
BYOL-Explore:
Exploration by Bootstrapped Prediction

Zhaohan Daniel Guo∗
DeepMind

danielguo@deepmind.com

Shantanu Thakoor∗
DeepMind

Miruna Pîslar∗
DeepMind

Bernardo Avila Pires∗
DeepMind

Florent Altché∗
DeepMind

Corentin Tallec∗
DeepMind

Alaa Saade
DeepMind

Daniele Calandriello
DeepMind

Jean-Bastien Grill
DeepMind

Yunhao Tang
DeepMind

Michal Valko
DeepMind

Rémi Munos
DeepMind

Mohammad Gheshlaghi Azar∗
DeepMind

mazar@deepmind.com

Bilal Piot∗
DeepMind

piot@deepmind.com

Abstract

We present BYOL-Explore, a conceptually simple yet general approach for
curiosity-driven exploration in visually-complex environments. BYOL-Explore
learns a world representation, the world dynamics, and an exploration policy all-
together by optimizing a single prediction loss in the latent space with no additional
auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a
challenging partially-observable continuous-action hard-exploration benchmark
with visually-rich 3-D environments. On this benchmark, we solve the majority of
the tasks purely through augmenting the extrinsic reward with BYOL-Explore’s
intrinsic reward, whereas prior work could only get off the ground with human
demonstrations. As further evidence of the generality of BYOL-Explore, we show
that it achieves superhuman performance on the ten hardest exploration games in
Atari while having a much simpler design than other competitive agents.

1 Introduction

Exploration is essential to reinforcement learning (RL) [67], especially when extrinsic rewards are
sparse or hard to reach. In rich environments, the variety of meaningful directions of exploration
makes it impractical to visit everything. Thus, the question becomes: how can an agent determine
which parts of the environment are interesting to explore? One promising paradigm to address
this challenge is curiosity-driven exploration. It consists of (i) learning a predictive model of some
information about the world, called a world model, and (ii) using discrepancies between predictions
of the world model and real experience to build intrinsic rewards [59, 66, 60, 34, 51, 52, 2]. An
RL agent optimizing these intrinsic rewards drives itself towards states where the world model is
incorrect or imperfect, generating new trajectories on which the world model can be improved. In
other words, the properties of the world model influence the quality of the exploration policy, which
in turn gathers new data to shape the world model itself. Thus, it can be important not to treat learning
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the world model and learning the exploratory policy as two separate problems, but instead altogether
as a single joint problem to solve.

In this paper, we present BYOL-Explore, a curiosity-driven exploration algorithm whose appeal
resides in its conceptual simplicity, generality, and high performance. BYOL-Explore learns a world
model with a self-supervised prediction loss, and uses the same loss to train a curiosity-driven
policy, thus using a single learning objective to solve both the problem of building the world model’s
representation and the curiosity-driven policy. Our approach builds upon Bootstrap Your Own Latent
(BYOL), a latent-predictive self-supervised method which predicts an older copy of its own latent
representation. This bootstrapping mechanism has already been successfully applied in computer
vision [20, 56], graph representation learning [71], and representation learning in RL [24, 62].
However, the latter works focus primarily on using the world-model for representation learning in RL
whereas BYOL-Explore takes this one step further, and not only learns a versatile world model but
also uses the world model’s loss to drive exploration.

We evaluate BYOL-Explore on DM-HARD-8 [22], a suite of 8 complex first-person-view 3-D tasks
with sparse rewards. These tasks demand efficient exploration since in order to reach the final
goal and obtain the reward they require completing a sequence of precise, orderly interactions with
the physical objects in the environment, unlikely to happen under a vanilla random exploration
strategy (see Fig. 2 and the videos in supplementary materials). To show the generality of our
method we also evaluate BYOL-Explore on the ten hardest exploration Atari games [5]. In all these
domains, BYOL-Explore outperforms other prominent curiosity-driven exploration methods, such as
Random Network Distillation (RND) [8] and Intrinsic Curiosity Module (ICM) [51]. In DM-HARD-8,
BYOL-Explore achieves human-level performance in the majority of the tasks using only the extrinsic
reward augmented with BYOL-Explore’s intrinsic reward, whereas previously significant progress
required human demonstrations [22]. Remarkably, BYOL-Explore achieves this performance using
only a single world model and a single policy network concurrently trained across all tasks. Finally,
as further evidence of its generality, BYOL-Explore achieves superhuman performance in the ten
hardest exploration Atari games [5] while having a simpler design than other competitive agents,
such as Agent57 [3, 4] and Go-Explore [14, 15].2

