
Appendix

A Supplementary Notes for Section 3

In this section, we present some additional discussions and theoretical results for Section 3.

A.1 Explicit Expression

The goal of this section is to obtain precise and explicit expressions of the Jacobian matrices in (6).

Firstly, the J−1
w,tR,tℓ

has the form of

J−1
w,tR,tℓ

=

 F̃w F̃ t(
D̃
O

) (
O

Ĩ

) −1

, (13)

in which

F̃w =
m∑
j=1

∑
k∈Ia

Rj
(ŵ)

αj t̂
k
Rj

(ŵ)∇2Dk
Rj

(ŵ) +
∑
J∈P

∑
i∈J

∑
k∈Ia

ℓi
(ŵ)

v∗i (ℓi(ŵ), λ) t̂kℓi(ŵ)∇2Dk
ℓi(ŵ),

F̃ t =
(

++1≤j≤m,k∈Ia
Rj
∇Dk

Rj
(ŵ) ++J∈P,j∈J ,k∈Ia

ℓi
αj∇Dk

ℓj
(ŵ)

)
,

D̃ =


(
++1≤j≤m,k∈Ia

Rj
\{rj}∇Dk

Rj
(ŵ)−∇Drj

Rj
(ŵ)

)T(
++J∈P,j∈J ,k∈Ia

ℓi
\{li}∇Dk

ℓi
(ŵ)−∇Dli

ℓi
(ŵ)

)T
 ,

Ĩ =


(
++n

i=1

(
1Ia

Rj

0Īa
Rj

))T

(
++J∈P,j∈J

(
1Ia

ℓi

0Īa
ℓi

))T

 .

The symbol ++ denotes column matrix concatenation, following the convention in Haskell Language.

Similarly, Jλ is given by

Jλ =

(
F̃ λ

0

)
, (14)

where

F̃ λ =
∑
J∈P

∑
i∈J

∑
k∈Ia

ℓi
(ŵ)

∂v∗i (ℓi(ŵ), λ)

∂λ
t̂kℓi(ŵ)∇Dk

ℓi(ŵ).

As an outcome, (6) can be explicitly expressed via

d

 ŵ
t̂R
t̂ℓ


dλ

=

 F̃w F̃ t(
D̃
O

) (
O

Ĩ

) −1(
F̃ λ

0

)
. (15)

A.2 On the Numerical ODEs Solving

Matrix Inversion. Here we give some relative discussions to support the assumption in Section
3.2 that Jw,tR,tℓ (J for short) is non-singular. First note that J is singular if and only if the value
of its determinant |J | is zero, where |J | is indeed a polynomial w.r.t. the uncertain elements in J .
Denote the number of these unknown components as q, then the probability that J is singular can
be somewhat equivalently seen as the measure of the hypersurface S = {x ∈ Rq : |J(x)| = 0} in
Rq. For the polynomial function |J |, it’s easy to prove that S is a zero-measured set in Rq, which
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indicates the probability of J being non-invertible is zero. This result shows the non-singularity
assumption fits the common situation in practice. Secondly, there are some general cases that J is
guaranteed to be invertible. We refer some of these claims to [40]. Moreover, during the extensive
empirical studies, none of the singular J is observed, which again validates the rationality of the
assumption.

Robustness. In practice, we avoid directly computing the inverse of J by the consideration of
robustness. Instead, we adopt the Moore-Penrose inverse [52] in implementation. The Moore-Penrose
inverse exists for any matrix X even if the matrix owns singularity, which guarantees our algorithm
to be robust.

Complexity. Our approach utilizes the singular value decomposition (SVD) [52] when solving
the Moore-Penrose inverse in (15), which is demonstrated to be a state-of-the-art technique via a
computationally simple and precise way [53]. Consequently, the computational efficiency as well as
the accuracy of our algorithm is guaranteed.

Stability. Our algorithm uses ODE solvers from the LSODE package [54] when solving the initial
value problem (6). The solver will automatically select a proper method to solve different initial value
problems which guarantees the general performance of our algorithm. Especially, when the problem
tends to be unstable, the solver adopts the backward differentiation formula (BDF) method [55] to
avoid extremely small step sizes while preserving the stability and accuracy of output solutions.

B Proofs

In this section, we give complete proofs to all the theorems and properties stated in the main article.

B.1 Proof of Theorem 2

Prior to the proof, we first review the relevant background about latent SPL loss [38]. Regarding the
unconstrained learning problem (1), its latent SPL objective is defined as10

Gλ(w) :=

m∑
j=1

αjRj(w) +

n∑
i=1

Fλ (ℓi(w)) , (16)

where Fλ(ℓ) =
∫ ℓ

0
v∗λ(τ) dτ .

Theorem 4. [38] In the SPL objective (2), suppose ℓ is bounded below, w 7→ ℓ(·) is continuously
differentiable, v∗λ(·) is continuous, and

∑m
j=1 αjRj is coercive and lower semi-continuous. Then for

any initial parameter w0, every cluster point of the produced sequence
{
wk
}

, obtained by the ACS
algorithm on solving (2), is a critical point of the implicit objective Gλ (16).

In Theorem 2, the relationship between the partial optimum of original SPL objective L and the
critical point of implicit SPL objective Gλ is constructed. Its proof is given as follows.

Proof. On one hand,

w0 is a critical point of Gλ ⇐⇒ 0 ∈ ∂Gλ (w0) = ∂

m∑
j=1

αjRj(w0) +

N∑
i=1

∇Fλ (li(w0))

=

m∑
j=1

αj∂Rj(w0) +

N∑
i=1

v∗λ (li(w0)) · ∇li(w0).

10Note that the objective function in (1) is indeed the same as what in [38] despite minor differences in
notations, so we keep the manner in this paper for the sake of consistency.
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On the other hand, assuming (w0,v) is a partial optimum of the SPL objective L, it’s obvious that
vi = v∗λ (li(w0)) (for i = 1 . . . N ), where we write v = v∗

λ(w0) in short. Then

(w0,v
∗
λ (w0)) is a partial optimum of L ⇐⇒ 0 ∈ ∂wL (w0,v

∗
λ (w0) ;λ)

= ∂

m∑
j=1

αjRj(w0) +

N∑
i=1

v∗λ (li(w0)) · ∇li(w0).

Combine the above two results we can conclude Theorem 2.

