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Abstract

To survive, animals must adapt synaptic weights based on external stimuli and
rewards. And they must do so using local, biologically plausible, learning rules – a
highly nontrivial constraint. One possible approach is to perturb neural activity (or
use intrinsic, ongoing noise to perturb it), determine whether performance increases
or decreases, and use that information to adjust the weights. This algorithm – known
as node perturbation – has been shown to work on simple problems, but little is
known about either its stability or its scalability with respect to network size. We
investigate these issues both analytically, in deep linear networks, and numerically,
in deep nonlinear ones. We show analytically that in deep linear networks with
one hidden layer, both learning time and performance depend very weakly on
hidden layer size. However, unlike stochastic gradient descent, when there is model
mismatch between the student and teacher networks, node perturbation is always
unstable. The instability is triggered by weight diffusion, which eventually leads to
very large weights. This instability can be suppressed by weight normalization, at
the cost of bias in the learning rule. We confirm numerically that a similar instability,
and to a lesser extent scalability, exist in deep nonlinear networks trained on both
a motor control task and image classification tasks. Our study highlights the
limitations and potential of node perturbation as a biologically plausible learning
rule in the brain.

1 Introduction

The immense success of deep learning in recent years has revived interest in the backpropagation
algorithm (known simply as “backprop”) as a learning mechanism in the brain [1, 2]. Although
in its pure form this algorithm is incompatible with biological constraints (most notably, the fact
that synapses do not know the weights of other synapses in the brain), many biologically plausible
approximations have been proposed [3, 4, 5, 6, 7, 8, 9]. However, it remains unclear how robust these
approximate learning rules are, or how they perform on large neural networks [10], partially because
we do not have a clear analytical understanding of them.

In the node perturbation (NP) algorithm, synaptic weights are updated according to how the error
changes when a small perturbation is added to each node of a neural network [11, 4, 12]. If a
perturbation improves performance, the weights are modified so that the perturbation is consolidated,
and vice versa (see §3). This algorithm has two advantages over more standard biologically plausible
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learning rules. First, synaptic updates rely only on a global error signal and pre- and postsynaptic
activity. Such a global error signal, mediated by neuromodulators, is commonly observed across the
brain [13], and is known to modulate synaptic plasticity [14]. This is in contrast to many biologically
plausible credit assignment algorithms, which require vector-valued supervising signals (what the
true label was), not just scalar error signals (how accurate the network output was). Second, neural
activity in the brain is inherently stochastic [15, 16], which NP can make use of – making noise a
feature rather than a bug.

Because of its biological plausibility and algorithmic simplicity, NP has been investigated as a
potential learning mechanism of several brain regions, including the vocal production circuits of
songbirds [17, 18], motor cortex [19], and the cerebellum [20]. In particular, experimental work
on birdsong learning suggest that perturbation of neural activity in the song production circuit via
a projection from a region called LMAN is crucial for song acquisition [21, 22], supporting the
presence of perturbation-based learning.

Here we analyze the learning dynamics of node perturbation. We develop a mean-field theory of
NP learning in one hidden layer linear networks, and we show analytically, and confirm empirically,
that the minimum training time of NP depends linearly on the number of output nodes, as suggested
previously [12]. Perhaps surprisingly, we show that the training time is independent of the hidden
layer width in the over-parameterized regime. Finally, we show that NP is always unstable when the
supervised signal contains noise. This instability can be mitigated by regularizing the weight norms,
but that induces bias in the update.

To verify that these results are not specific to deep linear networks, we investigate the scalability and
stability of NP in nonlinear deep neural networks applied to the SARCOS [23] and MNIST tasks [24].
In both tasks, the minimum learning time required to reach high performance scales sub-linearly
with the hidden layer size. These observations support the relative robustness of NP against hidden
layer width expansion, a prediction from linear networks. However, NP dynamics is unstable at
high learning rate, with the instability preceded by an expansion of the weight norm, as predicted.
Weight normalization prevents this instability, but impairs performance, especially for SARCOS.
For MNIST, stabilization by weight normalization improves the convergence time of NP against the
depth expansion. We also confirmed the stabilization of learning dynamics by weight regularization
in convolutional neural networks solving the CIFAR-10 task [25], but it also impairs performance.