2 Related Work

There is a large body of research in building world models either for planning [66, 63, 27, 26, 61],
representation learning [62, 24, 41, 19] or curiosity-driven exploration [59, 68, 60, 34, 51, 52, 2, 63,
21, 65]. Most works consider world models that predict the entire observations [58, 48, 16, 19],
which necessitates a loss in pixel space when observations are visually complex images. Some
works have considered predicting latent representations, whether they are random projections [7, 8],
or learned representations from a separate model, such as an inverse dynamics model [51] or an
auto-encoder [25, 7]. Finally, some RL works [61] have focused on predicting lower-dimensional
quantities such as the extrinsic reward, the action-selection policy, and the value function to build a
world model.

Our BYOL-Explore’s world model operates in latent space and uses the same loss both for repre-
sentation and intrinsic reward, simplifying and unifying representation learning and exploration.
BYOL-Explore’s world model is derived from recent self-supervised representation learning meth-
ods [20, 56, 55, 71] and is similar to the ones in self-supervised RL [62, 24]. These previous works
focused on the benefit of shaping representations for policy learning and have not looked into explo-
ration. We build on this previous work to show that we can take the impact of a good representation
technique further and use it to drive exploration.

While our approach belongs to the curiosity-driven exploration paradigm [50, 42, 49, 59, 5, 68, 60,
34, 51, 52, 2, 63], other exploration paradigms have also been proposed. The maximum entropy
paradigms try to steer the agent to a desired distribution of states (or state-action pairs) that maximizes
the entropy of visited states [29, 69, 70, 23]. The goal-conditioned paradigm has the agent set its own
goal to drive exploration [57, 1, 17, 75, 47, 12, 82, 28, 15, 54, 80, 53]. The reward-free exploration

2Contrary to Agent57, BYOL-Explore neither requires episodic memory nor using an additional bandit
mechanism to mix long-term and short-term rewards. As opposed to Go-Explore, we do not have to explicitly
keep in memory a set of diverse goal-states to visit, which requires setting additional hyper-parameters that are
environment-dependent.
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paradigm consists of training an agent to explore the environment such that it would be able to
produce a near-optimal policy for any possible reward function [37, 39, 45, 78, 74, 9, 79, 81].

3 Method

Our agent has three components: a self-supervised latent-predictive world-model called
BYOL-Explore, a generic reward normalization and prioritization scheme, and an off-the-shelf
RL agent that can optionally share its own representation with BYOL-Explore’s world model.

3.1 Background and Notation

We consider a discrete-time interaction process [44, 35, 36, 13] between an agent and its environment
where, at each time step t ∈ N, the agent receives an observation ot ∈ O and generates an action
at ∈ A. We consider an environment with stochastic dynamics p : H × A → ∆O

3 that maps a
history of past observations-actions and a current action to a probability distribution over future
observations. More precisely, the space of past observations-actions isH =

⋃
t∈NHt whereH0 = O

and ∀t ∈ N∗,Ht+1 = Ht ×A×O. We consider policies π : H → ∆A that maps a history of past
observations-actions to a probability distribution over actions. Finally, an extrinsic reward function
re : H×A → R maps a history of past observations-actions to a real number.

3.2 Latent-Predictive World Model

BYOL-Explore world model is a multi-step predictive world model operating at the latent level. It is
inspired by the self-supervised learning method BYOL in computer vision and adapted to interactive
environments (see Section 3.1). Similar to BYOL, BYOL-Explore model trains an online network
using targets generated by an exponential moving average (EMA) target network. However, BYOL
obtains its targets by applying different augmentations to the same observation as the online repre-
sentation, whereas BYOL-Explore model gets its targets from future observations processed by an
EMA of the online network, with no hand-crafted augmentation. Also BYOL-Explore model, uses
a recurrent neural network (RNN) [33, 11] to build the agent state, i.e., the state of RNN, from the
history of observations, whereas the original BYOL only uses a feed-forward network for encoding the
observations. In the remainder of this section, we will explain: (i) how the online network builds
future predictions, (ii) how targets for our predictions are obtained through a target network, (iii) the
loss used to train the online network, and (iv) how we compute the uncertainties of the world model.