B.2 Proof of Theorem 3

Proof. In Section 3.2, we have shown that any (w,v∗(ℓ(w), λ)) is a partial optimum iff there
exists tR, tℓ such that (5) holds. Given a certain partial optimum (ŵ,v∗(ℓ(ŵ), λ)), solving the
corresponding t̂R, t̂ℓ is indeed calculating the linear equations

m∑
j=1

∑
k∈Ia

Rj
(ŵ)

αj t̂
k
Rj

(ŵ)∇Dk
Rj

(ŵ) +
∑
J∈P

∑
i∈J

∑
k∈Ia

ℓi
(ŵ)

v∗i (ℓi(ŵ), λ) t̂kℓi(ŵ)∇Dk
ℓi(ŵ) = 0,

∑
k∈Ia

Rj
(ŵ)

t̂kRj
(ŵ)− 1 = 0, t̂kRj

(ŵ) ≥ 0, 1 ≤ j ≤ m

∑
k∈Ia

ℓi
(ŵ)

t̂kℓi(ŵ)− 1 = 0, t̂kℓi(ŵ) ≥ 0, 1 ≤ i ≤ n.

(17)

On a non-critical point, suppose we’ve obtained a partial optimum (ŵ,v∗(ℓ(ŵ), λ)) at λ. Now a
critical point is triggered by either of two conditions: 1) Partition P changes. This means the value of
some ℓi lie on the boundary between two distinct sets in P . 2) One of IR, Iℓ changes. This indicates
the existence of someRi (i ∈ ĪR(IR)) becomes (non-)differentiable at ŵ, or some ℓj (j ∈ Īℓ(Iℓ))
becomes (non-)differentiable at ŵ. The latter can be detected by the value of ti. For example, assume
that i ∈ Iℓ holds along a segment of the path, i.e., there exists k such that tkℓi = 1, while tk̃ℓi = 1

holds for all k̃ ̸= k. At the kink, ℓi changes into non-differentiable. As a result, the value of tkℓi will
decrease from 1, since some other selection functions turn to essentially active status. Altogether,
at the optimal ŵ, all the inequalities in (5) are strict. In case that F(w, λ, tR, tℓ) = 0 deduces a
continuous solution path passing (ŵ, t̂R, t̂ℓ), the (5) will be maintained along the path until the next
critical point occurs.

Denote the Jacobin of F w.r.t. (w, tR, tℓ), λ as Jw,tR,tℓ , Jλ, respectively. Following our setting
in Section 3.2, F is C1 and Jw,tR,tℓ is invertible at the initial point. In this condition, the implicit
function theorem directly indicates the existence and uniqueness of a local C1 solution path of optimal
(ŵ, t̂R, t̂ℓ) w.r.t. λ, started from the initial point. Furthermore, the theorem also guarantees that
(6) is valid along the path. Owing to the C1 function F , the right side of (6) is continuous w.r.t.
λ. Therefore, the Picard–Lindelöf theorem [56] straightforwardly proves that the solution of (6) is
unique and can be extended to the nearest boundary of λ (i.e., a new critical point appears).

Geometric Intuition. There exists a geometric understanding towards (5) either. Rewriting the first
equation in (5) by the differentiability of each function gives

−
∑
j∈IR

αj∇Rj−
∑
i∈Iℓ

v∗(ℓi, λ)∇ℓi =
∑
j∈ĪR

∑
k∈Ia

Rj

t̂kRj
αj∇Dk

Rj
+
∑
i∈Īℓ

∑
k∈Ia

ℓi

t̂kℓiv
∗(ℓi, λ)∇Dk

ℓi , (18)

where t̂kRj
, t̂kℓi meet restrictions in (5) and all symbols are in terms of ŵ. As λ varies, the

left side in (18) describes a smooth curve using the standard frame in Rd, while the right

side is actually sum of vectors chosen from a convex hull conv

(⋃
k∈Ia

Rj

{αj∇
{
Dk

Rj

}
}
)

or

conv
(⋃

k∈Ia
ℓi

{
v∗(ℓi, λ)∇Dk

ℓi

})
and can be viewed as the vector 1 under an analogue moving

frame made up of these selected vectors, from the perspective of differential geometry. In other
words, (18) indeed uses an analogue moving frame to re-depict a smooth curve.
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It is worth adding that a recent work [40] shows a similar intuition. Specifically, under some
assumptions the solution surface near a given point is a projection of certain smooth manifold even
without the convexity assumption.

B.3 Proof of Corollary 1

Proof. Suppose that Rj , ℓi in (1) are all differentiable at the given ŵ, then it yields IR = Iℓ = ∅.
Consequently, (5) is degenerate into its first equation

F(ŵ, λ) =

m∑
j=1

αj∇Rj(ŵ) +
∑
J∈P

∑
i∈J

v∗i (ℓi(ŵ), λ)∇ℓi(ŵ) = 0. (19)

Hence applying Theorem 3 straightly gives our Corollary 1.

B.4 Proof of Prop. 1

Here we only present the detailed proof for SVM with linear SP-regularizer, due to the fact that the
proof for mixture SP-regularizer is almost the same as the former except some partition difference.

Proof. Given a partial optimum ((ŵ, b)v∗ (ŵ, b)) at λ, (5) can be directly applied here with obvious
simplifications. Mathematically, there exits t̂ =

(
t̂i
)n
i=1

such that

ŵ −
n∑

i=1

Cv∗i t̂iyiϕ(xi) = 0,

n∑
i=1

Cv∗i t̂iyi = 0,

1− yi (⟨ϕ(xi), ŵ⟩+ b) = 0, i ∈ EZ ,
t̂EN

= 0EN
, t̂EP∪D = 1EP∪D, 0 ⪯ t̂EZ

⪯ 1EZ
,

(20)

where ⪯ denotes the element-wise comparison between vectors. Denote α̂ = Cv∗ ⊙ t̂, then (20) can
be equivalently converted to equations w.r.t. (α̂, b) as

yT α̂ = 0,

1EZ
−QEZ

α̂− yEZ
b̂ = 0,

α̂EP
− Cv∗

EP
= 0EP

,

α̂EZ
− Cv∗

EZ
⊙ t̂EZ

= 0EZ
,

α̂EN∪D = 0EN∪D,

(21)

where Q = yTKy, K = (k(xi, xj))1≤i,j≤n is the kernel matrix and k is the kernel function. Then
the optimal ŵ =

∑n
i=1 α̂iyiϕ(xi), hence problem (7) is transformed into solving equations merely

related to (α̂, b). Specifically, the decision function can be rewritten as d(x) =
∑n

i=1 yiα̂ik(xi, x)+b.

