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Abstract

Nowadays self-paced learning (SPL) is an important machine learning paradigm
that mimics the cognitive process of humans and animals. The SPL regime involves
a self-paced regularizer and a gradually increasing age parameter, which plays a
key role in SPL but where to optimally terminate this process is still non-trivial
to determine. A natural idea is to compute the solution path w.r.t. age parameter
(i.e., age-path). However, current age-path algorithms are either limited to the sim-
plest regularizer, or lack solid theoretical understanding as well as computational
efficiency. To address this challenge, we propose a novel Generalized Age-path
Algorithm (GAGA) for SPL with various self-paced regularizers based on ordinary
differential equations (ODEs) and sets control, which can learn the entire solution
spectrum w.r.t. a range of age parameters. To the best of our knowledge, GAGA is
the first exact path-following algorithm tackling the age-path for general self-paced
regularizer. Finally the algorithmic steps of classic SVM and Lasso are described
in detail. We demonstrate the performance of GAGA on real-world datasets, and find
considerable speedup between our algorithm and competing baselines.

1 Introduction

The SPL. Self-paced learning (SPL) [1] is a classical learning paradigm and has attracted increasing
attention in the communities of machine learning [2, 3, 4, 5, 6], data mining [7, 8] and computer vision
[9, 10, 11]. The philosophy under this paradigm is simulating the strategy that how human-beings
learn new knowledge. In other words, SPL starts learning from easy tasks and gradually levels
up the difficulty while training samples are fed to the model sequentially. At its core, SPL can be
viewed as an automatic variant of curriculum learning (CL) [12, 13], which uses prior knowledge to
discriminate between simple instances and hard ones along the training process. Different from CL,
the SPL assigns a real-valued “easiness weight” to each sample implicitly by adding a self-paced
regularizer (SP-regularizer briefly) to the primal learning problem and optimizes the original model
parameters as well as these weights. Considering this setting, the SPL is reported to alleviate the
problem of getting stuck in bad local minima and provides better generalization as well as robustness
for the models, especially in hard condition of heavy noises or a high outlier rate [1, 14].

There are two critical aspects in SPL, namely the SP-regularizer and a gradually increasing age
parameter. Different SP-regularizers can be designed for different kinds of training tasks. At
the primary stage of SPL, only the hard SP-regularizer is utilized and leads to a binary variable
for weighting samples [1]. Going with the advancing of the diverse SP-regularizers [15], SPL
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equipped with different types of SP-regularizers has been successfully applied to various applications
[16, 3, 17]. As for the age parameter (a.k.a. pace parameter), the users are expected to increase
its value continually under the SPL paradigm, given that the age parameter represents the maturity
of current model. A lot of empirical practices have turned out that seeking out an appropriate age
parameter is crucial to the SPL procedure [18]. The SPL tends to obtain a worse performance in the
presence of noisy samples/outliers when the age parameter gets larger, or conversely, an insufficient
age parameter makes the gained model immature (i.e. underfitting. See Figure 1).

On the age-path of SPL. Although the SPL is a classical and widespread learning paradigm,
when to stop the increasing process of age parameter in implementation is subject to surprisingly
few theoretical studies. In the majority of practices [19], the choice of the optimal model age has,
for the time being, remained restricted to be made by experience or by using the trial-and-error
approach, which is to adopt the alternate convex search (ACS) [20] multiple times at a predefined
sequence of age parameters. This operation is time-consuming and could miss some significant
events along the way of age parameter. In addition, the SPL regime is a successive training process,
which makes existing hyperparameter tuning algorithms like parallelizing sequential search [21] and
bilevel optimization [22] difficult to apply. Instead of training multiple subproblems at different age
parameters, a natural idea is to calculate the solution path about age parameter, namely age-path
(e.g., see Figure 2). A solution path is a set of curves that demonstrate how the optimal solution
of a given optimization problem changes w.r.t. a hyperparameter. Several papers like [23, 24] laid
the foundation of solution path algorithm in machine learning by demonstrating the rationale of
path tracking, which is mainly built on the Karush-Khun-Tucker (KKT) theorem [25]. Existing
solution path algorithms involve generalized Lasso [26], semi-supervised support vector classification
[27], general parametric quadratic programming [28], etc. However, none of the existing methods is
available to SPL regime because they are limited to uni-convex optimization while the SPL objective
is a biconvex formulation. Assume we’ve got such an age-path, we can observe the whole self-paced
evolution process clearly and recover useful intrinsic patterns from it.

