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Appendix

This Appendix contains the following additional material. In Section A we report more statistics
regarding the considered datasets. In Section B we report the results for the CKA analysis on the
other datasets not shown in the main paper for space limitations. In Section C we report more details
on the hyperparameters of the models used for our experiments. In Section D we report the results for
the ablation study on the other models not shown in the main paper for space limitations. In Section
E we show the overhead (in terms of training time) incurred by our method. In Section F we report
information on the computing resources used to perform our experimental results, links to access the
datasets, and the licence of the publicly available libraries used in our code.

A Dataset Information

Table 1: Dataset statistics, this table is taken from Yehudai et al. [13], Bevilacqua et al. [1].
NCI1 NCI109

ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%
CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
NUM OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61

PROTEINS DD
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
NUM OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

In Table 1 (taken from [13, 1]) we report the information about the graphs in the considered datasets.
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Figure 1: Average CKA values between the node embeddings generated by the same model for the
original graphs in (a) NCI1, (b) NCI109, (c) PROTEINS, and their coarsened versions. A model
trained with our regularization produces representations of the coarsened graphs that are more aligned
to the representations produced for the original graphs (i.e. it learns to be robust to size shifts).

B Embedding Analysis Results for Other Datasets

In Figure 1 we show the continuation of Figure 2 (b) from the main paper, including plots on
all datasets. In more detail, we report plots for the average CKA [7] values between the node
embeddings for the original graphs and the node embeddings for the coarsened versions of the graphs,
both generated by the same model, for different ratios. The plot shows that a model trained with
our regularization is learning to be more robust to size shifts, as its representation for coarsened
versions of the graphs are much more aligned (higher CKA values) to the representations for the
original graphs compared to a model trained without regularization. This is even more apparent for
low coarsening ratios (i.e., when the shift is stronger), indicating that our regularization is in fact
making the model more robust to size shifts. The reason why the CKA values for a model trained
with and without regularization tend to become similar for small ratios (which is instead not apparent
on the DD dataset shown in Figure 2 (b) in the main paper) is that the graphs in NCI1, NCI109,
and PROTEINS are much smaller than the graphs in DD (see Section A), and hence graphs tend to
become completely uninformative with ratios lower than 0.5.

C Hyperparameters and Evaluation Procedure

Hyperparameters. As we follow exactly the same procedures as previous work [13, 1], we refer
the reader to those papers for an in depth discussion, and we report below the description of the
standard GNN models used in our experiments (which follows from the above mentioned papers).

The GCN[6], GIN [12], and PNA [2] models used in our experiments have 3 graph convolution layers
and a final multi-layer perceptron with a softmax activation function to obtain the predictions. Batch
norm is used in between graph convolution layers, and ReLU is used as activation function. The
networks are trained with a dropout of 0.3, and were tuned using the validation set. In particular
the batch size was chosen between 64 and 128, the learning rate between 0.01, 0.005, and 0.001,
and the network width between 32 and 64. All models are trained with early stopping (taking the
wights related to the epoch with the highest MCC on the validation set), and the different classes
were weighted in the supervised loss function according to the frequency of a class in the training
data (to deal with the imbalance in the data, as explained in the main paper).

When applying our method in Section 3 and in Table 2 and Table 3 in the main paper, we use λ = 0.1
and C = (0.8, 0.9) for all models and datasets. These parameters were taken from a tuning procedure
on the validation set described below.

Tuning and Evaluation Procedure. To identify the values of λ and C to use
for our method, we tried different values (λ = {1.0, 0.1, 0.01, 0.001} and C =
{(0.5), (0.8), (0.9), (0.5, 0.8), (0.5, 0.9), (0.8, 0.9)}) on the validation set using a GIN model on
the PROTEINS dataset. We found that λ = 0.1 and C = (0.8, 0.9) performed best on the validation
set. As the results on the validation sets were good (i.e., they were leading to better performance
with respect to a model trained without regularization), we adopted the same values of λ and C
for all datasets and models to show that our method can work without extensive (and expensive)
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Table 2: Table shows mean (standard deviation)
Matthews correlation coefficient (MCC) for a
GCN model trained with our proposed regulariza-
tion with the Spectral Graph Coarsening (SGC)
strategy applied with different coarsening ratios.