Now supposed that (α̂, b̂) is not a critical point, then the fourth equation in (21) is actually an
inequality constraint by changing the value of t̂EZ

in [0, 1]
|EZ |

. As a result, (21) is only related
to (α̂, b̂) and the left side of the first three equations accords with the function F in Theorem 3.
Consequently, (8) can be derived using Theorem 3. In detail, denote

F(α̂EZ
, α̂EP

, b̂) =

 yT
EZ∪EP

α̂EZ∪EP

1EZ
−QEZ

α̂EZ∪EP
− yEZ

b̂
α̂EP

− Cv∗
EP


=

 yT
EZ∪EP

α̂EZ∪EP

1EZ
−QEZ

α̂EZ∪EP
− yEZ

b̂

α̂EP
− C(1EP

− C
1EP

−QEP
α̂EP ∪EZ

−yEP
b̂

λ ),


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then the jacobian can be calculated as

JF,(α̂EZ
,α̂EP

,b) = −

 −yT
EZ

−yT
EP

0
QEZEZ

QEZEP
yEZ

C2

λ QEP EZ

C2

λ QEP EP
− IEP EP

C2

λ yEP

 ,

JF,λ =

 0
0EZ

− C
λ2 ℓEP

 .

The implicit function theorem immediately indicates the following ODEs hold

d

(
αEZ

αEP

b

)
dλ

= −J−1

F,(α̂EZ
,α̂EP

,b)
· JF,λ

=

 −yT
EZ

−yT
EP

0
QEZEZ

QEZEP
yEZ

C2

λ QEP EZ

C2

λ QEP EP
− IEP EP

C2

λ yEP

−1 0
0EZ

− C
λ2 ℓEP

 .

B.5 Proof of Prop. 2

Proof. Following discussions in Section 4.2, the objective (10) of Lasso is reformulated under the
self-paced paradigm as

Compute ŵ, s.t. ŵ ∈ argmin
w

α∥w∥1 +
1

2n
∥
√
V ∗(Xw − y)∥2, (22)

where V ∗ denotes Diag{v∗} and
√
V ∗ denotes Diag

{√
v∗
}
. Given a partial optimum ŵ at λ,

applying (5) to the objective (10) deduces
1

n
XT

AV
∗(Xŵ − y) + α · sgn(ŵA) = 0,

1

n
XT

ĀV
∗(Xŵ − y) + α · t̂Ā = 0,

(23)

where −1Ā ⪯ t̂Ā ⪯ 1Ā and wĀ = 0Ā. Suppose that ŵ is not a critical point, the second equation is
indeed converted to an inequality constraint via varying t̂Ā in [−1, 1]|Ā|

. As a result, (23) is merely
in connection with wA and the left side in the first equation consists with the function F in Theorem
3. Take the mixture SP-regularizer as an example, the optimality of estimation when using mixture
SP-regularizer is described as

1

n

∑
i∈E

(xiŵA − yi)x
T
i +

γ

n

∑
k∈M

(
1

2
√
lk
− 1

λ

)
(xkŵA − yk)x

T
k︸ ︷︷ ︸

Z(ŵA,λ)

+α · sgn(ŵA) = 0.

For the sake of simplicity, we derive the result of
dZ (ŵA, λ)

dλ
first. Note that lk = (xkŵA − yk)

2.

dZ (ŵA, λ)

dλ
=

[
− 1

4lk
√
lk
· 2 (xkŵA − yk) · xk

dŵA

dλ
+

1

λ2

]
(xkŵA − yk)x

T
k +

(
1

2
√
lk
− 1

λ

)
xT
k xk

dŵA

dλ

=
1

λ2
(xkŵA − yk)x

T
k −

1

λ
xT
k xk

dŵA

dλ
.

Similar to the proof of Theorem 3, we have

1

n

∑
i∈E

xT
i xi

dŵA

dλ
+

γ

n

∑
k∈M

[
1

λ2
(xkŵA − yk)x

T
k −

1

λ
xT
k xk

dŵA

dλ

]
= 0.

And final result comes from combining and vectoring the terms w.r.t.
dŵA

dλ
, which can be utilized to

derive the Prop. 2.
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C Detailed Algorithms

In this section, we present more details of the concrete algorithms derived for the SVM and Lasso.

C.1 Support Vector Machines

The goal of GAGA is to calculate the age-path on the interval [λmin, λmax]. As mentioned in Section
3, started from an initial point, the algorithm solves the derived ODEs (8) while examining all the
partitions along the way of λ. In SVM, partition violating is merely caused by the change in g (c.f.
Section 4.1). For example, some gi varying from a negative value to zero will lead the violation of
EN , resulting in a critical point. In case that the point belongs to a turning point, the only need is to
resign i from EN to EZ . Otherwise the point is a jump point and we have to perform the warm start
to re-calculate the next solution, which could be time consuming. Since it’s non-trivial to identify
the type of the critical point as a prior, we adopt a heuristic operation to avoid excessive warm starts.
When the partition violation occurs, we directly resign all the violated indexes into the right status
by the partition rule. Suppose that a turning point is encountered, the solutions return by numerical
ODEs solver with the updated index sets will keep the KKT condition, allowing our algorithm to
proceed. The algorithmic steps are given in Algorithm 3.

Algorithm 3 GAGA for SVM
Input: Initial solution (α, b)|λt=λmin

, X , y, λmin and λmax

Parameter: Cost parameter C
Output: Age-path (α, b) on [λmin, λmax]

1: λt ← λmin, set EN , EZ , EP ,D(,M) in Proposition 1 according to w|λt=λmin

2: while λt ≤ λmax do
3: Solve (8) or (9) and partition samples in X and components of α simultaneously.
4: if Partition EN , EZ , EP ,D(,M) was not met then
5: Resign violated indexes in P by gi.
6: end if
7: αEN

= 0EN
,αD = 0D. For the mixture regularizer, αEP

= 1EP
.

8: Solve (8) or (9) with updated EN , EZ , EP ,D(,M)
9: if KKT conditions are not met then

10: Warm start at λt + δ (for a small δ > 0).
11: end if
12: end while

C.2 Lasso

In Lasso, the main routine of GAGA is similar with that in SVM. The only difference is that here we
need to examine the partition A additionally. Due to the property of the ℓ1 norm, monitoring A is
operated by observing if the value of wi equals to zero or conversely, whether the subgradient of
inactive component is reached to 1. The details of the algorithms are shown in Algorithm 4.

