
Appendix

A Proofs

Proposition A.1. Any suitable group function : X ! G is G-equivariant at a point x 2 X up the

stabilizer Gx, i.e., (⇢X(g)x) ✓ g · (x)Gx.

Proof : As the relation (see Property 2.2)

⇢X((x))�(⌘(x)) = x (8)

must hold for any x 2 X , it must hold for any point x0 = ⇢X(g)x in the orbit of x, which then reads

x0 = ⇢X((x0))�(⌘(x0))

= ⇢X((⇢X(g)x))�(⌘(x)) , (9)

where we used the invariance of ⌘. On the other hand, applying ⇢X(g) to both sides of (8) we have

⇢X(g)x = ⇢X(g)⇢X((x))�(⌘(x))

= ⇢X(g (x))�(⌘(x)) , (10)

since ⌘(⇢X(g0)x) = ⌘(x) and ⇢X(g1)⇢X(g2) = ⇢X(g1g2). Combining (9) and (10) it follows that

⇢X((x)�1 · g�1 · (⇢X(g)x))�(⌘(x)) = �(⌘(x)) , (11)

that is, (x)�1 · g�1 · (⇢X(g)x)) 2 G�(⌘(x)). Now, since x and �(⌘(x)) by assumption belong to
the same orbit of G, it follows that they have isomorphic stabilizers, G�(⌘(x)) ' Gx. Thus, we have
shown that (⇢X(g)x)) = g · (x) · g0, where g0 2 Gx, which proves our claim.

Proposition A.2. The image of any suitable group function : X ! G is surjective into
G
GX

, where

GX is the stabilizers of all the points of X .

Proof : Let x 2 X be such that x = �(⌘(x)), that is, (x) = Gx, the stabilizer of x. Note
that each orbit cointains at least one such element. For any element g 2 G we have that, using
Proposition A.1, (⇢X(g)x) = g · (x) · g̃, where g̃ 2 Gx. Since (x) · g̃ 2 Gx as well, it then
follows that the image of is G up to an action by an element of the stabilizer Gx. Applying
the above reasoning to every points x 2 X , we have that Im() = [x2X

G
Gx

= G
\x2XGx

, where
\x2XGx = GX = {g 2 G|⇢X(g)x = x, 8x 2 X}, proving our claim.
Lemma A.3. Any suitable group function is an isomorphism Ox ' G/Gx for any x 2 X , where

Ox ⇢ X is the orbit of x with respect to G in X .

Proof : Surjectivity follows directly from Proposition A.2. To show injectivity, consider x, x0 2 Ox

such that (x0) = (x) · g̃, where g̃ 2 Gx. From Proposition 2.3 it follows that x0 = x, which proves
the claim.
Proposition A.4. Let = ⇠ � µ be a suitable group function and let µ : X ! Y be G-equivariant.

Then, Gx = Gµ(x) for all x 2 X .

Proof : Let g 2 Gx, that is, ⇢X(g)x = x. Applying µ to both sides of this equation we obtain
µ(x) = µ(⇢X(g)x) = ⇢Y (g)µ(x), where we used the G-equivariance of µ. Hence, Gx ✓ Gµ(x).
To prove the opposite inclusion, let g 2 Gµ(x) but g /2 Gx, and let x0 = ⇢X(g)x. Now, µ(x0) =
⇢Y (g)µ(x) = µ(x), thus µ, and therefore = ⇠ � µ, maps the distinct element x, x0 to the same
group element (x) = (x0), in contradiction with Proposition 2.3.
Proposition A.5. Given y, y0, the element g such that y ⌘ ⇢Y (g)y0 is unique up to the stabilizer

Gy0 .

Proof : Suppose that there exist g1, g2 2 G such that ⇢Y (g1)y0 = ⇢Y (g2)y0, then ⇢Y (g�1
2 g1)y0 = y0,

which implies g�1
2 g1 2 Gy0 .

Proposition A.6. Let = ⇠ � µ where µ and ⇠ are as described above. Then, is a suitable group

function.