The minimum learning time of NP is about one hundred times longer than that of stochastic gradient
descent (SGD) in both tasks. However, a portion of this discrepancy is explained by the fact that NP is
a reinforcement learning algorithm while SGD uses supervising signals. Our study thus suggests that,
depending on the task and the architecture, NP may play a role as a credit assignment mechanism in
the brain. However, our results also indicate that NP alone is not enough to account for the learning
ability of the brain. In particular, NP is too slow to be practical in supervised image recognition tasks.

2 Related work

NP has been previously proposed as a learning mechanism of birdsong [17, 18], motor cortex [19],
and cerebellum [20]. Nonetheless, the practicality of NP as a credit assignment mechanism in the
brain remains unclear, as all of these studies considered simplified tasks, and scarcely provided
analytical insight. Werfel and colleagues did provide analytical insight into the scalability of NP in
a linear regression setting: they showed that the convergence of NP becomes progressively slower
than SGD as the output layer size increases [12]. However, they could not tell whether the slower
convergence was due to an increase in the number of perturbed neurons or the number of output
neurons, as they were the same. In this work, we distinguish these two possibilities by introducing
a hidden layer (see §4 for the details). Fiete and colleagues numerically demonstrated that when
the loss function is defined on a low dimensional projection of output neurons, the training time
doesn’t depend on the output layer size [17]. However, it remains unclear how general this result is,
as their analysis is limited to a linear regression setting. Lansdell and colleagues used NP to train
feedback weights of a deep neural network that back-propagates the error [26]. The performance
of their algorithm was comparable to SGD on CIFAR-10. However, it required supervising signals,
unlike the vanilla NP, which only needs reinforcement signals. In addition, it remains unclear how
much performance gain in their algorithm was brought by the weight alignment rather than from NP.
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If perturbations are added to synaptic weights instead of neural activity, the algorithm is called weight
perturbation [3]. This algorithm is noiser than node perturbation in the vanilla setting [12], but a recent
result suggests that the weight perturbation algorithm is competitive with, or better than, NP when
the feedback signal is sparse [27]. It should also be noted that weight perturbation is a variation of
zeroth order optimization, which is known to scale badly to high-dimensional optimization problems
[28, 29]. However, recent works found that when there is a low-dimensional latent structure in the
parameter space, this algorithm works efficiently [30, 31].

Scalability of noisy weight update rules has also been investigated in the bandit literature [32]. In
bandit problems, the gradient needs to be estimated from insufficient feedback, thus its estimation
inevitably becomes either biased or noisy. This limitation raises the question of whether one should
choose a biased update or a noisy one, for which the following property is known [33]. Consider an
optimization of a strongly convex loss function L(w) with a biased noisy gradient. Suppose there
is a parameter � such that, the update rule is noisy but unbiased in the limit � ! 0, and biased but
noise free in the limit � ! 1. Then, under some mild conditions, the value of � that achieves the
minimax regret under a fixed number of iterations n, denoted �⇤, is given by �⇤ /

q
cd
n where d

is the number of parameters. Consequently, when the number of iterations n is small while the
number of parameters d is large, as in the brain, the system should choose a biased update, not a noisy
one. However, the results from convex optimization are often not directly applicable to deep neural
networks, because the effective number of degrees of freedom is typically much smaller than the
number of parameters in these networks [34], and the loss function is non-convex. Thus, it remains
unclear if the brain should always choose a biased learning rule over a noisy one, such as NP.