D Additional Results

In this section, we present additional experimental results on the logistic regression and path consis-
tency to obtain a more comprehensive evaluation of proposed algorithm.

D.1 Logistic Regression

Given the dataset X and label y, the logistic regression gives the optimization problem as (24)

min
w∈Rd, b

1

2
∥w∥2 +

n∑
i=1

C ln
(
1 + e−yi(Xiw+b)

)
, (24)

where C > 0 is the trade-off parameter. Note the objective (24) is smooth on the entire domain,
hence we apply Corollary 1 to derive the ODEs and the only P is needde to be tracked and reset
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Algorithm 4 GAGA for Lasso
Input: w|λt=λmin , X , y, λmin and λmax

Parameter: Regularization strength α
Output: Age-path w on [λmin, λmax]

1: λt ← λmin, set A,P in Proposition 2 according to w|λt=λmin

2: while λt ≤ λmax do
3: Solve (11) or (12) and partition wA, XA simultaneously.
4: if Partition A,P was not met then
5: if A was not met then
6: if k-th element turns to inactive then
7: wk = 0.
8: Remove k from A.
9: else if k-th element becomes active then

10: Put k into A.
11: end if
12: end if
13: if P was not met then
14: Resign violated indexes in P by ℓi.
15: end if
16: Solve (11) or (12) with updated A,P.
17: if KKT conditions are not met then
18: Warm start at λt + δ (for a small δ > 0).
19: end if
20: end if
21: end while

along the path. To start with, let ℓi = C ln(1 + e−yi(Xiw+b)), then for the linear SP-regularizer, the
partition P = {E ,D}, where E = {1 ≤ i ≤ n : ℓi < λ}, D = {1 ≤ i ≤ n : ℓi ≥ λ}. For the

mixture SP-regularizer, P = {E ,M,D}, where E = {1 ≤ i ≤ n : ℓi <
(

λγ
λ+γ

)2
}, M = {1 ≤ i ≤

n :
(

λγ
λ+γ

)2
≤ ℓi ≤ λ2}, and D = {1 ≤ i ≤ n : ℓi > λ2}. Applying Corollary 1 obtains Theorem

5.
Theorem 5. When w, b indicate a partial optimum, the dynamics of optimal w, b in (24) w.r.t. λ for
the linear and mixture SP-regularizer are shown as

d

(
w
b

)
dλ

=

 I + CXT
E UEXE CXT

E UE

C1T
EUEXE C1T

EUE

−1


CXT

E

[
yE ⊙ ℓE

λ2
⊙
(
e−

ℓE
C − 1

)]
C1T

E

[
yE ⊙ ℓE

λ2
⊙
(
e−

ℓE
C − 1

)]
 ,

(25)

where UE = Diag
{
y2
E ⊙ uE

}
,uE =

(
ℓE − C

λ
− 1

)
⊙ e−

2ℓE
C +

(
2C − ℓE

λ
+ 1

)
⊙ e−

ℓE
C − C

λ
.

d

(
w
b

)
dλ

=

 I + CXT
AUA CXA

C1T
AUAXA C1T

AUA

−1


CXT

A

[
yA ⊙ ℓA

λ2
⊙
(
e−

ℓA
C − 1

)]
C1T

A

[
yA ⊙ ℓA

λ2
⊙
(
e−

ℓA
C − 1

)]
 , (26)

where A = E ∪ M, UA = Diag
{
y2
A ⊙ uA

}
,uE = e−

ℓE
C ⊙

(
1− e−

ℓE
C

)
,uM =(

C

2
ℓ
− 3

2

M + ℓ
− 1

2

M − 1

λ

)
⊙ e−

2ℓM
C −

(
Cℓ

− 3
2

M + ℓ
− 1

2

M − 1

λ

)
⊙ e−

ℓM
C +

C

2
ℓ
− 3

2

M .

Proof. The proof is nearly the same as that of SVM and Lasso, hence we merely present the main
structure in the following. The linear SP-regularizer is utilized during the derivation, while the proof
of mixture SP-regularizer is quite similar.
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Given a partial optimum (w, b) at λ, (5) is rewritten in detail with the form of

w + C
∑
i∈E

(
1

1 + e−yi(wTXi+b)
− 1

)
XT

i = 0

C
∑
i∈E

(
1

1 + e−yi(wTXi+b)
− 1

)
= 0.

Similarly, we set the F as

F =

 w + C
∑
i∈E

(
1

1 + e−yi(wTXi+b)
− 1

)
XT

i

C
∑
i∈E

(
1

1 + e−yi(wTXi+b)
− 1

)


=


w + CXT

E

yE ⊙
(
1− ℓE

λ

)
⊙

e
−
ℓE
c − 1


C1T

E

yE ⊙
(
1− ℓE

λ

)
⊙

e
−
ℓE
c − 1



 .

Afterwards, the corresponding jaconbian is derived as

JF,(w,b) =

 I + CXT
E UEXE CXT

E UE

C1T
EUEXE C1T

EUE



JF,λ = −


CXT

E

[
yE ⊙ ℓE

λ2
⊙
(
e−

ℓE
C − 1

)]
C1T

E

[
yE ⊙ ℓE

λ2
⊙
(
e−

ℓE
C − 1

)]
 ,

where UE = Diag
{
y2
E ⊙ uE

}
,uE =

(
ℓE − C

λ
− 1

)
⊙ e−

2ℓE
C +

(
2C − ℓE

λ
+ 1

)
⊙ e−

ℓE
C − C

λ
.

Therefore, the implicit function theorem implies that

d

(
w
b

)
dλ

= −J−1
F,(w,b) · JF,λ

=

 I + CXT
E UEXE CXT

E UE

C1T
EUEXE C1T

EUE

−1


CXT

E

[
yE ⊙ ℓE

λ2
⊙
(
e−

ℓE
C − 1

)]
C1T

E

[
yE ⊙ ℓE

λ2
⊙
(
e−

ℓE
C − 1

)]
 .

D.2 Detailed Experimental Setting

We use the Scikit-learn package [57] to optimize the subproblems of SVM, logistic regression
and Lasso. The MOSPL method is implemented using the toolbox geatpy [58]. All codes were
implemented in Python and all experiments were conducted on a machine with 48 2.2GHz cores,
80GB of RAM and 4 Nvidia 1080ti GPUs.