EMA Target
Encoder

Encoder

Open-loop 
RNN cell

Open-loop 
RNN cell

Open-loop 
RNN cell

Closed-loop 
RNN cell

EMA Target
Encoder

EMA Target
Encoder

Predictor Predictor Predictor

Figure 1: BYOL-Explore’s Neural Architecture (see main text for details).

3We write ∆Y the set of probability distributions over a set Y .
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(i) Future Predictions. The online network is composed of an encoder fθ that transforms an
observation ot into an observation-representation fθ(ot) ∈ RN , where N ∈ N∗ is the embedding
size. The observation-representation fθ(ot) is then fed alongside the previous action at−1 to a
RNN cell hcθ that is referred as the close-loop RNN cell. It computes a representation bt ∈ RM of
the history ht ∈ Ht seen so far as bt = hcθ(bt−1, at−1, fθ(ot)), where M ∈ N∗ is the size of the
history-representation. Then, the history-representation bt is used to initialize an open-loop RNN
cell hoθ that outputs open-loop representations (bt,k ∈ RM )K−1

k=1 as bt,k = hoθ(bt,k−1, at+k−1) where
bt,0 = bt and K is the open-loop horizon. The role of the open-loop RNN cell is to simulate future
history-representations while observing only the future actions. Finally, the open-loop representation
bt,k is fed to a predictor gθ to output the open-loop prediction gθ(bt,k) ∈ RN at time t+ k that plays
the role of our future prediction at time t+ k.

(ii) Targets and Target Network. The target network is an observation encoder fϕ whose param-
eters are an EMA of the online network’s parameters θ. It outputs targets fϕ(ot+k) ∈ RN that are
used to train the online network. After each training step, the target network’s weights are updated
via an EMA update ϕ← αϕ+ (1− α)θ where α is the target network EMA parameter. A sketch of
the neural architecture is provided in Fig. 1, with more details in App. A.

(iii) Online Network Loss Function. Suppose our RL agent collected a batch of trajectories(
(ojt , a

j
t )
T−1
t=0

)B−1

j=0
, where T ∈ N∗ is the trajectory length and B ∈ N∗ is the batch size. Then, the

loss LBYOL-Explore(θ) to minimize is defined as the average cosine distance between the open-loop
future predictions gθ(b

j
t,k) and their respective targets fϕ(o

j
t+k) at time t+ k:

LBYOL-Explore(θ, j, t, k) =

∥∥∥∥∥ gθ(b
j
t,k)

∥gθ(bjt,k)∥2
− sg

(
fϕ(o

j
t+k)

∥fϕ(ojt+k)∥2

)∥∥∥∥∥
2

2

,

LBYOL-Explore(θ) =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

1

K(t)

K(t)∑
k=1

LBYOL-Explore(θ, j, t, k),

where K(t) = min(K,T − 1− t) is the valid open-loop horizon for a trajectory of length T and sg
is the stop-gradient operator.

(iv) World Model Uncertainties The uncertainty associated to the transition (ojt , a
j
t , o

j
t+1) is the

sum of the corresponding prediction losses:

ℓ jt =
∑

p+q=t+1

LBYOL-Explore(θ, j, p, q),

where 0 ≤ p ≤ T − 2, 1 ≤ q ≤ K and 0 ≤ t ≤ T − 2. This accumulates all the losses corresponding
to the world-model uncertainties relative to the observation ojt+1. Thus, a timestep receives intrinsic
reward based on how difficult its observation was to predict from past partial histories.

Intuition on why BYOL-Explore learns a meaningful representation. The intuition behind
BYOL-Explore is similar in spirit to the one behind BYOL. In early training, the target network is
initialized randomly, and so BYOL-Explore’s online network and the closed-loop RNN are trained
to predict random features of the future. This encourages the online observation representation to
capture information that is useful to predict the future. This information is then distilled into the
target observation encoder network through the EMA slow copy mechanism. In turn, these features
become targets for the online network and predicting them can further improve the quality of the
online representation. For further theoretical and empirical insights on why the bootstrap latent
methods learn non-trivial representations see, e.g., [72, 76].