3 Node perturbation is unbiased, but noisy

We formulate node perturbation in the context of deep learning. Let us consider a vanilla deep
feedforward network

xk = fk(Wkxk�1), k = 1, 2, ...,K (1)
where x0 and xK are the input and the output respectively, and fk(·) is an element-wise activation
function. Throughout the paper, we use bold italic lower case letters to denote column vectors and
bold italic upper case letters to denote matrices. Adding a small Gaussian perturbation �⇠k to each
layer except the input layer gives us a perturbed network,

exk = fk(Wkexk�1 + �⇠k), k = 1, 2, ...,K (2)

where h⇠k⇠Tl i = �klIk, with Ik the identity matrix in the appropriate dimension, and � ⌧ 1. Under
a loss function `(xK ,x0), the node perturbation update is

�W np
k = �

⌘

�
(`(exK ,x0)� `(xK ,x0)) ⇠kx

T
k�1. (3)

In words, if the perturbation decreases the error (i.e., ˜̀� ` < 0), the weights are shifted towards the
direction of the perturbation (⇠k), and vice versa. Importantly, in this update rule, the network only
needs to know how much the loss changes when a perturbation is added to the network. This is in
contrast to SGD and most of its biologically plausible variants, which require a supervised signal
telling what the correct answer was. It is straightforward to show that, at the small perturbation limit
(ie. � ! 0; see Appendix A.1),

�W np
k = �⌘

KX

l=1

⇠k⇠
T
l glx

T
k�1, where gk ⌘

@`

@hk
, and hk ⌘ Wkxk�1. (4)

Taking the expectation over ⇠, we recover the SGD update rule,

h�W np
k i⇠ = �⌘gkx

T
k�1 = �W sgd

k . (5)

Consequently, NP is unbiased relative to SGD. However, because the weight update is driven by
random perturbation to the nodes, NP is much more noisy than SGD. For instance, the cosine
similarity between SGD and NP update at k-th layer is given by

D
cos

⇣
\
h
�W sgd

k , �W np
k

i⌘E

x,⇠
. 1

p
Lk

, (6)
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where Lk is the number of neurons in the k-th layer (see Appendix A.2). Thus, for wide networks,
the NP and SGD updates becomes nearly perpendicular (see Figs. 4A and S4A).

Another way to characterize how noisy NP is to look at the noise covariance. Because both SGD and
NP are unbiased against the true gradient, both update rules can be written as

�WQ
k = �⌘

⇣⌦
gkx

T
k�1

↵
x
+ZQ

k

⌘
, (7)

where Q = np or sgd, and ZQ
k is a (not necessarily Gaussian) random matrix. We show in Appendix

A.3 that the covariance of ZQ
k under NP, denoted Cnp

kl , is written as,

Cnp
kl ⇡ 2Csgd

kl + �kl

*
KX

m=1

kgmk
2 Ik ⌦ xk�1x

T
k�1

+

x

, (8)

where, Ik is a size-Lk identity matrix, Csgd
kl is the noise-covariance under SGD, and “⌦” denotes

a tensor product between two matrices (i.e., [A ⌦ B]ijkl = AijBkl). Because the second term is
zero unless two weights share the same postsynaptic neuron, the noise correlation of NP updates
across neurons in different layers, or across different neurons in the same layer, is only a factor of
two larger than that of SGD. However, the NP update at each synapse contains additional, mostly
independent, noise from the second term that scales with the total gradient norm

PK
m=1 kgmk

2. This
term is typically much larger than the SGD variance, which only depends on the gradient amplitude
at each weight (see Eq. 30).

4 NP in one hidden layer linear networks: scalable but unstable

We have so far observed that NP is unbiased but noisy, meaning that a one-step update by NP is just
a noisy version of SGD. However, it is not clear what that implies for the global stability and the
scalability of the algorithm. Because it is very difficult to address these issues in general, here we
first focus on deep linear networks in a student-teacher setting [35, 36].

