speed
sensors in San Francisco Bay Area and 207 in Los Angeles County Highway, respectively. Since
the original datasets have a low number of missing values, we use the same setup of [4] to inject
missing data with two different policies: 1) Block missing, in which we randomly mask out 5% of
the available data and, in addition, we simulate a failure lasting for S ∼ U(12, 48) steps with 0.15%
probability; 2) Point missing, in which we randomly drop 25% of the available data. As a third
dataset, we consider AQI [59], which collects one year of hourly measurements of air pollutants
from 437 air quality monitoring stations over 43 cities in China. We consider also a smaller version
of this dataset (AQI-36) with only the 36 sensors scattered over the city of Beijing. This dataset is a
popular benchmark for imputation for the high number of missing values (25.67% in the complete
dataset) and provides a mask for evaluation that simulates the true missing data distribution [15]. For
a given month, such a mask replicates the missing values patterns of the previous month, making this
scenario more similar to the Block missing setting, for a total of ≈ 36% missing data. In all settings,
all the valid observations masked out are used as targets for evaluation. We obtain an adjacency
matrix from the pairwise distance of sensors following previous works [2–4].

Baselines As the target of our approach is the processing of spatiotemporal graphs with missing
observations, we compare our method against GRIN [4], a graph-based bidirectional RNN for MTSI
with state-of-the-art performance. We then consider a spatiotemporal Transformer, where we alternate
temporal and spatial Transformer encoder layers from [50] and replace missing values with a [MASK]
token (as in [12]). We consider also other deep imputation methods: 1) SAITS [25], a recent attention-
based architecture based on diagonally-masked self-attention; 2) BRITS [6], which leverages on a
bidirectional RNN; 3) rGAIN, an adversarial approach which shares similarities with GAIN [23]
and SSGAN [21]. Finally, we report results of simpler methods that impute missing values using
4) node-level sequence mean (MEAN) or 5) neighbors mean (KNN); 6) Matrix Factorization (MF); 7)
MICE [60]; 8) VAR, a vector autoregressive one-step-ahead predictor. Whenever possible, we use
results from [4].

2https://github.com/TorchSpatiotemporal/tsl
3https://github.com/Graph-Machine-Learning-Group/spin
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Table 2: Performance (MAE) with increasing data sparsity in the Point missing setting (averaged over
5 evaluation masks).

METR-LA PEMS-BAY AQI

Missing rate Missing rate Missing rate
50 % 75 % 95 % 50 % 75 % 95 % 50 % 75 % 95 %

BRITS 2.52 ± 0.00 3.02 ± 0.00 5.19 ± 0.02 1.55 ± 0.00 2.17 ± 0.00 3.91 ± 0.02 14.90 ± 0.03 18.29 ± 0.03 29.83 ± 0.07
SAITS 2.48 ± 0.00 3.74 ± 0.01 6.72 ± 0.01 1.50 ± 0.00 2.96 ± 0.01 7.40 ± 0.01 15.36 ± 0.02 20.64 ± 0.05 34.57 ± 0.05
Transformer 2.31 ± 0.00 2.71 ± 0.00 5.13 ± 0.01 0.85 ± 0.00 1.13 ± 0.00 2.70 ± 0.01 9.11 ± 0.02 12.56 ± 0.05 25.65 ± 0.11
GRIN 2.05 ± 0.00 2.39 ± 0.00 4.08 ± 0.02 0.79 ± 0.00 1.09 ± 0.00 2.70 ± 0.01 8.43 ± 0.01 10.97 ± 0.02 20.38 ± 0.10

SPIN 2.02 ± 0.00 2.24 ± 0.00 2.89 ± 0.01 0.79 ± 0.00 1.00 ± 0.00 1.71 ± 0.00 8.15 ± 0.01 9.96 ± 0.02 15.51 ± 0.08
SPIN-H 2.01 ± 0.00 2.20 ± 0.00 2.82 ± 0.00 0.79 ± 0.00 0.97 ± 0.00 1.68 ± 0.00 8.67 ± 0.02 10.27 ± 0.02 15.75 ± 0.07

Table 3: Performance (MAE) with an increasing number of simulated failures in the Block missing
setting (averaged over 5 evaluation masks).

METR-LA PEMS-BAY AQI

Failure probability Failure probability Failure probability
5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

BRITS 5.87 ± 0.03 7.26 ± 0.06 8.29 ± 0.07 4.14 ± 0.05 5.41 ± 0.08 5.84 ± 0.04 24.09 ± 0.30 31.90 ± 0.26 37.62 ± 0.42
SAITS 4.73 ± 0.07 6.66 ± 0.05 7.27 ± 0.03 3.88 ± 0.09 7.62 ± 0.21 8.01 ± 0.11 20.78 ± 0.30 30.16 ± 0.39 36.34 ± 0.33
Transformer 6.03 ± 0.04 7.19 ± 0.05 8.06 ± 0.05 3.69 ± 0.06 5.09 ± 0.05 6.02 ± 0.04 29.21 ± 0.33 33.62 ± 0.16 37.31 ± 0.14
GRIN 3.05 ± 0.02 4.52 ± 0.05 5.82 ± 0.06 2.26 ± 0.03 3.45 ± 0.06 4.35 ± 0.04 15.62 ± 0.24 22.08 ± 0.39 29.03 ± 0.42