3.3 Reward Normalization and Prioritization Scheme

Reward Normalization. We use the world model uncertainties ℓ jt to generate an intrinsic reward.
To counter the non-stationarity of the uncertainties during training, we adopt the same reward
normalization scheme as RND [8] and divide the raw rewards ((ℓ jt )

T−2
t=0 )B−1

j=0 by an EMA estimate of
their standard deviation σr. The normalized rewards are ℓ jt /σr. Details are provided in App. A.3.
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Reward Prioritization. In addition to normalizing the rewards, we can optionally prioritize them
by optimizing only the rewards with highest uncertainties and nullifying rewards with the lowest
uncertainties. Because of the transient nature of the intrinsic rewards, this allows the agent to focus
first on parts of the environment where the model is not accurate. Later on, if the previously nullified
rewards remain, they will naturally become the ones with highest uncertainties and be optimized. This
mechanism allows the agent to optimize only the source of high uncertainties and not optimize all
sources of uncertainties at once. To do so, let us denote by µℓ/σr

the adjusted EMA mean relative to
the successive batch of normalized rewards ((ℓ jt /σr)

T−2
t=0 )B−1

j=0 . We use µℓ/σr
as a clipping threshold

separating high and low-uncertainty rewards. Then, the clipped and normalized reward that plays the
role of intrinsic reward is: rji,t = max(ℓ jt /σr − µℓ/σr

, 0)·

3.4 Generic RL Algorithm and Representation Sharing

BYOL-Explore can be used in conjunction with any RL algorithm for training the policy. In addition
to providing an intrinsic reward, BYOL-Explore can further be used to shape the representation learnt
by the RL agent by directly sharing some components of the BYOL-Explore world model with the
RL model. For instance, consider a recurrent agent composed of an encoder fψ, an RNN cell hcψ, a
policy head πψ and a value head vψ that are shaped by an RL loss. Then, we can share the weights θ
of the BYOL-Explore world model and the weights ψ of the RL model at the level of the encoder
and the RNN cell: fψ = fθ and hcθ = hcψ and let the joint representation be trained via both the RL
loss and BYOL-Explore. In our experiments, we will show results for both the shared and unshared
settings. Architectural details are provided in Appendix A.

4 Experiments

We evaluate the algorithms on benchmark task-suites known to contain hard exploration challenges.
These benchmarks have different properties in terms of the complexity of the observations, partial
observability, and procedural generation, allowing us to test the generality of our approach.

Atari Learning Environment [6]. This is a widely used RL benchmark, comprising approximately
50 Atari games. These are 2-D, fully-observable, (fairly) deterministic environments for most of the
games but have a very long optimization horizon (episodes last for an average of 10000 steps) and
complex observations (preprocessed greyscale images which are 84× 84 byte arrays). We select the
10 hardest exploration games [5] to conduct our experiments: Alien, Freeway, Gravitar, Hero,
Montezuma’s Revenge, Pitfall, Private Eye, Qbert, Solaris and Venture.

Hard-Eight Suite [22]. This benchmark comprises 8 hard exploration tasks, originally built to
emphasize the difficulties encountered by an RL agent when learning from sparse rewards in a
procedurally-generated 3-D world with partial observability, continuous control, and highly variable
initial conditions. Each task requires the agent to interact with specific objects in its environment
in order to reach a large apple that provides reward (see Fig. 2). Being procedurally-generated,
properties such as object shapes, colors, and positions are different every episode. We provide videos
in the supplementary materials to ground the difficulty of these tasks. Note that the current best RL
agents that solve these tasks require a small (but non-zero) amount of human expert demonstrations.
Without demonstrations or reward shaping, state-of-the-art deep RL algorithms, such as R2D2 [38],
do not get positive reward signal on any of the tasks. In our case, we train a single RL agent and a
single world model to tackle the 8 tasks all-together, making for a challenging multi-task setting.

4.1 Experimental Setup

At a high level, BYOL-Explore has 4 main hyper-parameters: the target network EMA parameter α,
the open-loop horizon K, choosing to clip rewards and to share the BYOL-Explore representation
with the RL network. To better understand what part of BYOL-Explore is essential to perform well,
we run 4 ablations. Each ablation corresponds to BYOL-Explore where only one hyper-parameter
has been changed. The 4 ablations are namely Fixed-targets where the target network EMA parameter
is set to α = 1, Horizon=1 where the horizon is set to K = 1, No clipping where we do not use
clipping for the intrinsic rewards and No sharing where we trained separately the RL network and the
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Look for bat Pick bat Throw ball down

Pick ball Place ball on sensor Enter chamber Pick apple (final goal)

1st frame

Figure 2: 1st-person-view snapshots of the human player solving Baseball task. They are ordered
chronologically from left to right and top to bottom. Each image depicts a specific stage of the task.