In all experiments of performance comparison, we evaluate the average performance in 20 runs.
To maintain the reproducibility, the random seed is fixed with 40. In each trail, the each dataset is
randomly divided into a training set and a testing set by the ratio of 3 : 1. When carrying out GAGA
and ACS, the predefined interval of λ is set to [0.1, 20] , and the step size in ACS equals to 0.5. We
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utilize the NSGA-III as the framework of MOSPL, in which Np is set to 150 and Gen = 80011.
When applying the mixture regularizer, we utilize the polynomials loss in [19] as ℓi to transform the
original problem into a multi-objective problem. Afterwards, the polynomial order t is fixed at 1.2
and 1.35, respectively.

D.3 Simulation Study on Logistic Regression

We present additional experimental results on the logistic regression (24) to validate our ODEs.
The utilized datasets are listed in Table 4. The averaged results using the linear and mixture SP-

Dataset Source Samples Dimensions Task

mfeat-pixel UCI 2000 240

C
pendigits UCI 3498 16
hiva agnostic OpenML 4230 1620
nomao OpenML 34465 118
MagicTelescope OpenML 19020 11

Table 4: Datasets description in experiments on logistic regression. The C = Classification.

regularizer are illustrated in Table 5 and 6, respectively, in which the performance is measured by
the classification accuracy. Meanwhile, Figure 7 confirms the computational efficiency of GAGA on
large-scale dataset. Taking all results into consideration, GAGA outperforms than the baseline methods
on all datasets and parameter settings, hence demonstrates the performance of GAGA in classification
tasks with large data size.
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Figure 7: The study of efficiency comparison. y-axis denotes the average running time (in seconds)
in 20 runs. The interval [λmin, λmax] refers to the predefined search space.

D.4 Path consistency

In this section we illustrate that the age-path tracked by GAGA exactly consists with the path of real
partial optimum, which is produced by the ACS algorithm. Due to the expensive computational cost
of finding the partial optimum using ACS (over 30 loops on average), we choose the toy datasets
from the Scikit-learn package to trace and plot the age-path. In detail, we use the Boston house and
breast cancer datasets for regression tasks, and the classification is performed on the handwritten
digits dataset. In order to track the exact path of partial optimum, we set the step size to be 1e-4 and
3e-1 in ACS and GAGA, respectively. The graphs of the tracked path are illustrated in Figure 8, Figure
9 and Figure 10. The path of partial optimum is plotted in blue solid lines while the age-path traced
by GAGA is marked with red dashed lines.

This result empirically validates the path consistency between the computed age-path by GAGA and
the ground truth age-path (i.e. path of the partial optimum), which is stated in Theorem (3).

D.5 More Histograms

We further show the intrinsic property of the age-path in more experiments. Specifically, we change
the dataset, SP-regularizer as well as the value of other hyper-parameter in SVM, Lasso and logistic
regression, while recording the number of different types of critical points. The results are illustrated
in Figure 11, 12 and 13.

11Np and Gen represent the number of populations and the utmost generations in evolutionary algorithm.
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Table 5: Average results with the standard deviation in 20 runs on different datasets using the linear
SP-regularizer. The top results in each row are in boldface. The † and ‡ share the same meaning as in
the main body.

Dataset
Parameter Competing Methods Ours

Restarting times
C γ Original ACS MOSPL GAGA

mfeat-pixel† 0.50 – 0.827±0.028 0.937±0.054 0.962±0.0281 0.980±0.015 189
pendigits‡ 0.50 – 0.982±0.007 0.989±0.006 0.986±0.012 0.992±0.006 86
hiva agnostic† 1.00 – 0.681±0.020 0.700±0.021 0.958±0.010 0.965±0.004 328
MagicTelescope† 0.50 – 0.974±0.004 0.981±0.001 0.977±0.005 0.991±0.001 61
nomao‡ 0.50 – 0.939±0.002 0.940±0.003 0.944±0.001 0.944±0.001 32

Table 6: Average results with the standard deviation in 20 runs on different datasets using the mixture
SP-regularizer. The top results in each row are in boldface. The † and ‡ share the same meaning as in
the main body.

Dataset
Parameter Competing Methods Ours

Restarting times
C γ Original ACS MOSPL GAGA

mfeat-pixel† 0.50 0.20 0.827±0.028 0.980±0.011 0.981±0.014 0.981±0.018 166
pendigits‡ 0.50 0.20 0.982±0.007 0.989±0.007 0.988±0.006 0.993±0.005 178
hiva agnostic† 0.50 0.20 0.681±0.020 0.713±0.021 0.944±0.008 0.973±0.014 195
MagicTelescope† 0.50 0.20 0.974±0.004 0.976±0.003 0.991±0.003 0.991±0.001 73
nomao‡ 0.50 0.20 0.939±0.002 0.941±0.001 0.941±0.002 0.946±0.002 44

These histograms demonstrate that there exists more turning points on the age-path compared with
the jump points. As a result, the heuristic technique applied in GAGA can avoid extensive unnecessary
warm starts by identifying the exact type of each critical point.

D.6 Experimental Comparison of robust SVMs and Lasso

We also conduct a comparative study to the state-of-the-art robust model for SVMs [48, 49, 50] and
Lasso [51] besides the SPL domain. Please take notice that RLSSVM and Re-LSSVM proposed by
[48, 49] are variations of LS-SVM. Especially, we implement the Huber-loss Lasso as a special case
of the generalized model proposed in [51]. The hyperparameters of these baselines are chosen from
the best performance by grid search. All the experiments conducted on regression tasks are measured
by the generalization error. We’d like to emphasize again that our GAGA framework pursues the best
practice of conventional SPL while the SPL, as a special case of curriculum learning naturally owns
certain shortcomings on the sample diversity [13]. Even subject to the inherent defects of vanilla SPL,
the result in Table.7 reveals that our method still surpassed SOTA baselines in half of the experiments.
The Table.8 further implies that GAGA outperforms the robust SVM in all conducted trails. These
numerical results strongly validate the performance of our method under various noise levels.

Concretely speaking, the linear SP-regularizer is utilized in GAGA in the implementation. The γ1 and
γ2 are hyperparameters of RLSSVM and RE-LSSVM. We use the same hyperparameters of GAGA in
Appendix D.7.