State of the art. Yet, a rapidly growing literature [29, 19, 30, 31] is devoted to developing better
algorithms for solving the SPL optimization with ideas similar to age-path. However, despite countless
theoretical and empirical efforts, the understanding of age-path remains rather deficient. Based on
techniques from incremental learning [32], [31] derived an exact age-path algorithm for mere hard
SP-regularizer, where the path remains piecewise constant. [29, 30] proposed a multi-objective
self-paced learning (MOSPL) method to approximate the age-path by evolutionary algorithm, which
is not theoretically stable. Unlike previous studies, the difficulty of revealing the exact generalized
age-path lies in the continuance of imposed weight and the alternate optimization procedure used to
solve the minimization function. From this point of view, the technical difficulty inherent in the study
of age-path with general SP-regularizer is intrinsically more challenging.

Proposed Method. In order to tackle this issue, we establish a novel Generalized Age-path
Algorithm (GAGA) for various self-paced regularizers, which prevents a straightforward calcula-
tion of every age parameter. Our analysis is based on the theorem of partial optimum while previous
theoretical results are focused on the implicit SPL objective. In particular, we enhance the original
objective to a single-variable analysis problem, and use different sets to partition samples and func-
tions by their confidence level and differentiability. Afterward, we conduct our main theorem results
based on the technique of ordinary differential equations (ODEs). In the process, the solution path
hits, exits, and slides along the various constraint boundaries. The path itself is piecewise smooth
with kinks at the times of boundary hitting and escaping. Moreover, from this perspective we are able
to explain some shortcomings of conventional SPL practices and point out how we can improve them.
We believe that the proposed method may be of independent interest beyond the particular problem
studied here and might be adapted to similar biconvex schemes.

Contributions. Therefore, the main contributions brought by this work are listed as follows.

• We firstly connect SPL paradigm to the concept of partial optimum and emphasize its importance
here that has been ignored before, which gives a novel viewpoint to the robustness of SPL.
Theoretical studies are conducted to reveal that our result does exist some equivalence with
previous literature, which makes our study more stable.
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Figure 1: Learning curve
against age λ. The curve is
recorded when running linear
regression on music dataset.
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Figure 2: An age-path visuali-
sation. Different vertical lines
represent different types of crit-
ical points. The figure is plotted
on random 60% features from
diabetes dataset using Lasso
with α = 0.01.
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Figure 3: An example of set
partition in 2-D space. Sample
points of same colors belong to
one set. The two dashed lines
represent partition boundaries
(smooth surfaces), which satis-
fies li = λ.

• A framework of computing the exact age-path for generalized SP-regularizer is derived using
the technique of ODEs, which allows for the time-consuming ACS to be avoided. Concrete
algorithmic steps of classic SVM [33] and Lasso [34] are given for implementation.

• Simulations on real and synthetic data are provided to validate our theoretical findings and justify
their impact on the designing future SPL algorithms of practical interest.

Notations. We write matrices in uppercase (e.g., X) and vectors in lowercase with bold font (e.g.,
x). Given the index set E (or D), XE (or XED) denotes the submatrix that taking rows with indexes
in E (or rows/columns with indexes in E /D, respectively). Similarly notations lie on vE for vector
v, ℓE(x) for vector functions ℓ(x). For a set of scalar functions {ℓi(x)}ni=1, we denote the vector
function ℓ(x) where ℓ(x) = (ℓi(x))

n
i=1 without statement and vice versa. Moreover, we defer the

full proofs as well as the algorithmic steps on applications to the Appendix.

2 Preliminaries

2.1 Self-paced Learning

Suppose we have a dataset containing the label vector y ∈ Rn and X ∈ Rn×d, where n samples with
d features are included. The i-th row Xi represents the i-th data sample xi (i.e., the i-th observation).
In this paper, the following unconstrained learning problem is considered

min
w∈Rd

n∑
i=1

ℓ (xi, yi;w) +

m∑
j=1

αjRj(w), (1)

where Rj(·) is the regularization item with a positive trade-off parameter αj , and ℓi(w)3 denotes
loss function w.r.t. w.

Definition 1 (PCr Function). Let f : U → R be a continuous function on the open set U ∈ Rn.
If {fi}i∈If

is a set of Cr (i.e., r-times continuously differentiable) functions such that f(x) ∈
{fi(x)}i∈If

holds for every x ∈ U , then f is an r-times piecewise continuously differentiable
function, namely PCr function. The {fi}i∈I is a set of selection functions of f .