BYOL-Explore’s world model. In addition to BYOL-Explore, we also run as prominent baselines
RND, ICM (see App. B for details), and pure RL which is an RL agent only using extrinsic rewards.

Finally, we run experiments on two different evaluation regimes. The first regime uses a mixed
reward function rt = re,t + λri,t which is a linear combination of the normalized extrinsic rewards
re,t and intrinsic rewards computed by the agent ri,t with mixing parameter λ. This may be the most
important regime for a practitioner as we can see if our intrinsic rewards help improve performance,
with respect to the extrinsic rewards, compared to the pure RL agent. The second regime is fully
self-supervised where only the intrinsic reward ri,t is optimized. This regime gives us a sense of how
pure exploration methods perform in complex environments.

Choice of RL algorithm. We use VMPO [64] as our RL algorithm. VMPO is an efficient on-policy
optimization method that has achieved strong results across both discrete and continuous control
tasks, and is thus applicable to all of the domains we consider. Further details regarding the RL
algorithm setup and hyperparameters are provided in Appendix C.

Performance Metrics. We evaluate performance in terms of the agent score at a number of
observations/frames t, Agentscore(t), as measured by undiscounted episode return. The number of
frames t corresponds to all the frames generated by all the actors by interacting with the environment,
even the skipped ones. Frames/observations can be skipped if there is an action repeat which is the
case in Atari where the action repeat is of 4.

We define the highest agent score through training as Agentscore = maxt Agentscore(t), as done
in [18, 3]. We define, for each game, the Human Normalized Score (HNS) at number of frame t:
HNS(t) = Agentscore(t)−Randomscore

Humanscore−Randomscore
as well as the HNS over the whole training: HNS = maxt HNS(t). A

HNS higher than 1 means superhuman performance on a specific task. We similarly define the CHNS
Score as HNS clipped between 0 and 1.

4.2 Atari Results

In these experiments, we set the target EMA rate α = 0.99 and open-loop horizon K = 8. We
use λ = 0.1 to combine the intrinsic and extrinsic rewards. We follow the classical 30 random
no-ops evaluation regime [46, 73], and average performance over 10 episodes and over 3 seeds. This
evaluation regime does not use sticky actions [43].

Fig. 3 (left) shows that BYOL-Explore is almost superhuman on the 10-hardest exploration games and
outperforms the different baselines of RND, ICM, and pure RL. Fig. 3 (right) compares BYOL-Explore
against its ablations to gain finer insights into our method. The No clipping ablation performs
comparably, showing that the prioritization of intrinsic rewards is not necessary on Atari tasks.
Similarly, the Horizon=1 ablation performs slightly better, indicating that simply predicting one-step
latents is sufficient to explore efficiently on the fully-observable Atari tasks. The Fixed Targets
ablation performs much worse, showing that our approach of predicting learned targets (rather than
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Figure 3: Mean CHNS(t) score across the tasks in Atari. Left: BYOL-Explore and the baselines in
the mixed regime for Atari. Right: BYOL-Explore and its ablations in the mixed regime.

fixed random projections) is vital for good performance. It is also worth noting that all the ablations
except Fixed Targets outperform all of our baselines, demonstrating the robustness of our approach.

Finally, because the Horizon=1 ablation was close to superhuman on Atari, we run the same
configuration but double the length of the sequences on which we train from 64 to 128 (also doubling
memory requirements while learning). With this small adjustment, this agent (BYOL-Explore (big))
becomes superhuman on all of the 10-hardest exploration games.

Figure 4: Number of rooms visited in
Montezuma’s Revenge during training
in the self-supervised regime over 3 seeds.

Purely intrinsic exploration. We test how
BYOL-Explore behaves when only given intrin-
sic rewards without any extrinsic signal on the
well-known Montezuma’s Revenge game. We
measure exploratory behavior in terms of the number
of different rooms of the dungeon the agent is able
to explore over its lifetime. Note that accessing later
rooms requires navigating complex dynamics such as
collecting keys to open doors, avoiding enemies, and
carefully traversing rooms filled with traps such as
timed lasers. Figure 4 shows how much room coverage
is achieved during training when no extrinsic reward
is used, showing that BYOL-Explore explores further
than the best result reported by RND [8]. Importantly, we
use the episodic setting for intrinsic rewards whereas
the published RND results considers the non-episodic
setting for intrinsic rewards — facilitating exploration
as the agent is less risk-averse. Therefore, our setting
could be considered even more challenging. Our agent
explores more than 20 rooms on average versus 17
with best published RND results. As expected in the
episodic setting, our RND re-implementation visits even fewer rooms. However, we can reproduce the
published RND results in the episodic setting when using recurrent policies.