Datasets NCI1 NCI109 PROTEINS DD
Ratio
0.1 0.09± 0.12 0.23± 0.07 0.05± 0.14 0.15± 0.09

0.2 0.17± 0.11 0.23± 0.07 0.05± 0.16 0.20± 0.08

0.3 0.18± 0.10 0.23± 0.07 0.08± 0.18 0.23± 0.07

0.4 0.21± 0.07 0.24± 0.06 0.09± 0.17 0.24± 0.09

0.5 0.23± 0.07 0.22± 0.05 0.21± 0.14 0.27± 0.09

0.6 0.24± 0.05 0.21± 0.06 0.23± 0.17 0.25± 0.08

0.7 0.26± 0.06 0.21± 0.05 0.25± 0.16 0.24± 0.08

0.8 0.27± 0.06 0.20± 0.04 0.29± 0.15 0.27± 0.08

0.9 0.25± 0.07 0.19± 0.05 0.22± 0.14 0.25± 0.09

0.1-0.9 0.15± 0.11 0.21± 0.06 0.09± 0.15 0.21± 0.09

0.5-0.9 0.22± 0.05 0.22± 0.06 0.28± 0.12 0.25± 0.08

0.8-0.9 0.25± 0.06 0.19± 0.06 0.29± 0.13 0.26± 0.07

0.3-0.7 0.21± 0.07 0.22± 0.05 0.10± 0.14 0.23± 0.07

ALL 0.17± 0.08 0.23± 0.09 0.12± 0.16 0.21± 0.09

Table 3: Table shows mean (standard deviation)
Matthews correlation coefficient (MCC) for a
GIN model trained with our proposed regulariza-
tion with the Spectral Graph Coarsening (SGC)
strategy applied with different coarsening ratios.

Datasets NCI1 NCI109 PROTEINS DD
Ratio
0.1 0.07± 0.11 0.04± 0.11 0.26± 0.12 0.22± 0.10

0.2 0.07± 0.11 0.07± 0.11 0.30± 0.10 0.24± 0.12

0.3 0.07± 0.11 0.10± 0.09 0.29± 0.15 0.25± 0.09

0.4 0.02± 0.13 0.09± 0.09 0.31± 0.15 0.24± 0.09

0.5 0.07± 0.11 0.10± 0.11 0.32± 0.12 0.25± 0.09

0.6 0.02± 0.11 0.08± 0.07 0.34± 0.12 0.26± 0.10

0.7 0.01± 0.09 0.09± 0.06 0.31± 0.14 0.25± 0.11

0.8 0.15± 0.10 0.15± 0.07 0.36± 0.11 0.27± 0.08

0.9 0.22± 0.08 0.19± 0.05 0.34± 0.10 0.25± 0.10

0.1-0.9 0.09± 0.10 0.05± 0.09 0.32± 0.15 0.22± 0.10

0.5-0.9 0.03± 0.10 0.09± 0.07 0.32± 0.13 0.23± 0.09

0.8-0.9 0.23± 0.08 0.20± 0.05 0.36± 0.11 0.25± 0.09

0.3-0.7 0.05± 0.12 0.08± 0.09 0.26± 0.15 0.24± 0.10

ALL 0.05± 0.12 0.11± 0.09 0.25± 0.16 0.23± 0.10

Table 4: Table shows mean (standard deviation)
Matthews correlation coefficient (MCC) for a
GCN model trained with our proposed regular-
ization and different coarsening strategies: Spec-
tral Clustering (SC), Spectral Graph Coarsening
(SGC), Multilevel Graph Coarsening (MLGC),
K-Means (KMEANS).