Assumption 1. We assume that ℓi(w) and Rj(w) are convex PCr functions each with a set of

selection functions
⋃

k∈Iℓi

{
Dk

ℓi

}
and

⋃
k∈IRj

{
Dk

Rj

}
, respectively.

In self-paced learning, the goal is to jointly train the model parameter w and the latent weight variable
v by minimizing

3Without ambiguity, we use ℓi(w) as the shorthand notations of ℓ (xi, yi;w).
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argmin
w∈Rd,v∈[0,1]n

L(w,v) :=

m∑
j=1

αjRj(w) +

n∑
i=1

[
vili (w) + f (vi, λ)

]
, (2)

where f (v, λ) represents the SP-regularizer.

2.2 SP-regularizer

Definition 2 (SP-regularizer [35]). Suppose that v is a weight variable, ℓ is the loss, and λ is the age
parameter. f(v, λ) is called a self-paced regularizer, if
(i)f(v, λ) is convex with respect to v ∈ [0, 1];
(ii)v∗(ℓ, λ) is monotonically decreasing w.r.t. ℓ, and holds limℓ→0 v

∗(ℓ, λ) = 1, limℓ→∞ v∗(ℓ, λ) = 0;
(iii)v∗(ℓ, λ) is monotonically increasing w.r.t. λ, and holds limλ→∞ v∗(ℓ, λ) ≤ 1, limλ→0 v

∗(ℓ, λ) = 0,

where v∗(ℓ, λ) = argminv∈[0,1] vℓ+ f(v, λ).

The Definition 2 gives axiomatic definition of SP-regularizer. Some frequently utilized SP-regularizers
include fH(v, λ) = −λv, fL(v, λ) = λ

(
1
2v

2 − v
)
, fM (v, λ, γ) = γ2

v+γ/λ and fLOG(v, λ, α) =
1
αKL(1 + αλ, v), which represents hard, linear, mixture, LOG SP-regularizer, respectively.

2.3 Biconvex Optimization

Definition 3 (Biconvex Function). A function f : B → R on a biconvex set B ⊆ X × Y is called
a biconvex function on B, if fx(·) := f(x, ·) : Bx → R is a convex function on Bx for every fixed
x ∈ X and fy(·) := f(·, y) : By → R is a convex function on By for every fixed y ∈ Y .

Definition 4 (Partial Optimum). Let f : B → R be a given biconvex function and let (x∗, y∗) ∈
B. Then, z∗ = (x∗, y∗) is called a partial optimum of f on B, if f (x∗, y∗) ≤ f (x, y∗)∀x ∈
By∗ and f (x∗, y∗) ≤ f (x∗, y)∀y ∈ Bx∗ .

Algorithm 1 Alternate Convex Search (ACS)
Require: Dataset X and y, age parameter λ.

1: Initialize w.
2: while not converged do
3: Update v∗ = argminv L(w∗,v).
4: Update w∗ = argminw L(w,v∗).
5: end while

Ensure: ŵ

Optimizing (2) leads to a biconvex optimization
problem and is generally non-convex with fixed λ, in
which a number of local minima exist and previous
convex optimization tools can’t achieve a promising
effect [36]. It’s reasonably believed that algorithms
taking advantage of the biconvex structure are more
efficient in the corresponding setting. For frequently
used one, ACS (c.f. Algorithm 1) is presented to
optimize x and y in f(x, y) alternately until termi-
nating condition is met.

Remark 1. The order of the optimization subproblems in line 3 & 4 in Algorithm 1 can be permuted.

Theorem 1. [37] Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be continuous.
Let the sequence {zi}i∈N+

generated by ACS converges to z∗ ∈ X ×Y . Then z∗ is a partial optimum.

2.4 Theoretical Consistency

Researchers in earlier study [35] theoretically conducted the latent SPL loss (a.k.a., implicit objective)
and further proved that the SPL paradigm converges to the stationary point of the latent objective
under some mild assumptions, which gives explanation to the robustness of the SPL [35, 38]. In this
paper, we focus on the partial optimum of original SPL objective and result is given in Theorem 2.

Theorem 2. Under the same assumptions in Theorem 2 of [38], the partial optimum of SPL objective
consists with the stationary point of implicit SPL objective Gλ.

