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In this Appendix, we first provide detailed description of the GET3D network architecture (Sec. A.1-
A.4) along with the training procedure and hyperparameters (Sec. A.6). We then describe the datasets
(Sec. B.1), baselines (Sec. B.2), and evaluation metrics (Sec. B.3). Additional qualitative results,
ablation studies, robustness analysis, and results on the real dataset are available in Sec. C. Details
and additional results of the material generation for view-dependent lighting effects are provided in
Sec. D. Sec E contains more information about the text-guided shape generation experiments as well
as more additional qualitative results. The readers are also kindly referred to the accompanying video
(demo.mp4) that includes 360-degree renderings of our results (more than 400 generated shapes for
each category), detailed zoom-ins, interpolations, material generation, and shapes generated with
text-guidance.

A Details of Our Model

In the main paper, we have provided a high level description of GET3D. Here, we provide the
implementation details that were omitted due to the lack of space. Please consult the Figure B and
Figure 2 in the main paper for more context. Source code is available at our project webpage

A.1 Mapping Network

Following StyleGAN [18, 19], our mapping networks fgeo and ftex are 8-layer MLPs in which each
fully-connected layer has 512 hidden dimensions and a leaky-ReLU activation (Figure B). The
mapping networks are used to map the randomly sampled noise vectors z1 ∈ R512 and z2 ∈ R512 to
the latent vectors w1 ∈ R512 and w2 ∈ R512 as w1 = fgeo(z1) and w2 = ftex(z2).

A.2 Geometry Generator

The geometry generator of GET3D starts from a randomly initialized feature volume Fgeo ∈
R4×4×4×256 that is shared across the generated shapes, and is learned during training. Through a
series of four modulated 3D convolution blocks (ModBlock3D in Figure B), the initial volume is
up-sampled to a feature volume F′

geo ∈ R32×32×32×64 that is conditioned on w1. Specifically, in
each ModBlock3D, the input feature volume is first upsampled by a factor of two using trilinear
interpolation. It is then passed through a small 3D ResNet, where the residual path uses a 3D convo-
lutional layer with kernel size 1x1x1, and the main path applies two conditional 3D convolutional
layers with kernel size 3x3x3. To perform the conditioning, we follow StyleGAN2 [19] and first map
the latent vector w1 to style h through a learned affine transformation (A in Figure B). The style h is
then used to modulate (M) and demodulate (D) the weights of the convolutional layers as:
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M : θ′i,j,k,l,m = hi · ωi,j,k,l,m, (1)

D : θ′′i,j,k,l,m = θ′i,j,k,l,m/

√ ∑
i,k,l,m

θ′i,j,k,l,m
2, (2)

where θ and θ′′ are the original and modulated weight, respectively. hi is the style corresponding to
the ith input channel, j is the output channel dimension, and k, l,m denote the spatial dimension of
the 3D convolutional filter.

Once we obtain the final feature volume F′
geo, the feature vector f ′geo ∈ R64 of each vertex v in the

tetrahedral grid can be obtained through trilinear interpolation. We additionally feed the coordinates
of the point p to a [sin(p), cos(p)] positional encoding (PE) and concatenate the output with the
feature vector f ′geo. To decode the concatenated feature vector into the vertex offset ∆v ∈ R3 or
the SDF value s ∈ R, we pass it through three conditional FC layers (ModFC in Figure B). The
modulation and demodulation in these layers is done analogously to Eq. 2. All the layers, except for
the last, are followed by the leaky-ReLU activation function. In the last layer, we apply tanh to either
normalize the SDF prediction s to be within [-1, 1], or normalize the ∆v to be within [- 1

tet-res , 1
tet-res ],

where tet-res denotes the resolution of our tetrahedral grid, which we set to 90 in all the experiments.

Note that for simplicity, we remove all the noise vector from StyleGAN [18, 19] and only have
stochasticity in the input z. Furthermore, following practices from DEFTET [15] and DMTET [26],
we us two copies of the geometry generator. One generates the vertex offsets ∆v, while the other
outputs the SDF values s. The architecture of both is the same, except for the output dimension and
activation function of the last layer.
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Figure A: With volume subdivi-
sion, each tetrahedron is divided
into 8 smaller tetrahedra by con-
necting midpoints.

Volume Subdivision: In cases where modeling at a high-
resolution is required (e.g. motorbike with thin structures in the
wheels), we further use volume subdivision following DMTET [26].
As illustrated in Fig. A, we first subdivide the tetrahedral grid and
compute SDF values of the new vertices (midpoints) by averaging
the SDF values on the edge. Then we identify tetrahedra that have
vertices with different SDF signs. These are the tetrahedra that
intersect with the underlying surface encode by SDF. To refine the
surface at increased grid resolution after subdivision, we further
predict the residual on SDF values and deformations to update s
and ∆v of the vertices in identified tetrahedra. Specifically, we use
an additional 3D convolutional layer to upsample feature volume
F′

geo to F′′
geo of shape 64 × 64 × 64 × 8 conditioned on w1. Then, following the steps described

above, we use trilinear interpolation to obtain per-vertex feature, concatenate it with PE and decode
the residuals δs and δv using conditional FC layers. The final SDF and vertex offset are computed as:

s′ = s+ δs, ∆v′ = ∆v + δv. (3)