16

Proof : We show that our construction describes an isomorphism Ox ' G/Gx for all x 2 X . Given
x 2 X and g 2 G, Propositions A.4 and A.5 imply

⇠ (µ(⇢X(g)x)) = ⇠(⇢Y (g)µ(x)) ✓ g · ⇠(µ(g))Gx , (12)

that is, possesses the G-equivariant property as required in Proposition 2.3, which in turns imply
injectivity, as in Lemma A.3. Surjectivity follows from the same argument as in Proposition A.2,
since the proof only relies on the equivariant properties of , which we showed in (12).

B Model architecture Rotated MNIST

We follow Weiler & Cesa (2019b) and use steerable CNNs to parameterize functions ⌘ and µ. In
contrast to classical CNNs, CNNs with O(2)-steerable kernels transform feature fields respecting the
transformation law under actions of O(2). We can define scalar fields s : R2 ! R and vector fields
v : R2 ! R2 that transform under group actions (rotations) the following:

s(x) 7! s(g�1x) v(x) 7! g · v(g�1x) 8g 2 O(2) . (13)

Thus, scalar values are moved from one point on the plane R2 to another but are not changed, while
vectors are moved and changed (rotated) equivalently. Hence, we can utilize steerable CNNs to
encode samples in R2 in O(2)-invariant scalar features and O(2)-equivariant vector features. We can
use the scalar features s as G-invariant representation z 2 Z and following Section 3 (Orthogonal
group SO(2)) utilizing a single vector features v to construct the rotation matrix R as:

R =

v̄x �v̄y
v̄y v̄x

�
, v̄ =

v

kvk . (14)

In our experiments we used seven layers of steerable CNNs as implemented by Weiler & Cesa
(2019b). We did not use pooling layers, as we found them to break rotation equivariance and only
averaged over the two spatial dimensions after the final layer to extract the final invariant embedding
and equivariant vector. In each layer we used 32 hidden scalar and 32 hidden vector fields. In the
final layer we used 32 scalar fields (32 dimensional invariant embedding) and one vector feature field.

The Decoding function � : Z ! R2 can be parameterized by a regular CNN. In our experiments we
used six layers of regular CNNs with 32 hidden channels, interleaved with bilinear upsampling layers
starting from the embedding expanded to a 2⇥ 2⇥ 32 tensor.

Training was done on one NVIDIA Tesla V100 GPU in approximately 6 hours.

C Model architecture Set of Digits

We can rewrite the equation P�(1, 2, . . . , n) = (�(1),�(2), . . . ,�(n)) , in vector form by represent-
ing set elements by standard n ⇥ 1 column vectors ei (one-hot encoding) and � by a permutation
matrix P� whose (i,j) entry is 1 if i = �(j) and 0 otherwise, then:

P�ei = e�(i) (15)

Hence, encoding function ⌘ should encode a set of elements in a permutation invariant way and
should map a set M to a permutation matrix P�:

 : M ! P� (16)

We follow Zaheer et al. (2017) and parameterize ⌘ by a neural network � that is applied element-wise
on the set followed by an invariant aggregation function ⌃ (e.g. sum or average) and a second neural
network �:

⌘(X) = �(⌃x2X�(x)) . (17)

In our experiments we parameterized � and � with regular feed-forward neural networks with three
layers respectively, also using ReLU activations and Batchnorm.

The output of function � is equivariant and can also be used to construct . We follow Winter et al.
(2021) and define a function s : Rd ! R mapping the output of � for every set element to a scalar

17

value. By sorting the resulting scalars, we construct the permutation matrix P� with entries pij that
would sort the set of elements with respect to the output of s:

pij =

⇢
1, if j = argsort(s)i
0, else

(18)

As the argsort operation is not differentiable, we utilizes a continuous relaxation of the argsort
operator proposed in (Prillo & Eisenschlos, 2020; Grover et al., 2019):

P ⇡ P̂ = softmax(
�d(sort(s)1>, 1s>)

⌧
), (19)

where the softmax operator is applied row-wise, d(x, y) is the L1-norm and ⌧ 2 R+ a temperature-
parameter.
Decoding function � can be parameterized by a neural network that maps the permutation-invariant
set representation back to either the whole set or single set elements. In the letter case, where the same
function is used to map the same set representation to the different elements, additional fixed position
embeddings can be fed into the function to decode individual elements for each position/index. For
the reported results we choose this approach, using one-hot vectors as position embeddings and a
4-layer feed-forward neural network.