Further results. More fine-grained results are reported in App D.1. We report, in Fig.11 and
in Fig.12, the agent scores learning curves for each game. Tab. 1 and Tab. 2 have agent score at
the end of training. Finally, Tab. 3 and Tab. 4 show the mean CHNS and different statistics (mean
and percentiles) of the HNS across the selected games. An interesting finding from examining the
HNS is that clipping and longer-horizon predictions are critical for very high scores on some games
such as Montezuma’s Revenge or Hero. BYOL-Explore has a median HNS of 331.98 compared to
the No-clipping ablation and the Horizon=1 which have a median HNS of only 181.39 and 199.80
respectively. Therefore, while clipping is not necessary to get to human-level performance, it is still
crucial to achieve top performance. We also provide further results regarding the pure exploration
setting on all 10 games in App. D.2.
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4.3 Atari’s results in the Presence of Stochastic Distractors

Stochastic distractors or noise are well known to break intrinsic curiosity methods based on prediction
error of future frames. This is because the prediction squared-error loss of a future frame has an
irreducible component which corresponds to the variance of the future frame distribution [51, 52].
However, because BYOL-Explore is not a prediction error method at the frame-level but at the latent
level, we can hope that some noise present in the frame can be removed from the latent embedding.
More specifically, we hypothesize that BYOL-Explore removes noisy features of the frame that
are not useful to minimize the BYOL-Explore loss in order to better minimize this loss. Those
are features that are not useful for future predictions. On the other hand, since RND uses a random
network to build it targets, RND by construction cannot actively remove noisy features from its targets.
To better show this, we slightly changed the Atari environment to generate noisy frames. More
precisely, the new observation is made of two parts of the same size (84× 84), on the right side we
have noise and on the left we have the original Atari image. Each time the no-op action is chosen
by the agent, a new noise is sampled. The noise is composed of 14× 14 blocks of 6× 6 pixels. Each
block of pixel is assigned a uniform random value between 0 and 255 if a new noise is sampled. We
provide a frame of this modified Atari environment in Fig. 5 (left).

Figure 5: Experiments on noisy Atari. Left: Noisy Atari environment. Right: Learning curves
in terms of agent score for BYOL-Explore and RND for noisy and normal Atari on Montezuma’s
Revenge, averaged over 10 episodes and 3 seeds.

We train BYOL-Explore and RND on this noisy and normal version of Atari on the game
Montezuma’s revenge (we do not include a comparison with ICM because it was already not
performing well in the normal version). To get better results for BYOL-Explore, we increase the
predictor to have 3 hidden layers of 512 instead of 1 hidden layer of 256. The results are reported in
Fig. 5 (right). We observe that BYOL-Explore is perfectly able to deal with that type of controllable-
noise whereas RND is not and completely flat-lined in the noisy environment because the agent is
attracted to the noise and keeps repeating the no-op action.

4.4 DM-HARD-8 Results

In these experiments, we set the target EMA rate α = 0.99 and open-loop horizon K = 10. We use
λ = 0.01 to combine the intrinsic and extrinsic rewards. In contrast to prior work [22], we perform
experiments in the more challenging multi-task regime, training a single agent to solve all eight tasks.
At the beginning of each episode, a task is drawn uniformly at random from the suite.

In Fig. 6 (left) we report the mean CHNS(t) across the tasks, averaged over 3 seeds. We see that
BYOL-Explore outperforms the baselines of RND, ICM, and pure RL by a large margin. Fig. 6 (right)
compares the performance of BYOL-Explore to its various ablations. Note that the No-clipping
ablation performs similarly to BYOL-Explore in terms of CHNS. However, unlike the fully-observable
Atari tasks, the Horizon=1 ablation learns considerably slower and achieves lower final performance
(see also our extended ablations on the horizon length in Fig. 15 in App. D.3). We note once again that
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the BYOL-Explore bootstrapping mechanism for learning representations is essential, as confirmed
by the poor performance of the Fixed-targets ablation. Due to computational limitations, we did not
run the No Sharing ablation, as using separate networks requires twice the memory.