A.3 Texture Generator

We adapt the generator architecture from StyleGAN2 [19] to generate a tri-plane representation of
the texture field. Similar as in the geometry generator, we start from a randomly initialized feature
grid Ftex ∈ R4×4×512 that is shared across the shapes, and is learned during training. This initial
feature grid is up-sampled to a feature grid F′

tex ∈ R256×256×96 that is conditioned on w1 and w2.
Specifically, we use a series of six modulated 2D convolution blocks (ModBlock2D in Figure B).
The ModBlock2D blocks are the same as the ModBlock3D blocks, except that the convolution is 2D
and that the conditioning is on w1 ⊕w2, where ⊕ denotes concatenation. Additionally, the output
of each ModBlock2D block is passed through a conditional tTPF layer that applies a conditional
2D convolution with kernel size 1x1. Note that, following the practices from StyleGAN2 [19],
the conditioning in the tTPF layers is performed only through modulation of the weights (no
demodulation).

The output of the last tTPF layer is then reshaped into three axis-aligned feature planes of size
256× 256× 32.
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Figure B: Network architecture of GET3D. TI and PE denote trilinear interpolation and positional
encoding, respectively. FC(a, b) represents a fully connected layer with a and b denoting the input
and output dimension, respectively. Similarly, Conv3D(a, b, c) denotes a 3D convolutional layer with
a input channels, b output channels, and kernel dimension c× c× c. In the Texture Generator, the
block ModBlock2D(512,512) is repeated four times. All convolutional layers have stride 1.

Figure C: Improved generator architecture of GET3D. High-level overview of our 3D Generator
left and detailed architecture right. Different to the model architecture proposed in the main paper,
the new generator shares the same backbone network for both geometry and texture generation. This
improves the information flow and enables better disentanglement of the geometry and texture.

To obtain the feature ftex ∈ R32 of a surface point p ∈ R3, we first project p onto each plane, perform
bilinear interpolation of the features, and finally sum the interpolated features:

ftex =
∑
e

ρ(πe(p)), (4)

where πe(p) is the projection of the point p to the feature plane e and ρ(·) denotes bilinear interpo-
lation of the features. Color c ∈ R3 of the point p is then decoded from f t using three conditional
FC layers (ModFC) conditioned on w1 ⊕w2. The hidden dimension of each layer is 16. Following
StyleGAN2 [19], we do not apply normalization to the final output.

A.4 2D Discriminator

We use two discriminators to train GET3D: one for the RGB output and one for the 2D silhouettes.
For both, we use exactly the same architecture as the discriminator in StyleGAN [18]. Empirically,
we have observed that conditioning the discriminator on the camera pose leads to canonicalization of
the shape orientations. However, discarding this conditioning only slightly affects the performance, as
shown in Section C.3. In fact, we primarily use this conditioning to enable the evaluation of geometry
using evaluation metrics, which assume that the shapes are generated in the canonical frame.
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Figure D: Disentanglement of geometry and texture achieved by the original model depicted in
Fig. ??. In each row, we show shapes generated from the same texture latent code, while changing
the geometry latent code. In each column, we show shapes generated from the same geometry latent
code, while changing the texture code. The original model fails to achieve good disentanglement.

A.5 Improved Generator

The motivation for sampling two noise vectors (z1, z2) in the generator is to enable disentanglement
of the geometry and texture, where geometry is to be treated as a first-class citizen. Indeed, the
geometry should only be controlled by the geometry latent code, while the texture should be able
to not only adapt to the changes in the texture latent code, but also to the changes in geometry, i.e.
a change in the geometry latent should propagate to the texture. However, in the original design
of the GET3D generator the information flow from the geometry to the texture generator is very
limited—concatenation of the two latent codes (Fig. B). Such a weak connection makes it hard to
learn the disentanglement of geometry and texture and the texture generator can even learn to ignore
the texture latent code (Fig. D.).

This empirical observation motivated us to improve the design of the generator network, after the
initial submission, by improving the information flow, which in turn better supports the disentangle-
ment of the geometry and texture. To this end, our improved generator shares the same backbone
network for both geometry and texture generation, as shown in Fig. C. In particular, we follow
SemanticGAN [21] and use StyleGAN2 [19] backbone. Each ModBlock2D (modulated with the
geometry latent code w1), now has two tTPF branches, one for generating the geometry feature
(tGEO), and the other for generating texture features (tTEX). The output of this backbone network are
two feature triplanes, one for geometry and one for texture. To predict the SDF value and deformation
for each vertex in the tetrahedral grid, we project the vertex onto each of the geometry triplanes,
obtain its feature vector using Eq. 4, and finally use a ModFC to decode si and ∆vi. The prediction
of the color in the texture branch remains unchanged.