D.7 Sensitivity Analysis

In this subsection, we use the same settings except the backbone parameters α, C and the noise level.
The linear SP-regularizer is utilized in GAGA. The classical SVM with linear kernel is chosen as
the base model. Results in Table 9, 10, 11, 12 confirm the performances of competing methods with
different backbone parameters while retaining the same noise level. Table 13, 14, 15, 16 display the
running results under different noise levels while the other backbone parameters are kept. The results
of the massive simulation studies again strongly demonstrate that our GAGA owns the best practice
of the conventional SPL compared with the baseline methods, regardless of the specific parametric
selections.
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Figure 8: Age-path of SVM with different parameters and datasets. The first two rows of subfigures
illustrate age-path using the linear SP-regularizer while the last two rows of subfigures show age-path
using the mixture SP-regularizer. For experiments in the first and third row, the α = 0.02. For
experiments in the second and fourth row, the α = 0.04.

Parameter Huber Lasso RLSSVM Re-LSSVM GAGA
Noise Datasete α σ γ1 θ γ2 Mean Std Mean Std Mean Std Mean Std

0.2 0.0006 0.7 1.9 0.2 1.9 0.399 0.003 0.449 0.107 0.318 0.010 0.491 0.001 0.1 ailerons
0.1 0.0001 0.8 1.9 0.4 1.8 0.410 0.003 0.573 0.082 0.499 0.010 0.49 0.002 0.2 ailerons
0.2 0.0016 0.5 1.9 0.2 1.9 0.407 0.003 0.419 0.079 0.696 0.018 0.489 0.002 0.3 ailerons
0.2 0.0006 0.7 1.9 0.9 1.8 0.428 0.005 0.500 0.050 0.877 0.014 0.491 0.001 0.4 ailerons
0.1 0.0008 0.8 1.9 0.2 1.9 0.452 0.003 0.705 0.052 1.118 0.017 0.491 0.001 0.5 ailerons
0.2 0.0018 0.8 1.9 0.3 1.7 0.478 0.003 0.565 0.044 1.159 0.025 0.490 0.015 0.6 ailerons
0.1 0.0002 0.8 1.9 0.2 1.7 0.180 0.000 0.207 0.082 0.315 0.024 0.201 0.046 0.2 houses
0.1 0.0013 0.5 1.9 0.9 1.8 0.182 0.000 0.206 0.042 0.343 0.170 0.221 0.015 0.3 houses
0.2 0.001 0.8 1.7 0.8 1.9 0.345 0.002 0.303 0.083 0.387 0.014 0.214 0.002 0.1 music
0.1 0.0013 0.5 1.9 0.6 1.9 0.365 0.001 0.315 0.011 0.486 0.013 0.213 0.005 0.2 music
0.2 0.0011 0.9 1.9 0.4 1.8 0.357 0.002 0.308 0.057 0.444 0.057 0.214 0.003 0.3 music
0.1 0.0019 1 1.9 0.4 1.7 0.406 0.003 0.422 0.087 0.412 0.015 0.211 0.008 0.4 music
0.2 0.0017 0.5 1.9 0.6 1.8 0.431 0.004 0.489 0.015 0.477 0.035 0.210 0.003 0.5 music
0.3 0.0011 0.8 1.9 0.3 1.9 0.484 0.005 0.598 0.017 0.521 0.019 0.214 0.001 0.6 music
0.1 0.0005 0.7 1.9 0.8 1.9 0.663 0.000 0.747 0.089 0.689 0.010 0.647 0.132 0.2 delta elevators
0.1 0.0014 0.8 1.9 0.4 1.8 0.666 0.000 0.744 0.025 0.694 0.033 0.634 0.132 0.3 delta elevators

Table 7: Average generalization erros with the standard deviation in 20 runs on different datasets.
The top results in each row are in boldface.
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Figure 9: Age-path of Lasso with different parameters and datasets. The first two rows of subfigures
illustrate age-path using the linear SP-regularizer while the last two rows of subfigures show age-path
using the mixture SP-regularizer. For experiments in the first and third row, the C = 0.02. For
experiments in the second and fourth row, the C = 0.04.

Dataset
Parameter Robust-SVM GAGA

Noise LevelC γ Mean Std Mean Std

mfeat-pixel 1 0.8 0.948 0.001 0.980 0.006 0.1
mfeat-pixel 1 0.2 0.939 0.001 0.988 0.007 0.2
mfeat-pixel 1 0.7 0.927 0.002 0.980 0.015 0.3
pendigts 1 0.7 0.945 0.003 0.998 0.007 0.1
pendigts 1 0.6 0.944 0.002 0.995 0.004 0.2
pendigts 1 0.4 0.923 0.001 0.995 0.006 0.3

Table 8: Average classification accuracy with the standard deviation in 20 runs under different noise
levels. The top results in each row are in boldface.
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Dataset
Parameter Competing Methods

Noise Levelα ACS MOSPL GAGA

ailerons 0.001 0.494 0.001 0.493 0.008 0.490 0.001 0.3
ailerons 0.002 0.493 0.007 0.492 0.016 0.490 0.002 0.3
ailerons 0.003 0.493 0.001 0.493 0.001 0.489 0.002 0.3
ailerons 0.004 0.493 0.001 0.492 0.001 0.491 0.001 0.3
ailerons 0.005 0.493 0.001 0.493 0.001 0.49 0.001 0.3
ailerons 0.006 0.493 0.001 0.493 0.001 0.491 0.001 0.3
ailerons 0.007 0.494 0.002 0.492 0.002 0.491 0.001 0.3
ailerons 0.008 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.009 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.010 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.011 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.012 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.013 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.014 0.493 0.002 0.493 0.002 0.493 0.002 0.3
ailerons 0.015 0.493 0.002 0.493 0.002 0.493 0.002 0.3

Table 9: Average generalization errors and the standard deviation in 20 runs with different values of
α. The top results in each row are in boldface.