Training was done on one NVIDIA Tesla V100 GPU in approximately 1 hours.

D Model architecture Point Cloud - Tetris 3D & QM9

We implement a graph neural network (GNN) that transform equivariantly under rotations and
translations in 3D space, respecting the invariance and equivariance constraints mentioned in Eq. (6)
and (7) for n = 3.

Assume we have a point cloud of N particles each located at a certain position xi 2 R3 in Cartesian
space. Now given some arbitrary ordering �(·) for the points, we can store the positional coordinates
in the matrix P = [x1, ..., xN] 2 RN⇥3. Standard Graph Neural Networks (GNNs) perform message
passing Gilmer et al. (2017) on a local neighbourhood for each node. Since we deal with a point
cloud, common choice is to construct neighbourhoods through a distance cutoff c > 0. The edges of
our graph are specified by relative positions

xij = xj � xi 2 R3 ,

and the neighbourhood of node i is defined as N (i) = {j : dij := ||xij || c}.

Now, our data (i.e., the point cloud) lives on a vector space X , where we want to learn an SE(3)
invariant and equivariant embedding wrt. arbitrary rotations and translations in 3D space. Let the
feature for node i consist of an invariant (type-0) embedding hi 2 RFs , an equivariant (type-1)
embedding wi 2 R3⇥Fv that transforms equivariantly wrt. arbitrary rotation but is invariant to
translation. Such a property can be easily obtained, when operating with relative positions.
Optionally, we can model another equivariant (type-1) embedding ti 2 R3 which transforms
equivariantly wrt. translation and rotation. As our model needs to learn to predict group actions
in the SE(3) symmetry, we require to predict an equivariant translation vector (b 2 T3), as well as
a rotation matrix (A 2 SO(3)), where we will dedicate the t vector to the translation and the w
vector(s) to the rotation matrix.
As point clouds might not have initial features, we initialize the SE(3)-invariant embeddings as
one-hot encoding hi = ei for each node i = 1, . . . , N . The (vector) embedding dedicated for
predicting the rotation matrix is initialized as zero-tensor for each particle, i.e., wi = 0 and the
translation vector is initialized as the absolute positional coordinate, i.e. to, ti = xi.

We implement following edge function �e : R2Fs+1 7! RFs+2Fv+k with

mij = �e(hi, hj , dij) = We[hi, hj , dij] + be, (20)

and set k = 1 if the GNN should model the translation and k = 0 else. Notice that the message mij

in Eq. (20) only depends on SE(3) invariant embeddings. Now, (assuming k = 1) we further split the
message tensor into 4 tensors,

mij = [mh,ij ,mw0,ij ,mw1,ij ,mt,ij] ,

18

which we require to compute the aggregated messages for the SE(3) invariant and equivariant node
embeddings.
We include a row-wise transform �s : RFs 7! RFs for the invariant embeddings using a linear layer:

h̃i = Wshi + bs , (21)

The aggregated messages for invariant (type-0) embedding hi are calculated using:

mi,h =
X

j2N (i)

mh,ij � h̃i 2 RFs . (22)

where � is the (componentwise) scalar-product.
The aggregated equivariant features are computed using the tensor-product ⌦ and scalar-product �
from (invariant) type-0 representations with (equivariant) type-1 representations:

mi,w =
X

j2N (i)

(xij ⌦mw0,ij + (wi ⇥ wj)� (1⌦mw1,ij)) 2 R3⇥Fv , (23)

where 1 2 R3 is the vector with 1’s as components and (a⇥ b) denotes the cross product between
two vectors a, b 2 R3.
The tensor in Eq. (23) is equivariant to arbitary rotations and invariant to translations. It is easy to
prove the translation invariance, as any translation t⇤ 2 T3 acting on points xi, xj does not change
the relative position xij = (xj + t⇤)� (xi + t⇤) = xj � xi.
To prove the rotation equivariance, we first observe that given any rotation matrix A 2 SO(3) acting
on the provided data, as a consequence relative positions rotate accordingly, since

Axj �Axi = A(xj � xi) = Axji 2 R3.