Factoring in both Theorem 1 & 2, the ACS procedure (or its variations) used in SPL paradigm indeed
finds the partial optimum of SPL objective, which unifies the two proposed analysis frameworks and
provides more in-depth understanding to the intrinsic mechanism behind the SPL regime.
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3 Age-Path Tracking

3.1 Objective Reformulation

For the convenience of derivation, we denote the set IR or ĪR to be the set of indexes j whereRj is
differentiable or non-differentiable at w, respectively. Similarly, we have Iℓ and Īℓ w.r.t. ℓi.

xi ∈


E , if li < λ (or

(
λγ

λ+ γ

)2

in mixture f (v, λ))

D, if li ⩾ λ (or λ2 in mixture f (v, λ))

M, if
(

λγ

λ+ γ

)2

⩽ li ⩽ λ2 (only used in mixture f (v, λ))

Moreover, the training of the
SPL is essentially a process of
adaptive sample selection, so
we classify all the sample points
in the training set into differ-
ent sets P := {E ,D,M, ...} ac-
cording to their confidence (or loss)4. Figure 3 illustrates a partition example when hard, linear or
LOG SP-regularizer is used. Since subproblem in line 3 of Algorithm 1 always gives closed-form
solutions in iterations5, we can rewrite SPL optimization objective as (3), which is indeed equivalent
to searching a partial optimum of (2).

Compute ŵ, s.t. ŵ ∈ arg min
w∈Rd

m∑
j=1

αjRj(w) +
∑
J∈P

∑
i∈J

v∗i (li(ŵ), λ) · ℓi(w). (3)

3.2 Piecewise Smooth Age-path

The KKT theorem [25] states that (3) holds iff

0 ∈
m∑
j=1

αj∂Rj(ŵ) +
∑
J∈P

∑
i∈J

v∗ (li(ŵ), λ) · ∂ℓi(ŵ), (4)

where ∂(·) denotes the subdifferential (set of all subgradients). In the PCr setting, subgradient can
be expressed explicitly by essentially active functions (c.f. Lemma 1).

Definition 5 (Essentially Active Set). Let f : U → R be a PCr function on the open set U ∈ Rn

with a set of selection functions {fi}i∈If
. For x ∈ U , we call Iaf (x) := {i ∈ If : f(x) = fi(x)}

is the active set at x, and Ief (x) :=
{
i ∈ If : x ∈ cl

(
int
(
{y ∈ U : f(y) = fi(y)}

))}
is the

essentially active set at x, where cl(·) and int(·) denote the closure and interior of a set.

Lemma 1. [39] Let f : U → R be a PCr function on an open set U and
⋃

i∈If
{fi} is a set of selec-

tion functions of f , then ∂f(x) = conv(
⋃

i∈Ie
f (x)
{fi(x)}) = {

∑
i∈Ie

f (x)
ti∇fi(x) :

∑
i∈Ie

f (x)
ti =

1, ti ≥ 0}. Especially, if f is differentiable at x, ∂f(x) = {∇f(x)}.

Assumption 2. We assume that IaRj
(x) = IeRj

(x), Iaℓi(x) = Ieℓi(x) holds for all x considered and
allRj , ℓi in the following.

We adopt a mild relaxation as shown in Assumption 2. Investigation [40] confirmed that it can be
easily established in most practical scenarios. Without loss of generality, we suppose the following
Assumption 3 also holds to further ease the notation burden.

Assumption 3. We assume that Rj , ℓi are non-differentiable at x with multiple active selection
functions, where j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}.

Therefore, the condition (4) can be rewritten in detail. Formally, there exists t̂R and t̂ℓ such that

4We only present the mainstream SP-regularizers here. The partition is similar in other cases.
5For example, we have v∗i =

{
−ℓi/λ+ 1, if ℓi < λ

0, if ℓi ≥ λ
for linear f (v, λ). More results are shown in [35].
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m∑
j=1

∑
k∈Ia

Rj
(ŵ)