Qualitative result of the geometry and texture disentanglement achieved with this improved generator
is depicted in Fig. E and F. Shared backbone network allows us to achieve much better disentangle-
ment of geometry and texture (Fig. D vs Fig. E), while also achieving better quantitative metrics on
the task of unconditional generation

A.6 Training Procedure and Hyperparameters

We implement GET3D on top of the official PyTorch implementation of StyleGAN2 [19]1. Our
training configuration largely follows StyleGAN2 [19] including: using a minibatch standard devia-

1StyleGan3: https://github.com/NVlabs/stylegan3 (NVIDIA Source Code License)
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Figure E: Disentanglement of geometry and texture achieved by the improved model depicted in
Fig. C. In each row, we show shapes generated from the same texture latent code, while changing the
geometry latent code. In each column, we show shapes generated from the same geometry latent
code, while changing the texture code. The disentanglement in this model is poor. Comparing with
Fig. D, this improved model achieves significant better disentanglement of geometry and texture.

Figure F: Shape Interpolation. We interpolate the latent code from top-left corner to the bottom-right
corner. In each row, we keep the texture latent code fixed and interpolate the geometry latent code. In
each column, we keep the geometry latent code fixed and interpolate the texture latent code. GET3D
adequately disentangles geometry and texture, while also providing a meaningful interpolation for
both geometry or texture.

tion in the discriminator, exponential moving average for the generator, non-saturating logistic loss,
and R1 Regularization. We train GET3D along with the 2D discriminators from scratch, without
progressive training or initialization from pretrained checkpoints. Most of our hyper-parameters are
adopted form styleGAN2 [19]. Specifically, we use Adam optimizer with learning rate 0.002 and
β = 0.9. For R1 regularization, we set the regularization weight γ to 3200 for chair, 80 for car, 40
for animal, 80 for motorbike, 80 for renderpeople, and 200 for house. We follow StyleGAN2 [19]
and use lazy regularization, which applies R1 regularization to discriminators only every 16 training
steps. Finally, we set the hyperparameter µ that controls the SDF regularization to 0.01 in all the
experiments. We train our model using a batch size of 32 on 8 A100 GPUs for all the experiments.
Training a single model takes about 2 days to converge.
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B Experimental Details

B.1 Datasets

We evaluate GET3D on ShapeNet [7], TurboSquid [2], and RenderPeople [1] datasets. In the
following, we provide their detailed description and the preprocessing steps that were used in our
evaluation. Detailed statistic of the datasets is available in Table A.

ShapeNet2 [7] contains more than 51k shapes from 55 different categories and is the most commonly
used dataset for benchmarking 3D generative models3. Prior work [31, 36] typically uses the
categories Airplane, Car, and Chair for evaluation. Herein, we replace the category Airplane with
Motorcycle, which has more complex geometry and contains shapes with varying genus. Car, Chair,
and Motorcycle contain 7497, 6778, and 337 shapes, respectively. We random split the shapes of each
category into training (70%), validation (10%), and test (20%) and remove from the test set shapes
that have duplicates in the training set.

TurboSquid4 [2] is a large collection of various 3D shapes with high-quality geometry and texture,
and is thus well suited to evaluate the capacity of GET3D to generate shapes with high-quality
details. To this end, we use the category Animal that contains 442 textured shapes with high diversity
ranging from cats, dogs, and lions, to bears and deer [26, 32]. We again randomly split the shapes
into training (70%), validation (10%), and test (20%) set. Additionally, we provide qualitative results
on the category House that contains 563 shapes. Since we perform only qualitative evaluation on
House, we use all the shapes for training.

RenderPeople5 [1] is a large dataset containing photorealistic 3D models of real-world humans. We
use it to showcase the capacity of GET3D to generate high-quality and diverse characters that can
be used to populate virtual environments, such as games or even movies. In particular, we use 500
models from the whole dataset for training and only perform qualitative analysis.

Preprocessing To generate the data, we first scale each shape such that the longest edge of its
bounding-box equals em, where em = 0.9 for Car, Motorcycle, and Human, em = 0.8 for House,
and em = 0.7 for Chair and Animal. For methods that use 2D supervision (Pi-GAN, GRAF, EG3D,
and our model GET3D), we then render the RGB images and silhouettes from camera poses sampled
from the upper hemisphere of each object. Specifically, we sample 24 camera poses for Car and
Chair, and 100 poses for Motorcycle, Animal, House, and Human. The rotation and elevation angles
of the camera poses are sampled uniformly from a specified range (see Table A). For all camera
poses, we use a fixed radius of 1.2 and the fov angle of 49.13◦. We render the images in Blender [12]
using a fixed lighting, unless specified differently.

For the methods that rely on 3D supervision, we follow their preprocessing pipelines [31, 23].
Specifically, for Pointflow [31] we randomly sample 15k points from the surface of each shape,
while for OccNet [23] we convert the shapes into watertight meshes by rendering depth frames from
random camera poses and performing TSDF fusion.

B.2 Baselines

PointFlow [31] is a 3D point cloud generative model based on continuous normalizing flows. It
models the generative process by learning a distribution of distributions. Where the former, denotes
the distribution of shapes, and the latter the distribution of points given a shape [31]. PointFlow
generates only the geometry, which is represented in the form of a point cloud. To generate the results
of [31], we use the original source code provided by the authors6 and train the models on our data.
To compute the metrics based on LFD, we convert the output point clouds (10k points) to a mesh
representation using Open3D [37] implementation of Poisson surface reconstruction [20].