Datasets NCI1 NCI109 PROTEINS DD
GCN-SGC 0.25± 0.06 0.19± 0.06 0.29± 0.13 0.26± 0.07

GCN-MLGC 0.21± 0.07 0.21± 0.06 0.27± 0.14 0.25± 0.06

GCN-SC 0.28± 0.07 0.18± 0.06 0.24± 0.16 0.24± 0.07

GCN-KMEANS 0.28± 0.06 0.18± 0.05 0.25± 0.15 0.24± 0.07

Table 5: Table shows mean (standard deviation)
Matthews correlation coefficient (MCC) for a
GIN model trained with our proposed regular-
ization and different coarsening strategies: Spec-
tral Clustering (SC), Spectral Graph Coarsening
(SGC), Multilevel Graph Coarsening (MLGC),
K-Means (KMEANS).

Datasets NCI1 NCI109 PROTEINS DD
GIN-SGC 0.23± 0.08 0.20± 0.05 0.36± 0.11 0.25± 0.09

GIN-MLGC 0.22± 0.07 0.19± 0.06 0.36± 0.10 0.25± 0.10

GIN-SC 0.08± 0.11 0.07± 0.08 0.32± 0.12 0.21± 0.10

GIN-KMEANS 0.21± 0.09 0.20± 0.06 0.35± 0.08 0.28± 0.09

hyperparameter tuning. It is possible that dataset-specific and model-specific tuning can lead to
higher results.

We first obtained the results for Table 1, Figure 2, Table 2, and Table 3, in the main paper. Then, only
afterwards, we performed the ablation study. The ablation is used to understand the impact of the
components of our method only after having evaluated it, as is the standard procedure for ablation
studies.

D Full Ablation Study Results

We report the results of the ablation study also for the GIN and GCN models.

Changing Size of Coarsened Graphs. We report in Table 2 and Table 3 the performance of a GCN
[6] and GIN [12] model when trained with our regularization strategy with different coarsening ratios
Cr. All other hyperparameters are kept the same as for the main results in our paper. As for the PNA
model shown in the main paper, we notice an overall trend in which the performance decreases as
the coarsening ratio decreases. This follows intuitively as very low coarsening ratios may lead to
uninformative graphs. Furthermore we notice that using all ratios (from 0.1 to 0.9) is usually not
effective and setting C = {0.8, 0.9} seems a good default option.

Changing Coarsening Method. In Table 4 and Table 5 we report the performance of a GCN [6]
and a GIN [12] model trained with our regularization using different coarsening functions. All other
parameters are kept the same. As for the PNA shown in the main paper we notice that our method is
quite robust to the choice of the coarsening function. However, in most cases, specialised methods
like SGC and MLGC provide the best results.
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Table 6: Average (over ten runs) time (s) for performing one epoch during training of standard GNN
models trained with (✓) and without (✗) our regularization method. Standard deviation is not reported
as it is small and similar for all results.

Dataset NCI1 NCI109 PROTEINS DD
Reg. ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

PNA 2.02 3.1 3.21 4.94 2.33 3.56 3.45 4.88
GCN 1.92 2.91 2.14 3.88 2.29 3.41 3.26 4.74
GIN 1.95 3.02 2.15 3.86 2.3 3.42 3.41 4.75

E Training Times

Table 6 shows the time in seconds for training a model with and without our regularization. We notice
that our method introduces an average 50% overhead in training time.

F Compute and Licence Information

All our experiments were performed on a machine with a Nvidia 1080Ti GPU and a CPU cluster
equipped with 8 CPUs 12-core Intel Xeon Gold 5118@2.30GHz with 1.5Tb of RAM.

The TUDataset [9] we used for our experiments are publicly available online1. Our code makes use
of the following publicly available libraries: PyTorch [10] (BSD-Style License), PyTorch Geometric
[4] (MIT License), PyTorch Lightning [3] (Apache-2.0 license), scikit-learn [11] (BSD-3 license),
numpy [5] (BSD-3 license), ray[tune] [8] (Apache 2.0).
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