In the absence of hidden layers (i.e., in a linear regression setting), it is known that the minimum
number of training steps required to reach a target error level ✏tg from an initial error ✏o is

Tsgd[✏o ! ✏tg] = Lx log(✏o/✏tg), Tnp[✏o ! ✏tg] = LxLy log(✏o/✏tg), (9)

where Lx and Ly are input and output layer sizes, respectively (see [12] and Appendix B.6). Thus, NP
is linearly slower than SGD as the number of output units increases. Note that at a small learning rate
⌘, the learning trajectories of NP and SGD behave similarly (left edge of Fig. S1, in the Appendix).
However, the optimal learning rate – the learning rate that minimizes the training time – is smaller
under NP than SGD, so the minimum training time becomes longer (Fig. S1; here, the optimal
learning rates are the points at which the curves touch the horizontal dotted lines). Nevertheless,
in the linear regression setting, NP learning dynamics is simple, and monotonic: the error either
decreases or increases monotonically throughout learning. As we will see, however, this is not the
case in deep neural network; they display non-trivial, and non-monotonic, dynamics.

Equation (9) tells us that NP is slower than SGD by a factor of Ly, the number of output units.
However, it doesn’t tell us in general whether training time scales with the number of output units or
the number of perturbed units, because the two are the same in linear regression. To disambiguate
between these two possibilities, we analyze a linear network with one hidden layer,

y = W2W1x, (10)

where the matrices W2 and W1 are Ly⇥Lh and Lh⇥Lx, respectively. We consider a student-teacher
setting, in which the target output y⇤ is generated from a teacher network,

y⇤ = Ax+ �t⇣. (11)

where �t⇣ is zero mean Gaussian noise that creates a mismatch between the student and the teacher
networks. We implement NP in this network by applying small perturbations to both the hidden
and output layers simultaneously (see Eq. 3 and Appendix B.1). Although the exact learning
dynamics is not tractable for this network, in the limit of large hidden layer size, and under the
assumption that weight updates are dominated by noise, we can use a mean-field approximation to
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Figure 1: Learning dynamics of NP in one hidden layer linear networks. A) Learning dynamics
of node perturbation under various learning rates. Solid lines are empirical results and dotted lines are
theory (Eq. 12). ⌘⇤ is the analytically-estimated critical learning rate. B) The same as A, but plotted
in the phase space spanned by the input weight norm and the error. Lines represent trajectories with
different random seeds. Dotted vertical lines are the threshold 2/co. C) Learning dynamics under
different initial weight norms. In all three panels, we set Lx = 100, Lh = 10000, Ly = 10, and
�2
t = 0. See Appendix C.2 for further details. Simulation codes for the figures are made available at

https://github.com/nhiratani/node_perturbation.

gain considerable insight into the learning dynamics as described below. Our derivation proceeds in
two steps. First, we introduce four order parameters capturing the weight norms kW1k

2
F and kW2k

2
F ,

error kW2W1 �Ak
2
F , and their inner product tr[(W2W1 �A)TW2W1], and approximately write

down the learning dynamics in terms of these order parameters (B.2). Secondly, we reparameterize the
learning dynamics, which leads us to two-variable description of the dynamics (B.3). The derivation
of the mean-field approximation is detailed in Appendix B.

Scalability of NP at the zero teacher noise limit. We first consider zero teacher noise (�t = 0 in
Eq. 11). In a network satisfying Lh � Lx � 1 and Lh � Ly � 1, and using the Xavier-Glorot
initialization (see [37] and Eq. 69), for the first O(L1/3

h ) iterations, the learning dynamics of NP is
described by the following coupled dynamics (see Appendix B.3),

ȧ = co✏, ✏̇ = � (2� coa) a✏, (12)