Dataset
Parameter Competing Methods

Noise Levelα ACS MOSPL GAGA

music 0.001 0.230 0.011 0.226 0.009 0.227 0.011 0.3
music 0.002 0.224 0.005 0.222 0.006 0.218 0.004 0.3
music 0.003 0.227 0.011 0.223 0.008 0.219 0.009 0.3
music 0.004 0.221 0.011 0.219 0.010 0.213 0.009 0.3
music 0.005 0.221 0.005 0.220 0.004 0.209 0.005 0.3
music 0.006 0.218 0.009 0.216 0.009 0.213 0.027 0.3
music 0.007 0.222 0.003 0.215 0.005 0.211 0.004 0.3
music 0.008 0.215 0.004 0.213 0.003 0.208 0.002 0.3
music 0.009 0.216 0.006 0.213 0.005 0.207 0.003 0.3
music 0.010 0.216 0.007 0.214 0.007 0.208 0.003 0.3
music 0.011 0.215 0.008 0.212 0.006 0.206 0.005 0.3
music 0.012 0.211 0.007 0.208 0.007 0.205 0.005 0.3
music 0.013 0.210 0.005 0.210 0.003 0.207 0.003 0.3
music 0.014 0.212 0.004 0.208 0.005 0.206 0.003 0.3
music 0.015 0.211 0.006 0.210 0.004 0.207 0.003 0.3
music 0.016 0.211 0.006 0.211 0.007 0.206 0.004 0.3
music 0.017 0.207 0.004 0.207 0.006 0.205 0.004 0.3
music 0.018 0.210 0.006 0.206 0.007 0.205 0.005 0.3
music 0.019 0.210 0.006 0.208 0.007 0.206 0.003 0.3
music 0.020 0.206 0.003 0.206 0.003 0.206 0.003 0.3
music 0.021 0.207 0.005 0.207 0.005 0.205 0.003 0.3
music 0.022 0.207 0.004 0.207 0.003 0.205 0.002 0.3
music 0.023 0.206 0.004 0.205 0.003 0.205 0.003 0.3
music 0.024 0.206 0.003 0.207 0.005 0.205 0.004 0.3
music 0.025 0.207 0.003 0.207 0.003 0.204 0.003 0.3
music 0.026 0.206 0.002 0.206 0.003 0.206 0.003 0.3
music 0.027 0.208 0.004 0.206 0.004 0.205 0.004 0.3
music 0.028 0.208 0.005 0.208 0.005 0.205 0.004 0.3
music 0.029 0.205 0.005 0.205 0.005 0.205 0.003 0.3
music 0.03 0.207 0.004 0.207 0.004 0.205 0.002 0.3

Table 10: Average generalization errors and the standard deviation in 20 runs with different values of
α. The top results in each row are in boldface.
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Dataset
Parameter Competing Methods

Noise LevelC ACS MOSPL GAGA

mfeat-pixel 0.100 0.932 0.012 0.959 0.005 0.965 0.005 0.3
mfeat-pixel 0.200 0.929 0.009 0.957 0.006 0.966 0.003 0.3
mfeat-pixel 0.300 0.937 0.054 0.962 0.281 0.980 0.015 0.3
mfeat-pixel 0.400 0.936 0.011 0.966 0.013 0.979 0.014 0.3
mfeat-pixel 0.500 0.928 0.008 0.951 0.004 0.961 0.005 0.3
mfeat-pixel 0.600 0.933 0.008 0.960 0.006 0.967 0.004 0.3
mfeat-pixel 0.700 0.922 0.012 0.946 0.006 0.948 0.005 0.3
mfeat-pixel 0.800 0.927 0.014 0.952 0.008 0.960 0.002 0.3
mfeat-pixel 0.900 0.927 0.006 0.945 0.010 0.955 0.010 0.3
mfeat-pixel 1.000 0.925 0.007 0.948 0.006 0.951 0.001 0.3
mfeat-pixel 1.100 0.928 0.009 0.952 0.006 0.955 0.002 0.3
mfeat-pixel 1.200 0.933 0.018 0.961 0.009 0.972 0.005 0.3
mfeat-pixel 1.300 0.929 0.011 0.953 0.009 0.964 0.004 0.3
mfeat-pixel 1.400 0.934 0.007 0.966 0.013 0.971 0.004 0.3
mfeat-pixel 1.500 0.936 0.007 0.958 0.013 0.978 0.003 0.3
mfeat-pixel 1.600 0.920 0.007 0.923 0.007 0.945 0.004 0.3
mfeat-pixel 1.700 0.931 0.010 0.948 0.014 0.969 0.004 0.3
mfeat-pixel 1.800 0.934 0.015 0.963 0.015 0.970 0.005 0.3
mfeat-pixel 1.900 0.929 0.007 0.957 0.006 0.962 0.007 0.3

Table 11: Average classification accuracy and the standard deviation in 20 runs with different values
of C. The top results in each row are in boldface.

Dataset
Parameter Competing Methods

Noise LevelC ACS MOSPL GAGA

pendigts 0.100 0.984 0.003 0.984 0.006 0.998 0.007 0.3
pendigts 0.200 0.989 0.003 0.991 0.008 0.995 0.004 0.3
pendigts 0.3 0.983 0.004 0.989 0.009 0.995 0.006 0.3
pendigts 0.400 0.985 0.002 0.988 0.007 0.992 0.006 0.3
pendigts 0.500 0.982 0.005 0.983 0.005 0.993 0.004 0.3
pendigts 0.600 0.987 0.007 0.989 0.010 0.992 0.004 0.3
pendigts 0.700 0.986 0.007 0.988 0.006 0.996 0.002 0.3
pendigts 0.800 0.979 0.003 0.987 0.009 0.995 0.007 0.3
pendigts 0.900 0.987 0.003 0.985 0.011 0.991 0.005 0.3
pendigts 1.000 0.989 0.006 0.986 0.012 0.992 0.006 0.3
pendigts 1.100 0.982 0.005 0.987 0.005 0.990 0.554 0.3
pendigts 1.200 0.983 0.008 0.982 0.007 0.994 0.004 0.3
pendigts 1.300 0.981 0.006 0.991 0.007 0.995 0.004 0.3
pendigts 1.400 0.980 0.003 0.983 0.002 0.989 0.005 0.3
pendigts 1.500 0.981 0.007 0.986 0.006 0.995 0.002 0.3
pendigts 1.600 0.981 0.009 0.985 0.011 0.992 0.003 0.3
pendigts 1.700 0.979 0.006 0.981 0.004 0.995 0.006 0.3
pendigts 1.800 0.977 0.004 0.983 0.005 0.993 0.006 0.3

Table 12: Average classification accuracy and the standard deviation in 20 runs with different values
of C. The top results in each row are in boldface.
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Figure 10: Age-path of logistic regression with different parameters and datasets. The first two rows
of subfigures illustrate age-path using the linear SP-regularizer while the last two rows of subfigures
show age-path using the mixture SP-regularizer. For experiments in the first and third row, the
C = 25. For experiments in the second and fourth row, the C = 40.