2The ShapeNet license is explained at https://shapenet.org/terms
3Herein, we used ShapeNet v1 Core subset obtained from https://shapenet.org/
4https://www.turbosquid.com, we obtain consent via an agreement with TurboSquid, and following

license at https://blog.turbosquid.com/turbosquid-3d-model-license/
5We follow the license of Renderpeople https://renderpeople.com/

general-terms-and-conditions/
6PointFlow: https://github.com/stevenygd/PointFlow (MIT License)
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Dataset # Shapes # Views per shape Rotation Angle Elevation Angle

ShapeNet Car 7497 24 [0, 2π] [ 13π, 1
2π]

ShapeNet Chair 6778 24 [0, 2π] [ 13π, 1
2π]

ShapeNet Motorbike 337 100 [0, 2π] [ 13π, 1
2π]

Turbosquid Animal 442 100 [0, 2π] [ 14π, 1
2π]

Turbosquid House 563 100 [0, 2π] [ 13π, 1
2π]

Renderpeople 500 100 [0, 2π] [ 13π, 1
2π]

Table A: Dataset statistics.

OccNet [23] is an implicit method for 3D surface reconstruction, which can also be applied to
unconditional generation of 3D shapes. OccNet is an autoencoder that learns a continuous mapping
from 3D coordinates to occupancy values, from which an explicit mesh can be extracted using
marching cubes [22]. When applied to unconditional 3D shape generation, OccNet is trained as a
variational autoencoder. To generate the results of [23], we use the original source code provided by
the authors7 and train the models on our data.

GRAF [25] is a generative model that tackles the problem of 3D-aware image synthesis. GRAF’s
underlying representation is a neural radiance field—conditioned on the shape and appearance latent
codes—parameterized using a multi-layer perceptron with positional encoding. To synthesize novel
views, GRAF utilizes a neural volume rendering approach similar to Nerf [24]. In our evaluation, we
use the source code provided by the authors8 and train GRAF models on our data.

Pi-GAN [5] similar to GRAF, Pi-GAN also tackles the problem of 3D-aware image synthesis, but
uses a Siren [27] network—conditioned on a randomly sampled noise vector—to parameterize the
neural radiance field. To generate the results of Pi-GAN [5], we use the original source code provided
by the authors9 and train the models on our data.

EG3D [6] is a recent model for 3D-aware image synthesis. Similar to our method, EG3D builds upon
the StyleGAN formulation and uses a tri-plane representation to parameterize the underlying neural
radiance field. To improve the efficiency and to enable synthesis at higher resolution, EG3D utilizes
neural rendering at a lower resolution and then upsamples the output using a 2D CNN. The source
code of EG3D was provided to us by the authors. To generate the results, we train and evaluate EG3D
on our data.

B.3 Evaluation Metrics

To evaluate the performance, we compare both the texture and geometry of the generated shapes Sg

to the reference ones Sr.

B.3.1 Evaluating the Geometry

To evaluate the geometry, we use all shapes of the test set as Sr, and synthesize five times as many
generated shapes, such that |Sg| = 5|Sr|, where | · | denotes the cardinality of a set. Following prior
work [31, 11], we use Chamfer Distance dCD and Light Field Distance dLFD [10] to measure the
similarity of the shapes, which is in turn used to compute Coverage (COV) and Minimum Matching
Distance (MMD) evaluation metrics.

Let X ∈ Sg denote a generated shape and Y ∈ Sr a reference one. To compute dCD, we first
randomly sample N = 2048 points Xp ∈ RN×3 and Yp ∈ RN×3 from the surface of the shapes X
and Y , respectively10 . The dCD can then be computed as:

dCD(Xp, Yp) =
∑
x∈Xp

min
y∈Yp

||x− y||22 +
∑
y∈Yp

min
x∈Xp

||x− y||22. (5)

7OccNet: https://github.com/autonomousvision/occupancy_networks (MIT License)
8GRAF: https://github.com/autonomousvision/graf (MIT License)
9Pi-GAN: https://github.com/marcoamonteiro/pi-GAN (License not provided)

10For PointFlow [31], we directly use N points generated by the model.
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While Chamfer distance has been widely used in the field of 3D generative models and reconstruc-
tion [8, 15, 26], LFD has received a lot attention in computer graphics [10]. Inspired by human
perception, LFD measures the similarity between the 3D shapes based on their appearance from
different viewpoints. In particular, LFD renders the shapes X and Y (represented as explicit meshes)
from a set of selected viewpoints, encodes the rendered images using Zernike moments and Fourier
descriptors, and computes the similarity over these encodings. Formal definition of LFD is available
in [10]. In our evaluation, we use the official implementation to compute dLFD

11.

We combine these similarity measures with the evaluation metrics proposed in [3], which are
commonly used to evaluate 3D generative models:

• Coverage (COV) measures the fraction of shapes in the reference set that are matched to at
least one of the shapes in the generated set. Formally, COV is defined as

COV(Sg, Sr) =
|{argminX∈Sr

D(X,Y ) |Y ∈ Sg}|
|Sr|

, (6)

where the distance metric D can be either dCD or dLFD. Intuitively, COV measures the
diversity of the generated shapes and is able to detect mode collapse. However, COV does
not measure the quality of individual generated shapes. In fact, it is possible to achieve high
COV even when the generated shapes are of very low quality.