where ✏ ⌘ 1
LxLy

kW2W1 �Ak
2
F is the loss, a ⌘

1

LxL
1/3
h

kW1k
2
F is the normalized input weight

norm, and co is a positive coefficient proportional to the learning rate (see Eq. 76). This simple
dynamical system captures the learning dynamics of NP well (Fig. 1A; solid lines are simulations,
and dotted lines are Eq. 12). Because ✏ � 0 by definition, the norm a increases monotonically with
time. By contrast, the loss ✏ either decreases or increases depending on whether a is smaller than
2/co or not. When the learning rate ⌘ is fixed to a small value, co is also small. Therefore, the weight
norm a increases slowly (purple and blue lines in Fig. 1B), and the weight norm threshold 2/co is
relatively large (purple and blue vertical dotted lines). Thus, the error converges to zero before the
weight norm crosses the threshold. In contrast, when the learning rate is larger than the critical value
⌘⇤ (defined by Eq. 83), the weight norm surpasses the threshold 2/co before the error converges
to zero; at that point the error starts to go up again (green lines in Fig. 1B). Similarly, if the initial
weight norm is set to a large value, the error rises before converging to zero (green vs. blue lines
in Fig. 1C). This non-monotonic learning dynamics is in contrast to the linear regression setting in
which the error either decreases or increases monotonically throughout learning.

When we optimize the learning rate, we find that the minimum number of training steps required to
reach a target error level, ✏tg , from an initial error, ✏o, under SGD and NP are given by

Tsgd[✏o ! ✏tg] = Lx log(✏o/✏tg), Tnp[✏o ! ✏tg] = LxLy
1 + �o

co

Z atg

ao

da

co(✏tot + a3/3)� a2
,

(13)

where �o, co, ✏tot are O(1) coefficients, and ao and atg are the weight norms under the initial error
✏o and the target error ✏tg, respectively (see Appendix B.3). Notably, the training time Tnp doesn’t
depend on the hidden layer size Lh except for small-size effects on ao and �o (see Eq. 71), indicating
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Figure 2: Scalability of NP in one hidden layer linear networks. A, B) Minimum training time
of SGD (blue) and NP (orange) under a range of hidden (A) and output (B) layer sizes, in a linear
network with one hidden layer. Lines are theory (Eq. 13); points are empirical estimations. In panel
A, Ly = 10; in panel B, Lh = 10000. We used Lx = 100 and �t = 0.0 in both. C) Schematic
figures of a weight update under NP. Blue shade represents the loss landscape (blue: low loss, white:
high loss), and green and red arrows represent good and bad directions, respectively.

that NP doesn’t slow down linearly with the number of perturbed nodes. Indeed, simulations show
that the minimum training time is almost flat when plotted against the hidden layer size (Figs. 2A
and S2A). Moreover, the optimal learning rate in the simulations scales as ⌘ / L�1/3

h , as predicted
(Fig. S2B). In contrast, the training time increases linearly with the output layer size Ly (Fig. 2B).

It may appear puzzling that training time saturates in the large hidden layer size limit (Fig. 2A and
S2A), considering that weight updates under NP are almost random in that limit (Eqs. 6 and 8).
However, as illustrated in Fig. 2C, while the noise in the weight updates (gray circles) increases the
loss for some directions (red arrows), it decreases it for others (green arrows). When the loss function
is strongly convex, there are always more bad directions (red arrows) than good directions (green
arrows), as illustrated in the left panel of Fig. 2C. Therefore, and also because the loss associated with
red arrows is larger than the gain with green arrows in a convex loss, noise is detrimental to learning
on average. Nevertheless, in overparameterized networks, there are a large number of directions
that don’t affect the loss (because the Hessian of an over-parameterized neural network is typically
low rank [34]); such directions are shown in the right panel of Fig. 2C. Since NP noise is mostly
homogeneous, the more overparameterized the network is, the lower the volume of weights space in
which the loss increases. Thus, in an over-parameterized network, NP noise is not as detrimental as
anticipated from convex optimization theory.