Figure 6: Mean CHNS(t) score across the tasks in the DM-HARD-8 suite. Left: BYOL-Explore against
baselines: ICM, RND and Pure RL. Right: BYOL-Explore against various ablations.

We now analyze our method more closely by examining per-task performance. The full learning
curves for each task can be found in Fig. 7 for BYOL-Explore and the main baselines and in
Appendix D.3 (see Fig. 14) for the various ablations. First, we take note that other curiosity-driven
methods (ICM and RND) cannot get any positive score on the majority of the DM-HARD-8 tasks, even
with additional hyperparameter tuning and reward prioritizing (see Fig. 17 and Fig. 18 in App. D.3).

In contrast, we see that BYOL-Explore achieves strong performance on five out of the eight hard
exploration tasks. Importantly, BYOL-Explore achieves this without human demonstrations, which
was not the case in prior work [22]. BYOL-Explore even surpasses humans on 4 tasks, namely
Navigate cubes, Throw-across, Baseball, and Wall Sensors (see Tab. 9 in App. D.3 for
details). Most impressively, BYOL-Explore can solve Throw-across, which is a challenging task
even for a skilful human player and was not solvable in prior work without collecting additional
successful human demonstrations [22].

Interestingly, note that on the Navigate Cubes task, both RND and the Fixed-targets ablation achieve
maximum performance alongside BYOL-Explore. We argue that this is because the prediction of
random projections (either at the same step as done by RND or multi-step as done by BYOL-Explore)
leads to the policy learned performing spatial, navigational exploration — this is the kind of behavior
required to explore well on the Navigate Cubes task. In contrast, the other tasks require exploratory
behavior involving interaction with objects and the use of tools, where both RND and the Fixed-targets
ablation fail. Finally, we observe that two games, namely Remember Sensor and Push Blocks,
are particularly challenging, where all of our considered methods perform poorly. We hypothesize
that this is due to the larger variety of procedurally generated objects spawned in these levels, and the
need to remember previous cues in the environment leading to a hard credit assignment problem.

Purely intrinsic exploration. Each of the DM-HARD-8 tasks has complex dynamics and object
interactions, making it difficult to assess qualitatively the behavior of purely intrinsically motivated
exploration. Nevertheless, for completeness, we provide results of BYOL-Explore trained only with
intrinsic rewards in App. D.3, showing that it does achieve some positive signal on the Drawbridge
and Wall Sensor tasks (see Fig. 19).

5 Conclusion

We showed that BYOL-Explore is a simple curiosity-driven exploration method that achieves excel-
lent performance on hard exploration tasks with fairly deterministic dynamics. BYOL-Explore is a
multi-step prediction error method at the latent level that relies on recent advances in self-supervised
learning to train its representation as well as its world-model without any additional loss. In Atari,
BYOL-Explore achieves superhuman performance on the 10-hardest exploration games while being
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Figure 7: Agent’s score for each task in the DM-HARD-8 suite for BYOL-Explore against baselines.
Shaded areas correspond to the minimum and maximum values across three seeds.

of much simpler design than other superhuman agents. Moreover, BYOL-Explore substantially
outperforms previous exploration methods on DM-HARD-8 navigation and manipulation tasks in a
3-D, multi-task, partially-observable and procedurally-generated environment. This shows the gener-
ality of our algorithm to handle either 2-D or 3-D, single or multi-task, fully or partially-observable
environments. While one main limitation of our algorithm is that it is not designed to fully handle
stochasticity in environments (e.g. sticky actions), we show that BYOL-Explore is robust to some
simple kinds of controllable noise (’TV-noise’) since operating in latent space allows the latent
representation to filter it out.

In the future, we would like to improve performance in DM-HARD-8 and to demonstrate the generality
of our method by extending it to other domains. In DM-HARD-8, we believe we can improve
performance by scaling up the world model and finding better ways to trade off exploration and
exploitation. Beyond DM-HARD-8, there are opportunities to tackle further challenges, most notably
highly-stochastic and procedurally-generated environment dynamics such as NetHack [40]. To
do so, we are investigating different mechanisms to adapt prediction-based methods to stochastic
environments in order to only use the epistemic uncertainty as an intrinsic reward and discard the
aleatoric uncertainty.
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