• Minimum Matching Distance (MMD) complements COV metric, by measuring the quality
of the individual generated shapes. Formally, MMD is defined as

MMD(Sg, Sr) =
1

|Sr|
∑
X∈Sr

min
Y ∈Sg

D(X,Y ), (7)

where D can again be either dCD or dLFD. Intuitively, MMD measures the quality of the
generated shapes by comparing their geometry to the closest reference shape.

B.3.2 Evaluating the Texture and Geometry

To evaluate the quality of the generated textures, we adopt the Fréchet Inception Distance (FID)
metric, commonly used to evaluate the synthesis quality of 2D images. In particular, for each category,
we render 50k views of the generated shapes (one view per shape) from the camera poses randomly
sampled from the predefined camera distribution, and use all the images in the test set. We then
encode these images using a pretrained Inception v3 [28] model12, where we consider the output of
the last pooling layer as our final encoding. The FID metric can then be computed as:

FID(Sg, Sr) = ||µg − µr||22 + Tr[Σg +Σr − 2(ΣgΣr)
1/2]||, (8)

where Tr denotes the trace operation. µg and Σg are the mean value and covariance matrix of the
generated image encoding, while µr and Σr are obtained from the encoding of the test images.

As briefly discussed in the main paper, we use two variants of FID, which differ in the way in which
the 2D images are rendered. In particular, for FID-Ori, we directly use the neural volume rendering
of the 3D-aware image synthesis methods to obtain the 2D images. This metric favours the baselines
that were designed to directly generate valid 2D images through neural rendering. Additionally, we
propose a new metric, FID-3D, which puts more emphasis on the overall quality of the generated 3D
shape. Specifically, for the baselines which do not output a textured mesh, we extract the geometry
from their underlying neural field using marching cubes [22]. Then, we find the intersection point of
each pixel ray with the generated mesh and use the 3D location of the intersected point to query the
RGB value from the network. In this way, the rendered image is a more faithful representation of
the underlying 3D shape and takes the quality of both geometry and texture into account. Note that
FID-3D and FID-Ori are identical for methods that directly generate textured 3D meshes, as it is the
case with GET3D.

11LFD: https://github.com/Sunwinds/ShapeDescriptor/tree/master/LightField/
3DRetrieval_v1.8/3DRetrieval_v1.8 (License not provided)

12Inception network checkpoint path: http://download.tensorflow.org/models/image/imagenet/
inception-2015-12-05.tgz
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Figure G: Shape retrieval of our generated shapes. We retrieve the closest shape in the training set for each
of shapes we showed in the Figure 1. Our generator is able to generate novel shapes that are different from the
training set

C Additional Results on the Unconditioned Shape Generation

In this section we provide additional results on the task of unconditional 3D shape generation. First,
we perform additional qualitative comparison of GET3D with the baselines in Section C.1. Second,
we present further qualitative results of GET3D in Section C.2. Third, we provide additional ablation
studies in Section C.3. We also analyse the robustness and effectiveness of GET3D. Specifically,
in Sec. C.4 and C.5, we evaluate GET3D trained with noisy cameras and 2D silhouettes predicted
by 2D segmentation networks. We further provide addition experiments on StyleGAN generated
realistic dataset from GANverse3D [34] in Sec. C.6. Finally, we provide additional comparison with
EG3D [6] on human character generation in Sec. C.7.

C.1 Additional Qualitative Comparison with the Baselines

Comparing the Geometry of Generated Shapes We provide additional visualization of the 3D
shapes generated by GET3D and compare them to the baseline methods in Figure Q. GET3D is able
to generate shapes with complex geometry, different topology, and varying genus. When compared
to the baselines, the shapes generated by GET3D contain more details and are more diverse.

Comparing the Synthesized Images We provide additional results on the task of 2D image
generation in Figure R. Even though GET3D is not designed for this task, it produces comparable
results to the strong baseline EG3D [6], while significantly outperforming other baselines, such as
PiGAN [5] and GRAF [25]. Note that GET3D directly outputs 3D textured meshes, which are
compatible with standard graphics engines, while extracting such representation from the baselines is
non-trivial.

C.2 Additional Qualitative Results of GET3D

We provide additional visualizations of the generated geometry and texture in Figures S-X. GET3D
can generate high quality shapes with diverse textures across all the categories, from chairs, cars,
and animals, to motorbikes, humans, and houses. Accompanying video (demo.mp4) contains further
visualizations, including detailed 360◦ turntable animations for 400+ shapes and interpolation results.

Closest Shape Retrieval To demonstrate that GET3D is capable of generating novel shapes, we
perform shape retrieval for our generated shapes. In particular, we retrieve the closest shape in the
training set for each of shapes we showed in the Figure 1 by measuring the CD between the generated
shape and all training shapes. Results are provided in Figure G. All generated shapes in Figure 1
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Figure H: Training loss curve for discriminator. We compare the training dynamics of using a
single discriminator on both RGB image and 2D silhouette, with the ones using two discriminators for
each image, respectively. The horizontal axis represents the number of images that the discriminators
have seen during training (mod by 1000). Two discriminators greatly reduce training instability and
help us obtain good results.
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Figure I: Training loss curve for generator. We compare the training dynamics for using single
discriminator on both RGB image and 2D silhouette with two discriminators for each image, respec-
tively. The horizontal axis represents the number of images discriminator have seen during training
(mod by 1000).

significantly differ from their closest shape in the training set, exhibiting different geometry and
texture, while still maintaining the quality and diversity.