The tensor product ⌦ between two vectors u 2 R3 and v 2 RFs , commonly also referred to as outer

product is defined as

u⌦ v = uv> 2 R3⇥Fs ,

and returns a matrix given two vectors. For the case that a group representation of SO(3), i.e. a
rotation matrix R, acts on u, it is obvious to see with the associativity property

(Au)⌦ v = (Au)v> = Auv> = A(uv>) = A(u⌦ v) = Au⌦ v.

The cross product (wi ⇥ wj) 2 R3⇥Fv used in equation (23) between type-1 features wi and wj is
applied separately on the last axis. The cross product has the algebraic property of rotation invariance,
i.e. given a rotation matrix A acting on two 3-dimensional vectors a, b 2 R3 the following holds:

(Aa)⇥ (Ab) = A(a⇥ b) . (24)

Now, notice that the quantities that "transform as a vector" which we call type-1 embeddings are in
S = {xij , wi, ti}Ni,j=1.
Given a rotation matrix A acting on elements of S, we can see that the result in (23)

X

j2N (i)

(Axij ⌦mw0,ij + (Awi)⇥ (Awj)� (1⌦mw1,ij))

=
X

j2N (i)

(Axij ⌦mw0,ij +A(wi ⇥ wj)� (1⌦mw1,ij))

= A
X

j2N (i)

(xij ⌦mw0,ij + (wi ⇥ wj)� (1⌦mw1,ij))

= Ami,w

is rotationally equivariant.
We update the hidden embedding with a residual connection

hi � hi +mi,h ,

wi � wi +mi,w , (25)

19

and use a Gated-Equivariant layer with equivariant non-linearities as proposed in the PaiNN architec-
ture Schütt et al. (2021) to enable an information flow between type-0 and type-1 embeddings.
The type-1 embedding for the translation vector is updated in a residual fashion

ti � ti +
X

j2N (i)

xij ⌦mt,ij

= ti +
X

j2N (i)

mt,ij � xij , (26)

where we can replace the tensor-product with a scalar-product, as mt,ij 2 R. The result in Eq. (26)
is translation and rotation equivariant as the first summand ti is rotation and translation equivariant,
while the second summand is only rotation equivariant since we utilize relative positions.

For the SE(3) Tetris experiment, the encoding function ⌘ : X 7! Z is a 5-layer GNN encoder with
F = Fs = Fv = 32 scalar- and vector channels and implements the translation vector, i.e. k = 1.
The encoding network ⌘ outputs four quantities: two SE(3) invariant node embedding matrices
eH,M 2 RN⇥F , one SO(3) equivariant order-3 tensor fW 2 RN⇥3⇥F as well as another SE(3)
equivariant matrix T 2 RN⇥3.
We use two linear layers4 to obtain the SE(3) invariant embedding matrix H 2 RN⇥2 as well as
the SO(3) equivariant embedding tensor W 2 RN⇥3⇥2. Notice that the linear layer returning the
W tensor can be regarded as the function rot that aims to predict the group action in the SO(3)
symmetry, while we use the identity map for the translation vector, i.e. transl = T .
As point clouds can be regarded as sets, we obtain an permutation invariant embedding by averaging
over the first dimension of the {H,W, T} tensors,

h =
1

N

NX

i=1

Hi 2 R2 , (27)

t =
1

N

NX

i=1

Ti 2 R3 , (28)

w =
1

N

NX

i=1

Wi 2 R3⇥2 , (29)

while we use the M matrix to predict the permutation matrix P� with the perm function, in similar
fashion as described in Eq. (16). To construct the rotation matrix R out of 2 vectors in R3 as described
in Section 3, we utilize the SO(3) equivariant embedding w.
The decoding network � : Z 7! X is similar to the encoder a 5-layer SE(3)-equivariant GNN but does
not model the translation vector, i.e. k = 0. The decoder � maps the SE(3) as well as S(N)-invariant
embedding h back to a reconstructed point cloud P̂ 2 RN⇥3. At the start of decoding, we utilize a
linear layer to map the G�invariant embedding h 2 R2 to a higher-dimension, i.e.

h̃ = W0h+ b0 2 RFs , (30)

Next, to “break” the symmetry and provide the nodes with initial type-0 features, we utilize fixed
(deterministic) positional encodings as suggested by Winter et al. (2021) for each node i = 1, . . . , N
to be summed with h̃. Notice that this addition enables us to obtain distinct initial type-0 embeddings
{ĥi}Ni=1.
For the start positions, we implement a trainable parameter matrix P✓ of shape (N ⇥ 3) for the
decoder.
Now, given an initial node embedding Ĥ 2 RN⇥Fs , we apply the S(N) group action, by multiplying
the predicted permutation matrix P� with Ĥ from the left to obtain the canonical ordering as

Ĥ� = P�Ĥ . (31)

To retrieve the correct orientation required for the pairwise-reconstruction loss, we multiply the
constructed rotation matrix R with the initial start position matrix P✓

P̂r = P✓R
>. (32)

4The transformation is always applied on the last (feature) axis.