αj t̂
k
Rj

(ŵ)∇Dk
Rj

(ŵ) +
∑
J∈P

∑
i∈J

∑
k∈Ia

ℓi
(ŵ)

v∗i (ℓi(ŵ), λ) t̂kℓi(ŵ)∇Dk
ℓi(ŵ) = 0,

Dk
Rj

(ŵ)−D
rj
Rj

(ŵ) = 0, ∀k ∈ IaRj
(ŵ)\{rj}, ∀j ∈ ĪR

Dk
ℓi(ŵ)−Dli

ℓi
(ŵ) = 0, ∀k ∈ Iaℓi(ŵ)\{li}, ∀i ∈ Īℓ∑

k∈Ia
Rj

(ŵ)

t̂kRj
(ŵ)− 1 = 0, t̂kRj

(ŵ) ≥ 0, 1 ≤ j ≤ m

∑
k∈Ia

ℓi
(ŵ)

t̂kℓi(ŵ)− 1 = 0, t̂kℓi(ŵ) ≥ 0, 1 ≤ i ≤ n,

(5)

where rj , li is randomly selected from IaRj
, Iaℓi and being fixed. The second and third equations in

(5) describe the active sets while the last two equations describe the subgradients. When the partial
optimum is on the smooth part, we denote the left side of equations (5) to be a C1 function F , thus
revealing that the solution path lies on the smooth manifold F (w, λ, tR, tℓ) = 0. By the time it
comes across the kink6, we need to refresh the index partitions and update (5) to run next segment of
path. WLOG, we postulate that the initial point is non-degenerate (i.e., the Jw,tR,tℓ is invertible). By
directly applying the implicit function theorem, the existence and uniqueness of a local C1 solution
path

(
ŵ, t̂R, t̂ℓ

)
can be established over here. Drawing from the theory of differential geometry

gives another intuitive understanding of age-path, which tells that the first equation in (5) indeed uses
an analogue moving frame [41] to represent a smooth curve that consists of the smooth structure.

Theorem 3. Given a partial optimum (ŵ,v∗ (ŵ, λ)) at λ0, t̂R, t̂ℓ in (5) can be solved from
F
(
ŵ, λ0, t̂R, t̂ℓ

)
= 0. If the Jacobian Jw,tR,tℓ is invertible at

(
ŵ, t̂R, t̂ℓ

)
, then in an open

neighborhood of λ0,
(
ŵ, t̂R, t̂ℓ

)
is a C1 function w.r.t. λ and fits the ODEs

d

 ŵ
t̂R
t̂ℓ


dλ

= −J−1
w,tR,tℓ

· Jλ, (6)

in which the explicit expressions of J−1
w,tR,tℓ

,Jλ are listed in Appendix A.
Corollary 1. If all the functions are smooth in a neighborhood of the initial point, then (6) can be
simplified as dŵ/dλ = −J−1

w · Jλ.

Remark 2. Our supplement parts in Appendix A present additional discussions.

3.3 Critical Points

By solving the initial value problem (6) numerically with ODE solvers, the solution path regarding
to λ can be computed swiftly before any of P, IR or Iℓ changes. We denote such point where the
set changes a critical point, which can be divided into turning point or jump point on the basis of
path’s property at that point. To be more specific, the age-path is discontinuous at a jump point, while
being continuous but non-differentiable at the turning point. This is also verified by Figure 2 and
large quantity of numerical experiments.

At turning points, the operation of the algorithm is to update P, IR, Iℓ according to index violator(s)
and move on to the next segment. At jump points, path is no longer continuous and warm-start7 can
be utilized to speed up the training procedure. The total number of critical points on the solution path
is estimated at approximately O(|D ∪M|)8. Consequently, we present a heuristic trick to figure out
the type of a critical point with complexityO(d), so as to avoid excessive restarts. As a matter of fact,
the solutions returned by the numerical ODE solver is continuous with the fixed set, despite it may
actually passes a jump point. In this circumstance, the solutions returned by ODEs have deviated

6t̂ĪR , t̂Īℓ hit the restriction bound in Lemma 1 or Iℓ,P are violated so that the entire structure changes.
7Reuse previous solutions. The subsequent calls to fit the model will not re-initialise parameters.
8Precisely speaking, it’s related to interval length of λ, the nature of objective and the distribution of data.
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Algorithm 2 Generalized Age-path Algorithm (GAGA)
Input: Initial solution ŵ|λt=λmin

, X , y, λmin and λmax.
Output: Age-Path ŵ (λ) on [λmin, λmax].