Volume Subdivision We provide further qualitative results highlighting the benefits of volume
subdivision in Figure Y. Specifically, we compare the shapes generated with and without volume
subdivision on ShapeNet motorbike category. Volume subdivision enables GET3D to generate finer
geometric details like handle and steel wire, which are otherwise hard to represent.

C.3 Additional Ablations Studies

We now provide additional ablation studies in an attempt to further justify our design choices.
In particular, we first discuss the design choice of using two dedicated discriminators for RGB
images and 2D silhouettes, before ablating the impact of adding the camera pose conditioning to the
discriminator.

C.3.1 Using Two Dedicated Discriminators

We empirically find that using a single discriminator on both RGB image and silhouettes introduces
significant training instability, which leads to divergence when training GET3D. We provide a
comparison of the training dynamics in Figure H and I, where we depict the loss curves for the
generator and discriminator. We hypothesize that the instability might be caused by the fact that
a single discriminator has access to both geometry (from 2D silhouettes) and texture (from RGB
image) of the shape, when classifying whether the image is real or not. Since we randomly initialize
our geometry generator, the discriminator can quickly overfit to one aspect—either geometry or
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Model FID

GET3D w.o. Camera Condition 11.63
GET3D w/ Camera Condition 10.25

Table B: Ablations on using camera condition: We ablate using camera condition for discriminator. We train
the model on Shapenet Car dataset.

Figure J: Additional qualitative results of GET3D trained with noisy cameras. We render generated shapes
in Blender. The visual quality is similar to original GET3D in the main paper.

Figure K: Additional qualitative results of GET3D trained with predicted 2D silhouettes (Mask-Black).
We render generated shapes in Blender. The visual quality is similar to original GET3D in the main paper.

texture—and thus produces bad gradients for the other branch. A two-stage approach in which two
discriminators would be used in the first stage of the training, and a single discriminator in the later
stage, when the model has already learned to produce meaningful shapes, is an interesting research
direction, which we plan to explore in the future.

C.3.2 Ablation on Using Camera Condition for Discriminator

Since we are mainly operating on synthetic datasets in which the shapes are aligned to a canonical
direction, we condition the discriminators on the camera pose of each image. In this way, GET3D
learns to generate shapes in the canonical orientation, which simplifies the evaluation when using
metrics that assume that the input shapes are canonicalized. We now ablate this design choice.
Specifically, we train another model without the conditioning and evaluate its performance in terms
of FID score. Quantitative results are given in Table. B. We observe that removing the camera pose
conditioning, only slightly degrades the performance of GET3D (-1.38 FID). This confirms that our
model can be successfully trained without such conditioning, and that the primary benefit of using it
is the easier evaluation.

Method FID

GET3D - original 10.25

GET3D - noisy cameras 19.53
GET3D - predicted 2D silhouettes (Mask-Black) 29.68
GET3D - predicted 2D silhouettes (Mask-Random) 33.16

Table C: Additional quantitative results for noisy cameras and using predicted 2D silhouettes on
Shapenet Car dataset.

C.4 Robustness to Noisy Cameras

To demonstrate the robustness of GET3D to imperfect cameras poses, we add Gaussian noises to
the camera poses during training. Specifically, for the rotation angle, we add a noise sampled from
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Figure L: Additional qualitative results of GET3D trained with predicted 2D silhouettes (Mask-Random).
We render generated shapes in Blender. The visual quality is similar to original GET3D in the main paper.

Figure M: Additional qualitative results of GET3D trained with "real" GANverse3D [34] data. We render
generated shapes in Blender.

a Gaussian distribution with zero mean, and 10 degrees variance. For the elevation angle, we also
add a noise sampled from a Gaussian distribution with zero mean, and 2 degrees variance. We use
ShapeNet Car dataset [7] in this experiment.

The quantitative results are provided in Table C and qualitative examples are depicted in Figure J.
Adding camera noise harms the FID metric, whereas we observe only little degradation in visual
quality. We hypothesize that the drop in the FID is a consequence of the camera pose distribution
mismatch, which occurs as result of rendering the testing dataset, used to calculate the FID score,
with a camera pose distribution without added noise. Nevertheless, based on the visual quality of
the generated shapes, we conclude that GET3D is robust to a moderate level of noise in the camera
poses.

C.5 Robustness to Imperfect 2D Silhouettes

To evaluate the robustness of GET3D when trained with imperfect 2D silhouettes, we replace ground
truth 2D masks with the ones obtained from Detectron213 using pretrained PointRend checkpoint,
mimicking how one could obtain the 2D segmentation masks in the real world. Since our training
images are rendered with the black background, we use two approaches to obtain the 2D silhouettes:
i) we directly feed the original training image into Detectron2 to obtain the predicted segmentation
mask (we refer to this as Mask-Black), and ii) we add a background image, randomly sampled
from PASCAL-VOC 2012 dataset (we refer to this as Mask-Random). In this setting, the pretrained
Detectron2 model achieved 97.4 and 95.8 IoU for the Mask-Black and Mask-Random versions,
respectively. We again use the Shapenet Car dataset [7] in this experiment.