Instability of NP in the presence of teacher noise. So far we have focused on the zero-noise limit
(�t = 0). We now investigate the effect of non-zero noise (�t 6= 0) in the teacher network, which
introduces a mismatch between the student and the teacher networks. Our goal is to understand how
this mismatch affects the stability of the learning dynamics. In this setting, the error ✏ decreases only
when (see Eq. 84a)

✏ >
coa�2

t

Lx(2� coa)
. (14)

Thus, even at a very small learning rate (proportional to c0), eventually Eq. 14 will not be satisfied, and
the error will begin to increase. This process is illustrated in Fig. 3A: the loss decreases until it crosses
the dotted lines, which are the nullclines, given by equality in Eq. 14: ✏ = coa�2

t /(Lx(2 � coa)).
Because weight norm a is a monotonically increasing function of time, the right-hand side of Eq.
14 is also monotonically increasing. Thus, this instability occurs faster under a larger learning rate
(green vs blue lines in Fig. 3A).

The black line in Fig. 3B shows the number of iterations it takes until the error starts to increase. At a
learning rate ⌘ > ⌘⇤, the number of iterations scales roughly as ⌘�3 (right side of vertical line), but
the scaling becomes more moderate (/ ⌘�1.5) at a lower learning rate (left side). Moreover, the error
eventually surpasses the initial error level, though that takes a long time when the learning rate is
below the critical value (gray line). Under SGD, the teacher noise affects the learning dynamics in a
qualitatively different manner. Up to a certain learning rate, SGD dynamics is always unstable from
the initial update (filled circles in Fig. 3C), whereas below the critical learning rate, the error keeps
decreasing almost monotonically at least for 106 iterations (open circles).
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Figure 3: Instability of NP in one hidden layer linear networks with teacher noise. A) Learning
dynamics of node perturbation in the presence of teacher noise. Lines are simulations, dotted lines
are Eq. 14. B) The number of iterations until the error reaches a minimum and starts to increase
(black) and until the error goes back to its initial value (gray). Points are simulations and lines are
theory calculated from Eq. 84a. The vertical dashed lines is ⌘⇤. C) The number of iterations until
the error reaches a minimum under SGD. The dashed horizontal line represents the iteration where
simulation was terminated, meaning that on average the error decreased monotonically for at least
106 iterations. D) Learning dynamics under three different hidden layer sizes with (solid lines) and
without (dotted lines) weight normalization. The learning rates were set to the critical rate ⌘⇤ under
�t = 0 (Eq. 83). The dotted lines are almost identical to each other due to the scale invariance. In all
panels we used Lx = 100, Ly = 10, and �2

t = 0.1. In panels A-C, we used Lh = 10000.

Our analysis so far indicates that the instability of NP is triggered by the expansion of the weight
norm. Thus, we expect the system to regain stability if we regularize the weight. Indeed, if we
keep the norm of the incoming weights of each neuron constant, the error converges – unlike for the
un-regularized network (Fig. 3D; solid vs. dotted lines). However, because the weight normalization
induces bias in the weight update, the error no longer goes to zero; instead, it saturates at a finite
value. The effect of this bias is particularly detrimental when the hidden layer size is large, because
strong weight normalization is necessary for a larger network (yellow vs purple lines in Fig. 3D).

5 NP in nonlinear networks solving motor and visual tasks

Our analysis in deep linear networks revealed that NP scales well against over-parameterization,
but the learning dynamics is susceptible to an instability because noise expands the weight norm
monotonically. Weight normalization suppresses this instability, but the normalization also introduces
a bias that impairs scalability. To see if these results generalize to more complex tasks that better
mimic typical credit assignment problems the brain faces, we analyze nonlinear networks solving the
SARCOS [23], MNIST [24], and CIFAR-10 tasks [25].

We first applied NP to the SARCOS dataset, a kinematics dataset collected from a seven degree-of-
freedom SARCOS robotic arm [23, 38, 39]. The task is to predict the torques at the joints (seven-
dimensional output) given their positions, velocities, and accelerations as inputs (21-dimensional
input). We chose this task because NP is previously proposed as a learning algorithm for motor
systems [17, 19, 20]. As expected, NP is indeed noisy, even with mini-batch implementation, resulting
a low cosine similarity with SGD (Fig. 4A; here mini-batch size is 100). In particular, in one-hidden
layer networks the cosine similarity between the NP and SGD weight updates in the hidden layer
fall off as 1/

p
Lh, while the similarity in the output layer stays roughly constant, as predicted by the

theory (Fig. 4A and Eq. 6).