1: λt ← λmin, set P, IR, Iℓ according to ŵ|λt .
2: while λt ≤ λmax do
3: Solve (6) and examine partition P, IR, Iℓ simultaneously.
4: if Partition P, IR, Iℓ was not met then
5: Update P, IR, Iℓ according to index violator(s).
6: Solve (6) with updated P, IR, Iℓ.
7: if KKT conditions are not met then
8: Warm start at λt + δ (for a small δ > 0).
9: end if

10: end if
11: end while

from the ground truth partial optimum. Hence it’s convenient that we can detect KKT conditions to
monitor this behavior. This approach enjoys higher efficiency than detecting the partition conditions
themselves, especially when the set partition is extraordinarily complex.

3.4 GAGA Algorithm

There has been extensive research in applied mathematics on numerical methods for solving ODEs,
where the solver could automatically determine the step size of λ when solving (6). In the tracking
process, we compute the solutions with regard to λ. After detecting a new critical point, we need to
reset P, IR, Iℓ at turning point while warm-start is required for jump point. The above procedure
is repeated until we traverse the entire interval [λmin, λmax]. We show the detailed procedure in
Algorithm 2. The main computational burden occurs in solving J−1 in (6) with an approximate
complexity O(p3) in general, where p denotes the dimension of J . Further promotion can be made
via decomposition or utilizing the sparse representation of J on specific learning problems.

4 Practical Guides

In this section, we provide practical guides of using the GAGA to solve two important learning
problems, i.e., classic SVM and Lasso. The detailed steps of algorithms are displayed in Appendix C.

4.1 Support Vector Machines

Support vector machine (SVM) [33] has attracted much attention from researchers in the areas of
bioinformatics, computer vision and pattern recognition. Given the dataset X and label y, we focus
on the classic support vector classification as

min
w,b

1

2
∥w∥2H +

n∑
i=1

Cmax {0, 1− yi(⟨ϕ(xi),w⟩+ b)} , (7)

whereH is the reproducing kernel Hilbert space (RKHS) with the inner product ⟨·⟩ and corresponding
kernel function ϕ. Seeing that (5) still holds in infinite dimensional H, the above analyses can be
directly applied here. We also utilize the kernel trick [42] to avoid involving the explicit expression of
ϕ. In consistent with the framework, we have ℓi = Cmax {0, gi} and gi = 1− yi(⟨ϕ(xi),w⟩+ b).
The Iℓ and P are determined by g, thus we merely need to refine the division of E as EN = {i ∈ E :
gi < 0}, EZ = {i ∈ E : gi = 0} and EP = {i ∈ E : gi > 0}, which gives Iℓ = EN ∪ EP ∪ D(∪M).
Afterwards, with some simplifications and denoting α̂ = Cv∗⊙ t̂, we can obtain a simplified version
of (5), from where the age-path can be equivalently calculated w.r.t. optimal (α̂, b̂).
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Proposition 1. When α, b indicate a partial optimum, the dynamics of optimal α, b in (7) w.r.t. λ for
the linear and mixture SP-regularizer are shown as9

d

(
αEZ

αEP

b

)
dλ

=

 −yT
EZ

−yT
EP

0
QEZEZ

QEZEP
yEZ

C2

λ QEP EZ

C2

λ QEP EP
− IEP EP

C2

λ yEP

−1 0
0EZ

− C
λ2 ℓEP

 , (8)

d

(
αEZ

αM
b

)
dλ

=

 −yT
EZ

−yT
M 0

QEZEZ
QEZM yEZ

C2γ
2 Q̃MEZ

C2γ
2 Q̃MM − IMM

C2γ
2 ỹM

−1 0
0EZ

−Cγ
λ2 1M

 , (9)

respectively, where Q̃MEZ
= Diag{ℓ−

3
2

M }QMEZ
, Q̃MM = Diag{ℓ−

3
2

M }QMM, ỹM = ℓ
− 3

2

M ⊙yM.

Other components are constant as αEN
= 0EN

,αD = 0D. Only for mixture regularizer, αEP
= 1EP

.

Critical Point. We track g along the path. The critical point is sparked off by any set in
EN , EZ , EP ,D(,M) changes.

4.2 Lasso

Lasso [34] uses a sparsity based regularization term that can produce sparse solutions. Given the
dataset X and label y, the Lasso regression is stated as

min
w∈Rd

1

2n
∥Xw − y∥2 + α ∥w∥1 . (10)

We expand ∥w∥1 =
∑d

j=1 |wj | and treat |wj | asRj in (5), hence the IR = {1 ≤ j ≤ d : wj ̸= 0}.
We denote the set of active or inactive functions (components) by A = IR, Ā = ĪR, respectively. In
view of the fact that ∂|wj | removes tRj

from the equations in (5) for j ∈ Ā, we only pay attention to
the A part w.r.t. the (wA, λ). The ℓ is defined as 1

2n (Xw − y)
2 in the following.