20

Table 1: Comparison of our approach vs classical and quotient autoencoder (QAE) as well as an fully
equivariant AE with invariant pooling after training.

Model Rec. Loss KNN Acc.
classical 0.0170 0.68

QAE 0.0227 0.82
invariant (ours) 0.0162 0.90

equiv AE (norm) 0.0189 0.56
equiv AE (angle) 0.0189 0.53

equiv AE (complete) 0.0189 0.67

With such construction, we can feed the two tensors to the decoder network � to obtain the recon-
structed point cloud as

P̂recon = �(Ĥ�, P̂r) + t , (33)

where t 2 R3 is the predicted translation vector from the encoder network, added row-wise for each
node position.

E Further Experiments

E.1 Rotated MNIST

We also implemented and trained the quotient autoencoder (QAE) approach proposed by Mehr et al.
(2018a) on the MNIST dataset for the group SO(2), discretized in 36 rotations with the loss

min
✓2{10i,i=0,...,35}

{MSE(x� ⇢X(g(✓))y)} , (34)

where x is a MNIST sample and y is the reconstructed sample. We evaluated the resulting embeddings
on the rotated MNIST test set (in such a way that the evaluation is the same as for our model). In
Figure 7 we plot TSNE embeddings for this approach, and we can observe that the embedding space
shows a clearer structure, in comparison with the classical model. However, in comparison, our
approach results in a better clustering of the different digits classes. That shows that the discretization
step, while it helps in structuring the embedding space in “signal clusters”, still does not capture
the full continuous nature of the group. To further quantitatively compare the three methods (ours,
QAE and classical AE), we evaluated the reconstruction loss as well as the (digit class) classification
accuracy of a KNN classifier trained on 1000 embeddings of each method. We present in the table
below the results for the reconstruction loss and for the classification accuracy of a KNN classifier
trained on the AE embeddings. To obtain a fair comparison, we kept the architecture and the training
hyperparameters exactly identical for all the strategies. We note that our strategy outperforms both
the classical AE as well as the strategy of QAE in both tasks.

In an additional experiment, we trained a fully equivariant AE (that is, the embedding itself is
fully equivariant, i.e. multiple 2-dimensional vectors) on MNIST with G = SO(2), followed by
an invariant pooling afterwards (after the training) to extract the invariant part. Specifically, we
have trained KNN classifiers on (a) the invariant embedding corresponding to the norm of the 2-
dimensional vectors forming the bottleneck representation, (b) the angles between the first and all
other vectors and on (c) the full invariant embedding we obtained by combining the the norms and
angles. We choose the number of vectors in the bottleneck in such a way that the dimensionality of the
full invariant representation coincides with the one of our model. We visualized the resulting TSNE
embeddings in Figure 7 and show the downstream performance of the KNN classifiers in Table 1.
From the results we can see that, in comparison to the approximate invariant (QAE) and our invariant
trained model, the invariant projected equivariant representations perform inferior. Although we
extract a complete invariant representation (which performs better than a subset of this representation
like the norm or angle part), the resulting representation is apparently not as expressive and e.g.
useful in a downstream classification task. This aligns well with our hypothesis, that our proposed
framework poses a sensible supervisory signal to extract expressive invariant representations that are
superior to invariant projections of equivariant features.

21

Figure 7: Top row: TSNE embedding of the encoded test dataset for a classical autoencoder, our
proposed SO(2) invariant autoencoder, and for the quotient autoencoder of Mehr et al. (2018a).
Bottom row: Fully equivariant trained autoencoder with invariant projection after training, either by
taking the norm, angles between vectors or the combination (complete).