Dataset
Parameter Competing Methods

Noise Levelα ACS MOSPL GAGA

ailerons 0.006 0.492 0.001 0.492 0.005 0.491 0.001 0.1
ailerons 0.006 0.492 0.001 0.491 0.016 0.49 0.002 0.2
ailerons 0.006 0.493 0.001 0.493 0.001 0.489 0.002 0.3
ailerons 0.006 0.493 0.001 0.492 0.001 0.491 0.001 0.4
ailerons 0.006 0.493 0.001 0.493 0.001 0.491 0.001 0.5
ailerons 0.006 0.493 0.001 0.492 0.001 0.491 0.001 0.6
ailerons 0.006 0.494 0.002 0.492 0.002 0.491 0.001 0.7
ailerons 0.006 0.493 0.002 0.493 0.002 0.493 0.002 0.8

Table 13: Average generalization errors with the standard deviation in 20 runs under different noise
levels. The top results in each row are in boldface.
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Figure 11: The number of different types of critical points in Lasso with different parameters and
regularizers. The first row of subfigures illustrate different critical points in the age-path with linear
SP-regularizer while the last row of figures show the number of different critical points in age-path
using the mixture SP-regularizer.

Figure 12: The number of different types of critical points in classic SVM with different parameters
and regularizers.The first row of subfigures illustrate different critical points in the age-path with
linear SP-regularizer while the last row of figures show the number of different critical points in
age-path using the mixture SP-regularizer

30



Figure 13: The number of different types of critical points in logistic regression with different
parameters and regularizers. The first row of subfigures illustrate different critical points in the age
path using linear SP-regularizer while the last row of subfigures show the number of different critical
points in age-path using the mixture SP-regularizer.

Dataset
Parameter Competing Methods

Noise Levelα ACS MOSPL GAGA

music 0.006 0.22 0.004 0.219 0.003 0.214 0.002 0.1
music 0.006 0.218 0.005 0.215 0.016 0.213 0.005 0.2
music 0.006 0.221 0.009 0.217 0.006 0.214 0.003 0.3
music 0.006 0.226 0.011 0.221 0.01 0.211 0.008 0.4
music 0.006 0.228 0.011 0.22 0.006 0.21 0.003 0.5
music 0.006 0.493 0.001 0.492 0.001 0.491 0.001 0.6
music 0.006 0.494 0.002 0.492 0.002 0.491 0.001 0.7
music 0.006 0.493 0.002 0.493 0.002 0.493 0.002 0.8

Table 14: Average generalization errors with the standard deviation in 20 runs under different noise
levels. The top results in each row are in boldface.

Dataset
Parameter Competing Methods

Noise LevelC ACS MOSPL GAGA

mfeat-pixel 1.000 0.946 0.018 0.967 0.007 0.980 0.006 0.1
mfeat-pixel 1.000 0.949 0.016 0.978 0.013 0.988 0.007 0.2
mfeat-pixel 1.000 0.937 0.054 0.962 0.281 0.980 0.015 0.3
mfeat-pixel 1.000 0.939 0.011 0.955 0.012 0.968 0.010 0.4
mfeat-pixel 1.000 0.941 0.008 0.962 0.005 0.972 0.008 0.5
mfeat-pixel 1.000 0.946 0.011 0.971 0.006 0.978 0.006 0.6
mfeat-pixel 1.000 0.934 0.013 0.955 0.005 0.959 0.005 0.7

Table 15: Average classification accuracy with the standard deviation in 20 runs under different noise
levels. The top results in each row are in boldface.
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Dataset
Parameter Competing Methods

Noise LevelC ACS MOSPL GAGA

pendigts 1.000 0.979 0.012 0.984 0.006 0.994 0.004 0.1
pendigts 1.000 0.980 0.003 0.991 0.008 0.998 0.004 0.2
pendigts 1.000 0.989 0.006 0.986 0.012 0.992 0.006 0.3
pendigts 1.000 0.980 0.009 0.990 0.005 0.996 0.006 0.4
pendigts 1.000 0.974 0.004 0.994 0.005 0.994 0.004 0.5
pendigts 1.000 0.984 0.007 0.986 0.010 0.996 0.004 0.6
pendigts 1.000 0.970 0.007 0.972 0.006 0.974 0.006 0.7

Table 16: Average classification accuracy with the standard deviation in 20 runs under different noise
levels. The top results in each row are in boldface.
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E Limitations and Broader Impact

Limitations. The current framework GAGA is only applicable to the vanilla SPL paradigm, while
some variants of SPL (e.g., self-paced learning with diversity [2]) could have a group of hyperparam-
eters more than the mere λ. In this instance, the original solution paths escalates into the solution
surfaces, and made it harder to track the solutions. Another point is that our argument assumed that
the target function is a biconvex problem, while many complex losses (e.g., deep neural networks)
could be the function of strongly non-convex.

Broader Impact. The parties with limited computational resource may benefit from the efficiency
of our proposed work. Meanwhile, the research groups that sensitive to age parameters in SPL may
benefit from the robustness of our work. For social impact, our work improve the hyperparameter
search and helps reducing the computation cost, which saves carbon emissions during the training
process.

F Code Readme

This section explains how to use the code implementing the proposed GAGA. The codebase is available
via github.com/diyang-lee/GAGA.

F.1 Archive content

1. The fundamental implementation of our methodology GAGA is called GAGA.py, which
includes all the functions used in our experiment. In more detail, they are named in the form
of [GAGA]_[Model_Name]_[SPL_Regularizer], e.g., GAGA_svm_linear.

2. The Evaluation.py provides functions for evaluating solution path from different models
including ACS.

3. The Input_Data.py offers file-IO for all datasets used in our experiment.
4. The ACS.py provides ACS algorithm for solving SPL.

F.2 Reproducing the results of the article

For the sake of quick and convenient reproducing experiments and checking our findings, we provide a
demo named main.py. We use open-source datasets and provide file-IO functions along with detailed
pre-processing pipeline for users. Any used datasets in our experiment can be easily downloaded them
from the UCI and OpenML website and put them in the datasets folder. The required dependencies
and running environment is recorded in Environment.txt.
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