Proposition 2. When (w,v∗(w, λ)) is a partial optimum, the dynamics of optimal w in (10) w.r.t. λ
for the linear and mixture SP-regularizer are described as

dwA

dλ
= −
√
2n

λ2

(
XT

AEDiag

{
1E −

3

λ
ℓE

}
XEA

)−1

XT
AEℓ

3
2

E , (11)

dwA

dλ
= −
√
2nγ

λ2

(
XT

AE∪MX̃E∪MA

)−1

XT
AE∪M

(
0E
ℓM

)
, (12)

respectively, where X̃E∪MA =

(
XEA
−γ

λXMA

)
and wĀ = 0Ā.

Critical Point. The critical point is encountered when A or P changes.

5 Experimental Evaluation

We present the empirical results of the proposed GAGA on two tasks: SVM for binary classification
and Lasso for robust regression in the noisy environment. The results demonstrate that our approach
outperforms existing SPL implementations on both tasks.

Baselines. GAGA is compared against three baseline methods: 1) Original learning model without
SPL regime. 2) ACS [20] performs sequential search of λ, which is the most commonly used
algorithm in SPL implementations. 3) MOSPL [29] is a state-of-the-art age-path approach that using
the multi objective optimization, in which the solution is derived with the age parameter λ implicitly.

9Notations such as ℓ
− 3

2
M for vectors represent the element-wise operation in this section.
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Dataset Source Samples Dimensions Task

mfeat-pixel UCI [43] 2000 240
Cpendigits UCI 3498 16

hiva agnostic OpenML 4230 1620

music OpenML [44] 1060 117

R

cadata UCI 20640 8
delta elevators OpenML 9517 8
houses OpenML 22600 8
ailerons OpenML 13750 41
elevator OpenML 16600 18

Table 1: Datasets description in our experiments. The
C=Classification, R=Regression.
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Figure 4: Robustness to noise. This fig-
ure shows the learning curve under dif-
ferent noise ratios, which confirms that
the GAGA is more robust when in the set-
ting of relatively high noise.

Dataset
Parameter Competing Methods Ours

Restarting times
C, γκ α Original ACS MOSPL GAGA

mfeat-pixel† 1.00, 0.50 – 0.959±0.037 0.976±0.015 0.978±0.021 0.986±0.016 23
mfeat-pixel‡ 1.00, 0.50 – 0.945±0.025 0.947±0.031 0.960±0.027 0.983±0.013 25
hiva agnostic† 1.00, 0.50 – 0.868±0.027 0.941±0.009 0.946±0.0137 0.960±0.004 8
pendigits† 1.00, 1.00 – 0.924±0.069 0.960±0.005 0.962±0.048 0.971±0.046 10
pendigits‡ 1.00, 0.20 – 0.931±0.045 0.942±0.089 0.940±0.088 0.944±0.089 8

elevator† – 2e-3 0.146±0.011 0.144±0.012 0.144±0.020 0.143±0.012 3
ailerons† – 6e-3 0.674±0.071 0.492±0.006 0.491±0.041 0.489±0.009 16
music† – 5e-3 0.325±0.009 0.219±0.018 0.215±0.012 0.206±0.013 123
delta elevators† – 5e-3 0.783±0.153 0.724±0.138 0.679±0.057 0.634±0.184 4
houses† – 5e-3 0.213±0.013 0.209±0.010 0.205±0.231 0.201±0.146 4

Table 2: Average results with the standard deviation in 20 runs on different datasets using the linear
SP-regularizer. The top results in each row are in boldface.

Dataset
Parameter Competing Methods Ours

Restarting times
γ C,γκ α Original ACS MOSPL GAGA

mfeat-pixel† 0.20 1.00, 1.00 – 0.959±0.037 0.963±0.038 0.968±0.037 0.973±0.040 12
mfeat-pixel‡ 0.50 0.20, 1.00 – 0.945±0.025 0.962±0.024 0.970±0.027 0.977±0.015 10
hiva agnostic† 0.50 1.00, 1.00 – 0.868±0.027 0.946±0.004 0.949±0.019 0.957±0.007 10
pendigits† 0.50 2.00, 1.00 – 0.924±0.069 0.956±0.062 0.957±0.071 0.962±0.083 32
pendigits‡ 0.20 1.00, 1.00 – 0.931±0.045 0.940±0.088 0.942±0.089 0.944±0.088 30