Target Fraction Pretrained From Scratch

H
0.05 0.7529 0.0970
0.25 0.9908 0.9093

G
0.05 0.7703 0.4758
0.25 0.9856 0.9751

U
0.05 0.6083 0.2574
0.25 0.9962 0.9808

hR2i 0.05 0.7806 0.1468
0.25 0.9918 0.8546

µ
0.05 0.8698 0.8443
0.25 0.9718 0.9718

↵
0.05 0.9455 0.9237
0.25 0.9937 0.9764

Table 2: Generalization performance in terms of the coefficient of determination R2 of models on a
held-out test set of 1000 samples. Higher R2 indicates better performance.

E.2 QM9

For the QM9 dataset, we use the same model components as described in the Tetris experiment, with
the difference of including atom species as SE(3)�invariant features and setting Fs = 256, Fv = 32
and increasing the dimensionality of the latent space to 256.

E.2.1 Finetuning

We performed additional experiments on the pretrained group-invariant AE on the extended GEOM-
QM9 dataset Axelrod & Gomez-Bombarelli (2021) which, as opposed to the standard QM9 dataset
(⇡ 130k samples), contains multiple conformations of small molecules. We trained the autoencoder
on a reduced set of GEOM-QM9 (⇡ 641k), containing up to 10 conformations per molecule and
utilized this pretrained encoder network to regress (invariant) energy targets, such as internal energy
U or enthalpy H on the original QM9 dataset.

22

Figure 8: Learning curves of models trained on limited enthalpy H targets.

We observed that the pretrained encoder network learns faster and achieves better generalization
performance than the architectural identical network trained from scratch. In Figure 8 we illustrate
the learning curves for the two networks on different fraction on 5% and 25% labelled samples from
the original QM9 dataset to analzye the benefit of finetuning a pre-trained encoder network in a
low-data regime, when regressing on the enthalpy H . On a held-out test dataset of 1000 samples, the
pretrained encoder network achieves superior generalization performance in terms of R2 with 0.7529
vs. 0.0970 in the 5% data regime, and 0.9908 vs. 0.9093 in the 25% data regime compared to the
encoder that was trained from scratch. In Table2 we show additional comparisons of the pretrained
network against a network that was trained from scratch for 50 epochs on the restricted dataset.

As shown in Table 2, the pretrained encoder achieves improved generalization performance on the
test dataset compared to its architectural identical model that was trained from scratch. We believe
that training the group-invariant autoencoder on a larger diverse dataset of (high-quality) molecular
conformations facilitates new opportunities in robust finetuning on different data-scarse datasets for
molecular property prediction.

E.2.2 Molecular Conformations: Further Examples

We show additional reconstructions of 12 randomly selected small molecules from the QM9 test
dataset. Noticeably, our trained autoencoder is able to reconstruct molecular conformations with
complex geometries as depicted in the third column (from the left). We notice that the AE is not
able to perfectly reconstruct the conformation shown in the 4th column of the 2nd row. Although
this molecule does not exhibit a complicated geometrical structure, its atomistic composition (of
only containing nitrogen and carbon as heavy atoms) could be the reason why the encoding of the
conformation is pointing into a non-densely populated region in the latent space, as nitrogen does not
have a large count in the total QM9 database, see Figure 10.

Training was done on one NVIDIA Tesla V100 GPU in approximately 1 day.

23

Figure 9: 12 molecular conformations and their reconstructions represented as point cloud and
ball-and-stick model (left true, right predicted).

Figure 10: Atomistic species count on the QM9 dataset.

24

Output

Output +
Rotation

Input

Figure 11: Example reconstructions from our proposed method trained on the voxelized ShapeNet
dataset Chang et al. (2015).

25

	Introduction
	Method
	Background
	Problem Definition
	Predicting Group Actions
	Proposed Construction
	Intuition Behind the Proposed Framework

	Application to Common Groups
	Related Work
	Experiments
	Rotated MNIST
	Set of Digits
	Point Cloud
	ShapeNet

	Conclusion and Future Work
	Proofs
	Model architecture Rotated MNIST
	Model architecture Set of Digits
	Model architecture Point Cloud - Tetris 3D & QM9
	Further Experiments
	Rotated MNIST
	QM9
	Finetuning
	Molecular Conformations: Further Examples