SPIN 2.71 ± 0.02 3.32 ± 0.02 3.87 ± 0.05 1.78 ± 0.03 2.15 ± 0.03 2.41 ± 0.02 14.29 ± 0.24 18.71 ± 0.34 24.34 ± 0.46
SPIN-H 2.64 ± 0.02 3.17 ± 0.02 3.61 ± 0.04 1.75 ± 0.04 2.16 ± 0.03 2.48 ± 0.02 14.55 ± 0.26 19.37 ± 0.36 25.38 ± 0.37

Computational complexity We recall that time and memory complexity of SPIN and SPIN-
H scales with O

(
(Nmax + Emax)T

2
)

and O ((Nmax + Emax)KT ), respectively. For the sake of
comparison, here we also report the asymptotic complexity for the spatiotemporal Transformer
and GRIN. The Transformer alternates temporal attention – O

(
NmaxT

2
)

– and spatial attention –
O
(
TN2

max

)
– with a resulting O ((Nmax + T )NmaxT ) complexity. As pertaining to GRIN, let R be

the spatial receptive field (i.e., number of graph convolution layers) of the inner MPGRU cell. Then,
GRIN’s time complexity scales with O (TREmax) in the unidirectional model. Note that while most
of the operations in the attention-based models can be executed in parallel, GRIN needs to process
the entire sequence sequentially, with a consequent slowdown.

5.2 Results

Table 1 reports experimental results. Both SPIN methods outperform the baselines in almost all
scenarios. Not surprisingly, improvements are more evident when entire blocks of data are missing,
as in the AQI datasets and Block missing settings. Differently from the autoregressive methods,
the sparse spatiotemporal attention mechanism of SPIN, in fact, allows for propagating far-apart
observations without the need for intermediate – and biased – predictions. Conversely, in the
Point missing setting, SPIN methods perform on par with the state of the art. With respect to the
spatiotemporal Transformer, SPIN performs better in all settings except for AQI-36, which can be
attributed to the ineffectiveness of spatial attention alone in determining the dependencies among the
different spatial locations. Notice also that, in almost all cases, SPIN-H performs on par with SPIN
(even better in the smaller dataset AQI-36), making it a valid lightweight alternative to SPIN.

To further assess the advantages of SPIN in reconstructing sequences with highly sparse observations,
we compare our methods against the most relevant baselines on the same datasets, but considering
two additional scenarios with increased sparsity. In the first setting, the missing rate is progressively
increased by associating to each observation an increasing probability p of being removed; this
corresponds to a sparser version of the Point missing scenario of the previous experiment. In the
second case, we instead operate in the Block missing setting by increasing the probability p̄ of
a failure at each step, i.e., the probability for each sensor of going offline for a random number
S ∼ U(12, 36) of future (consecutive) time steps. In practice, we test the models on the same test
split of the previous experiment but, instead of using the previous evaluation masks, we update
them according to the different missing data distributions. Note that higher missing rates and failure
probabilities correspond to higher numbers of (consecutive) missing values. In the Block missing case,
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failure probabilities p̄ = 5%, p̄ = 10%, and p̄ = 15% correspond to a missing rate of ≈ 70-75%,
≈ 90-92%, and ≈ 96-97%, respectively. For the traffic datasets, we use the weights of the models
trained on the Point missing setting of Table 1. Table 2 and Table 3 show results (in terms of
MAE) averaged over 5 different evaluation masks for both scenarios and across different missing
rates and failure probabilities. In all the considered experiments, SPIN-based models rank as the
best-performing methods for any sparsity level. Moreover, our approach is robust to changes in the
missing data distribution. In fact, compared to the baselines, the performance of both SPIN and
SPIN-H deteriorates at a slower rate as the sparsity data increases. Notably, GRIN would require
much more data to match the performance of SPIN, and the improvement over other attention-based
methods, i.e, SAITS and Transformer, is also striking.

6 Conclusion and Future Works

We introduced a graph-based architecture, named SPIN, to reconstruct missing observations in sparse
spatiotemporal time series. To overcome the major limitations of autoregressive methods, we designed
a novel sparse spatiotemporal attention mechanism to propagate valid observations through discrete
points in time and space, jointly. Furthermore, we showed how the time and space complexities of
the approach can be drastically reduced by considering a novel hierarchical attention mechanism.
Empirical analysis shows that the proposed method outperforms by a wide margin state-of-the-art
methods for imputation in highly sparse settings. We noticed that in some extremely sparse training
settings, SPIN might suffer from a lack of supervision that may slow down learning; future works
might try to address this problem by introducing an additional auxiliary learning task. Other possible
extensions could investigate spatiotemporal positional encoding methods and their application in
SNs.
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