cadata† 1.00 –,– 5e-3 0.798±0.039 0.782±0.042 0.754±0.084 0.748±0.010 13
ailerons† 0.50 –,– 5e-3 0.674±0.071 0.452±0.057 0.433±0.083 0.422±0.090 14
music† 0.50 –,– 6e-3 0.325±0.009 0.218±0.009 0.216±0.021 0.213±0.027 110
delta elevators† 0.50 –,– 5e-3 0.783±0.153 0.663±0.074 0.650±0.029 0.595±0.132 12
houses† 0.50 –,– 5e-3 0.213±0.013 0.146±0.012 0.144±0.027 0.142±0.012 8

Table 3: Average results with the standard deviation in 20 runs on different datasets using the mixture
SP-regularizer. The top results in each row are in boldface.

Datasets. The Table 1 summarizes the datasets information. As universally known that SPL enjoys
robustness in noisy environments, we impose 30% of noises into the real-world datasets. In particular,
we generate noises by turning normal samples into poisoning ones by flipping their labels [45, 46]
for classification tasks. For regression problem, noises are generated by the similar distribution of the
training data as performed in [47].

Experiment Setting. In experiments, we first verify the performance of GAGA and traditional ACS
algorithm under different noise intensity to reflect the robustness of GAGA. We further study the
generalization performance of GAGA with competing methods, so as to show its ability to select
optimal model during the learning process. Meanwhile, we also evaluate the running efficiency
between GAGA and existing SPL implementations in different settings, which examines the speedup
of GAGA as well as its practicability. Finally, we count the number of restarts and different types of
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Figure 5: The study of efficiency comparison. y-axis denotes the average running time (in seconds)
with 20 runs. The interval [λmin, λmax] refers to the predefined searching area.

critical points when using GAGA, to investigate its ability to address critical points. For SVM, we use
the Gaussian kernel K(x1, x2) = exp(−γκ∥x1 − x2∥2). More details can be found in Appendix D.

cad.hou. ail. mus.del. ele.0

250

500

750

1000 #Turning points
#Jump points

Figure 6: Histogram illustrat-
ing the number of different
types of critical points. Names
of datasets are shortened into
the first 3 letters.

Results. Figure 4 illustrates that conventional ACS fails to reduce
the generalization error due to heavy noises fed to the model at a
large age (i.e., overfits the dataset), while GAGA makes up for this
shortcoming by selecting the optimal model that merely learns the
trust-worthy samples during the continuous learning process. Ta-
ble 2 and 3 demonstrate an overall performance enhancing in GAGA
than competing algorithms. The ‘†’ in tables denotes 30% of ar-
tificial noise, while ‘‡’ represents 20%. Note that performances
are measured by accuracy and generalization error for classifica-
tion and regression, respectively. The results guarantee that GAGA
outperforms the state-of-the-art approaches in SPL under different
circumstances. Figure 5 shows that GAGA also enjoys a high com-
putational efficiency by changing the sample size as well as the
predefined age sequence, emphasizing the potentials of utilizing
GAGA in practice. The number of different types of critical points on
some datasets is given in Figure 6. Corresponding restarting times
can be found in Table 2 and 3, hence indicate that GAGA is capable of identifying different types of
critical points and uses the heuristic trick to avoids restarts at massive turning points.

Additional Experiments in Appendix D. We further demonstrate the ability of GAGA to address
the relatively large sample size and present more histograms. In addition, we apply GAGA to the
logistic regression [33] for classification. We also verify that conventional ACS indeed tracks an
approximation path of partial optimum in experiments, which provides a more in-depth understanding
towards SPL and the performance promotion brought by GAGA. We also conduct a comparative study
to the state-of-the-art robust model for SVMs [48, 49, 50] and Lasso [51] besides the SPL domain.

6 Conclusion

In this paper, we connect the SPL paradigm to the partial optimum for the first time. Using this idea,
we propose the first exact age-path algorithm able to tackle general SP-regularizer, namely GAGA.
Experimental results demonstrate GAGA outperforms traditional SPL paradigm and the state-of-the-art
age-path approach in many aspects, especially in the highly noisy environment. We further build the
relationship between our framework and existing theoretical analyses on SPL regime, which provides
more in-depth understanding towards the principle behind SPL.
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