Moreover, learning under NP is indeed susceptible to an instability, as predicted. Under a small
learning rate, the learning dynamics of NP is stable for more than 104 epochs (purple and blue lines
in Fig. 4B), but as the learning rate increases, the error starts to diverge (green lines). Because the
weight norm increases monotonically, we expect NP dynamics to eventually become unstable even
under a small learning rate, though it is difficult to confirm numerically due to the high computational
cost. The learning-rate dependence of this instability is also similar to what we observed in deep
linear networks (compare Fig. 4C with Fig. 3B). At a relatively high learning rate, the error, measured
by the test error, surpasses the initial error level immediately after the error starts to go up (right half
of Fig. 4C; black and gray lines are close to each other). On the other hand, at a lower learning rate,
the error increases slowly after it reaches the minimum (left half of Fig. 4C). This instability is absent
from SGD learning; in that case, learning is either stable or unstable from the beginning (Fig. S3A).
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Figure 4: Nonlinear networks solving SARCOS. A) Cosine similarity between NP and SGD
at various hidden layer widths. Solid and dotted lines are the similarities around the beginning
(✏ = 50.0) and the end (✏ = 5.0) of learning, respectively. B) Learning dynamics of NP under various
learning rates. Shades, which are barely visible at small learning rates, are the standard deviations
over five random seeds. C) The number of epochs until the error starts to increase (black) and the
error goes back to the initial error level (gray). D) Learning dynamics of NP in a space spanned
by the input weight norm and the test error measured in MSE. E) Minimum training time of NP,
Reinforce, and SGD in one hidden layered networks with various hidden layer widths. In dashed
green line, we added perturbation to both the intermediate and output layers. F) NP learning with
(solid) or without (dotted) weight normalization. See Appendix C.2 for the details.

Plotting the test error against the squared weight norm of the input layer kW1k
2
F , we see U-shaped

curves as in deep linear networks (Fig. 4D vs. Fig. 1B and 3A). This result suggests that expansion
of the input weight norm underlies the observed NP instability, even in nonlinear networks.

We next estimated the scalability of NP against the hidden layer width. Under NP, the minimum
training time required for reaching the target (here set to the test error, ✏ = 5.0, which corresponds to
R2 = 0.986, roughly one hundredth of the initial error) depends only weakly on the hidden layer
width (Fig. 4E vs. Fig. 2A; see Fig. S3B for the choice of the optimal learning rates). However,
we also observed that its learning efficiency is about one hundred times worse than SGD (orange
vs. blue lines in Fig. 4E). One key difference between NP and SGD, which may partially explain
this discrepancy, is that NP is a reinforcement learning algorithm that doesn’t use a vector-valued
supervised signal, unlike SGD. To examine its effect, we consider the following reinforcement
learning algorithm [40]. By adding perturbations only to the output layer, the gradient with respect to
the last layer is estimated as

gK ⇡ egK = (`(exK ,xo)� `(xK ,xo)) ⇠K/�. (15)

By back-propagating the gradient, egK , the network can approximately perform SGD based on the
reinforcement signals `(exK) and `(xK). The minimum training time under this reinforcement
learning algorithm is about three times longer than SGD (solid green versus blue lines in Fig. 4E),
though much better than NP. Moreover, assuming that the perturbation originated from intrinsic noise
in the system, we added perturbations to the hidden layer as well. This additional perturbation impairs
the performance of the reinforcement learning algorithm (dashed vs solid green lines). However, NP
is still five to ten times slower than this noisy reinforcement learning (orange vs. dashed green lines).