Experimental Results Quantitative results are summarized in Table C, with qualitative examples
provided in Figures K and L. Although we observe drop in the FID scores, qualitatively the results
are still similar to the original results in the main paper. Our model can generate high quality shapes
even when trained with the imperfect masks. Note that, in this scenario, the training data for GET3D
is different from the testing data that is used to compute the FID score, which could be one of the
reasons for worse performance.

C.6 Experiments on "Real" Image

Since many real-world datasets lack camera poses, we follow GANverse3D [34] and utilize pretrained
2D StyleGAN to generate a realistic car dataset. We train GET3D on this dataset to demonstrate the
potential applications to real-world data.

13https://github.com/facebookresearch/detectron2
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Figure N: We show randomly sampled 2D images and silhouettes from GANverse3D [34] data. Note the
realism of the images and the imperfections of the 2D silhouettes.

Method FID (↓)

Ori 3D

EG3D [6] 13.77 60.42
GET3D 14.27 14.27

Table D: Additional quantitative comparison with EG3D [6] on Human Body dataset [1].

Experimental Setting Following GANverse3D [34], we manipulate the latent codes of 2D Style-
GAN and generate multi-view car images. To obtain the 2D segmentation of each image, we use
DatasetGAN [35] to predict the 2D silhouette. We then use SfM [30] to obtain the camera initializa-
tion for each generated image. We visualize some examples of this dataset in Fig N and refer the
reader to the original GANverse3D paper for more details. Note that, in this dataset both cameras
and 2D silhouettes are imperfect.

Experimental Results We provide qualitative examples in Fig. M. Even when faced with the
imperfect inputs during training, GET3D is still capable of generating reasonable 3D textured
meshes, with variation in geometry and texture.

C.7 Comparison with EG3D on Human Body

Following the suggestion of the reviewer, we also train EG3D model on the Human Body dataset
rendered from Renderpeople [1] and compare it to the results of GET3D.

Quantitative results are available in Table D and qualitative comparisons in Figure O. GET3D
achieves comparable performance to EG3D [6] in terms of generated 2D images (FID-ori), while
significantly outperforming it on 3D shape synthesis (FID-3D). This once more demonstrates the
effectiveness of our model in learning actual 3D geometry and texture.

D Material Generation for View-dependent Lighting Effects

In modern computer graphics engines such as Blender [12] and Unreal Engine [17], surface properties
are represented by material parameters crafted by graphics artists. To make the generated assets
graphics-compatible, one direct extension of our method is to also generate surface material properties.
In this section, we describe how GET3D is able to incorporate physics-based rendering models,
predicting SVBRDF to represent view-dependent lighting effects such as specular surface reflections.

As described in main paper Sec.4.3.1, two modules need to be adapted to facilitate material generation.
Namely, the texture generation and the rendering process. Specifically, we repurpose the texture
generator branch to predict the Disney BRDF properties [4, 17] on the surface as a reflectance field.
Specifically, the texture generator now outputs a 5-channel reflectance property, including surface
base color cbase ∈ R3, roughness β ∈ R and metallic m ∈ R parameters.

Note that different from a texture field, rendering the reflectance field requires one additional shading
step after rasterization into the G-buffer. Thus, the second adaptation is to replace the texture
rasterization with an expressive rendering model capable of rendering the reflectance field. According
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EG3D [6] Ours Ours-Tex

Figure O: Additional qualitative comparison on Human Body dataset. We compare our method with
EG3D [6] on the extracted geometry.

to the non-emissive rendering equation [16], the outgoing radiance Lo at the camera direction ωo is
given by:

Lo(ωo) =

∫
S2

Li(ωi)fr(ωi,ωo; cbase, β,m)(n · ωi)
+ dωi, (9)

where Li is the incoming radiance, fr is the BRDF, n is the normal direction on the surface points,
n · ωi is the cosine foreshortening term, ωi is incoming light direction sampled on sphere S2, while
(n · ωi)

+ = max(n · ωi, 0) constrains the integration over the positive hemisphere. Standard ray
tracing technique adopts Monte Carlo sampling methods to estimate this integral, but this incurs
large computation and memory cost. Inspired by [29, 33, 9], we instead employ a spherical Gaussian
(SG) rendering framework [9], which approximates every term in Eq. (9) with SGs and allows us to
analytically compute the outgoing radiance without sampling any rays, from where we can obtain the
RGB color for each pixel in the image. We refer the reader to [9] for more details.

Similar to the original training pipeline, we randomly sample light from a set of real-world outdoor
HDR panoramas (detailed in the following “Datasets” paragraph) and render the generated 3D assets
into 2D images using cameras sampled from the camera distribution of training set. We train the
model using the same method as in the main paper by adopting the discriminators to encourage the
perceptual realism of the rendered images under arbitrary real-world lighting, along with a second
discriminator on the 2D silhouettes to learn the geometry. Note that no supervision from material
ground truth is used during training, and the material decomposition emerges in a fully unsupervised
manner. When equipped with a physics-based rendering models, GET3D successfully predicts
reasonable surface material parameters, generating delicate models which can be directly utilized in
stand rendering engines like Blender [12] and Unreal [17].

Datasets We collect a set of 724 outdoor HDR panoramas from HDRIHaven14, DoschDesign15

and HDRMaps16, which cover a diverse range of real-world lighting distribution for outdoor scenes.
We also apply random flipping and random rotation along azimuth as data augmentation. During
training, we convert all the environment maps to SG lighting representations, where we adopt 32 SG
lobes, optimizing their directions, sharpness and amplitudes such that the approximated lighting is
close to the environment map. We optimize 7000 iterations with MSE loss and Adam optimizer. The
converged SG lighting can preserve the most contents in the environment map.

As ShapeNet dataset [7] does not contain consistent material definition, we additionally collect 1494
cars from Turbosquid [2] with materials consistently defined with Disney BRDF. To render the dataset
using Blender [12], we follow the camera configuration of ShapeNet Car dataset, and randomly select

14polyhaven.com/hdris (License: CC0)
15doschdesign.com (License: doschdesign.com/information.php?p=2)
16hdrmaps.com (License: Royalty-Free)
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from the collected set of HDR panoramas as lighting. In the dataset, the groundtruth roughness for
car windows is in the range of [0.2, 0.4] and the metallic is set to 1; for car paint, the groundtruth
roughness is in the range of [0.3, 0.6] and the metallic is set to 0. We disable complex materials such
as the transparency and clear coat effects, such that the rendered results can be interpreted by the
basic Disney BRDF properties including base color, metallic and roughness.

Evaluation metrics Since we aim to generate 3D assets that can be used in graphics workflow to
produce realistic 2D renderings, we quantitatively evaluate the realism of the 2D rendered images
under real-world lighting using FID score.

Comparisons To the best of our knowledge, up to date no generative model can directly generate
complex geometry (meshes) with material information. We therefore only compare different version
of our model. In particular, we compare the results to the texture prediction version of GET3D,
where we do not use material and directly predict RGB color for the surface points. We then ablate
the effects of using real-world HDR panoramas for lighting, which are typically hard to obtain. To
this end, we manually use two spherical Gaussians for ambient lighting and a random directions
to simulate the lighting when rendering the generated shapes during training, and try to learn the
materials under this simulated lighting.

Results The quantitative FID scores are provided in Table E. With material generation, the FID score
improves by more than 2 points when compared to the texture prediction baseline (18.53 vs 20.78).
This indicates that the material generation version of GET3D has better capacity and improved
realism compared to the texture only baseline. When using the simulated lighting, instead of real-
world HDR panorama, the FID score gets slightly worse but still produces reasonable performance.
We further provide additional qualitative results in Fig. P visualizing rendering results of generated
assets under different real-world lighting conditions. We import our generated assets in Blender and
show animated visualization in the accompanied video (demo.mp4).

Method FID

Ours (Texture) 20.78
Ours + Material (Ambient and directional light) 22.83
Ours + Material (Real-world light) 18.53

Table E: Quantitative FID results of material generation.

E Text-Guided 3D Synthesis

Technical details. As briefly described in Sec.4.3.2, our text-guided 3D synthesis method follows
the dual-Generator design from StyleGAN-NADA [14], and uses the directional CLIP loss [14]. In
particular, at each optimization iteration, we randomly sample N = 16 camera views and render N
paired images using two generators: the frozen one (Gf ) and the trainable one (Gt). The directional
CLIP loss can then be computed as:

Lclip = 1− 1

N

N∑
i=1

∆Ii ·∆T

|∆Ii| · |∆T |
(10)

where ∆Ii = E(R(Gt(w), ci))− E(R(Gf (w), ci)) is the translation of the CLIP embeddings (E)
from the rendering with Gf to the rendering with Gt, under camera ci and ∆T is the CLIP embedding
translation from the class text label to the provided query text. In our implementation, we used two
pre-trained CLIP models with different Vision Transformers (‘ViT-32/B’ and ‘ViT-B/16’) [13] for
different level of details, and follow the text augmentation as in the StyleGAN-NADA codebase17.

17https://github.com/rinongal/StyleGAN-nada (MIT License)
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Figure P: Material generation and relighting. We visualize seven generated cars’ material properties
and relight with four different lighting conditions.
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Figure Q: Generated 3D Geometry. Additional qualitative comparison with baseline methods on generated
3D geometry
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Figure R: Generated Image. Additional qualitative comparison with baseline methods on generated 2D
images.
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Figure S: Qualitative results on ShapeNet cars.
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Figure T: Qualitative results on ShapeNet chairs.
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Figure U: Qualitative results on Turbosquid houses.
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Figure V: Qualitative results on Turbosquid animals.
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Figure W: Qualitative results on ShapeNet motorbikes.
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Figure X: Qualitative results on Renderpeople.
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Figure Y: We compare results with and without applying volume subdivision on ShapeNet motorbikes.
With volume subdivision, our model can generate finer geometric details like handle and steel wire.
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