Our analysis of deep linear networks indicates that weight normalization prevents the instability in
NP learning dynamics. Indeed, in the presence of neuron-wise weight normalization (see Appendix
C.1), learning dynamics becomes stable even when the hidden layer size is large (dotted vs solid lines
in Fig. 4F), but this prevents the error from converging to the target level (✏ = 5.0).
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Figure 5: Nonlinear networks solving MNIST. A) Learning dynamics of NP under various learning
rates. Shades represent the standard deviation over 5 random seeds. B) Minimum training time of NP,
Reinforce, and SGD in one hidden layered networks at various hidden layer widths. Solid and dashed
green lines are reinforcement learning without/with additional perturbation to the hidden layers,
respectively. C) Minimum training time of NP with or without weight normalization in networks
with various depths. Here, we set all the hidden layer sizes to 300 regardless of the depth.

At a low learning rate, NP and SGD show similar error curves (Fig. S3C), but it doesn’t mean that the
two algorithms learn the same representation. We found that the linear dimensionality of the hidden
layer representation, measured by the participation ratio of PCA eigenvalues (see Appendix C.1),
was lower under NP than SGD, even at a low learning rate (Fig. S3D). This result implies that it may
be possible to distinguish the two learning rules, just by observing activity in the hidden layer.

NP exhibits similar learning dynamics when applied to MNIST (Figs. 5 and S4). Under a large
learning rate, learning becomes unstable before reaching high performance (green lines in Fig. 5A).
The minimum training time depends only sub-linearly on the hidden layer width (orange line in
Fig. 5B). Compared to SGD, NP learning is one hundred to one thousand times slower, but the
performance deficit against reinforcement learning is smaller (Fig. 5B). Although the analysis of
the depth dependence is complicated even in the linear setting, we empirically observed that the
minimum learning time of NP scales supra-linearly with respect to depth (orange line in Fig. 5C).
However, this effect can be ameliorated by introducing weight normalization (red line). Lastly, we
applied NP to a convolutional network learning CIFAR-10, and found that weight regularization
stabilizes NP learning dynamics (Fig. S5). However, it only achieves a low accuracy (< 50%) after a
few thousand epochs of training due to its bias and slowness.

6 Discussion

We analyzed the learning dynamics of NP in deep neural networks and revealed its limitation and
potential. This study provides several insights into biologically plausible learning mechanisms.

Firstly, considering biological implementation, it is often useful to measure the performance by the
minimum number of iterations required to reach a target – which could, for instance, be human-level
performance. This is because an algorithm is biologically implausible if it takes an inordinately long
time to reach good performance. For instance, under a sufficiently small learning rate, NP eventually
achieves good performance, since it is unbiased (§3). However, convergence is significantly slower
than SGD (§4 and §5), which limits its utility, especially in the presence of supervising signals.
Though we found the minimum training time of NP is relatively robust against over-parameterization,
its scalability against complex supervised learning tasks is clearly limited due to this slowness.

In the brain, learning often needs to rely on scalar-valued reward signals rather than supervised
signals. Although NP is much slower than SGD, its performance deficit is smaller, when compared to
a reinforcement learning rule using the error backpropagation, though NP is still more than one order
of magnitude slower (Figs. 4E and 5B). Thus, NP might be utilized in a noisy reinforcement learning
problem, such as motor learning, as a building block of learning mechanism.

Our work highlights the importance of theoretical investigations in an idealized scenario, such as a
deep linear network, not only for understanding how the proposed learning algorithm works, but also
for obtaining insight into what kind of regularization is needed for making a learning algorithm works
efficiently. We revealed that neuron-wise weight normalization stabilizes the learning dynamics. By
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contrast, a constant-rate weight decay doesn’t work robustly, because the change in the weight norm
is not constant (black vs colored lines in Fig. S4F).

Finally, it is important to analyze the representation in the hidden layers in the learned circuit for
obtaining an experimentally testable prediction [41, 42]. Although the representation in the output
layer is almost invariant among any successful learning rules by definition, hidden layer representation
may vary depending on the learning rule, particularly in over-parameterized neural networks. Here,
we showed that the linear dimensionality of the hidden layer representation is different between NP
and SGD, even when they achieve similar performance (Figs. S3CD and S4E).
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