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Abstract

As representation learning becomes a powerful technique to reduce sample com-
plexity in reinforcement learning (RL) in practice, theoretical understanding of its
advantage is still limited. In this paper, we theoretically characterize the benefit
of representation learning under the low-rank Markov decision process (MDP)
model. We first study multitask low-rank RL (as upstream training), where all tasks
share a common representation, and propose a new multitask reward-free algorithm
called REFUEL. REFUEL learns both the transition kernel and the near-optimal
policy for each task, and outputs a well-learned representation for downstream
tasks. Our result demonstrates that multitask representation learning is provably
more sample-efficient than learning each task individually, as long as the total
number of tasks is above a certain threshold. We then study the downstream RL
in both online and offline settings, where the agent is assigned with a new task
sharing the same representation as the upstream tasks. For both online and offline
settings, we develop a sample-efficient algorithm, and show that it finds a near-
optimal policy with the suboptimality gap bounded by the sum of the estimation
error of the learned representation in upstream and a vanishing term as the number
of downstream samples becomes large. Our downstream results of online and
offline RL further capture the benefit of employing the learned representation from
upstream as opposed to learning the representation of the low-rank model directly.
To the best of our knowledge, this is the first theoretical study that characterizes
the benefit of representation learning in exploration-based reward-free multitask
RL for both upstream and downstream tasks.

1 Introduction
Multitask representation learning has arisen as a popular and powerful framework to deal with
data-scarce environment in supervised learning, bandits and reinforcement learning (RL) recently
(Maurer et al., 2016; Du et al., 2020; Tripuraneni et al., 2021; Yang et al., 2021; Cella et al., 2022;
Lu et al., 2021; Arora et al., 2020; Hu et al., 2021). The general multitask representation learning
framework consists of both upstream multiple source tasks learning and downstream target task
learning. In RL applications, in upstream, the agent is assigned with T source tasks sharing a
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common representation and the goal is to learn a near-optimal policy for each task via learning
the representation. In downstream, with the help of the learned representation, the agent aims to
find a near-optimal policy of a new task that shares the same representation as the source tasks.
While representation learning has achieved great success in supervised learning (Du et al., 2020;
Tripuraneni et al., 2021; Maurer et al., 2016; Kong et al., 2020) and multi-armed bandits (MAB)
problems (Yang et al., 2021; Qin et al., 2022; Cella et al., 2022), most works in multitask RL mainly
focus on empirical algorithms (Sodhani et al., 2021; Arulkumaran et al., 2022; Teh et al., 2017) with
limited theoretical works (Arora et al., 2020; Hu et al., 2021; Brunskill and Li, 2013; Müller and
Pacchiano, 2022; Calandriello et al., 2015; Lu et al., 2021; D’Eramo et al., 2020). Generally speaking,
there are two main challenges for multitask representation learning in RL. First, differently from
supervised learning with static datasets, in MAB and RL, representation learning and data collection
are intertwined with each other. The agent has to choose an exploration policy in each iteration based
on the representation learned in the past. Such iterative process introduces temporal dependence to
the collected data. Note that none of the aforementioned theoretical multitask RL studies took the
influence of sequential exploration and temporal dependence in data into consideration. Second, data
distribution mismatch between the target task and the source tasks may occur. Additional assumption
is usually required in order to ensure the representation learned from sources task will benefit the
target task (Lu et al., 2021).

In this work, we aim to unveil the fundamental impact of multitask representation learning on RL by
answering the following two open questions:

• First, in the upstream, is it possible to design exploration-based multitask representation learning
algorithms for RL to achieve efficiency gain compared with single-task RL after taking the
interactive data collection process and temporal data dependency into account?

• Second, can the learned representation from upstream bring efficiency gain to the downstream
learning?

Main contributions: We focus on multitask representation learning under low-rank MDPs (Agarwal
et al., 2020), where the transition kernel admits a low-rank decomposition that naturally involves
representation learning. It answers the aforementioned questions affirmatively, as summarized below.

• First, we propose a new multitask representation learning algorithm called REFUEL under low-
rank MDPs in upstream. REFUEL features joint modeling learning, pseudo cumulative value
function construction for exploration, joint exploration policy learning and a unique termination
criterion. These novel designs enable REFUEL to leverage the shared representation across
source tasks to improve the learning efficiency.

• We show that REFUEL can 1) find a near-optimal policy and 2) learn a near-accurate model
for each of T source tasks to certain average accuracy ϵu, with a sample complexity of

Õ

(
H3d2K2

Tϵ2u
+

(H3d4K+H5dK2+H5d3K)
ϵ2u

+ H5K3

dTϵ2u

)
, where H,K, d denote the horizon steps,

the cardinality of action space and the low-rank dimension, respectively. Compared with state-
of-the-art single-task representation in low-rank MDPs (Uehara et al., 2022), REFUEL achieves
reduced sample complexity as long as T = Ω

(
K
d5

)
, which shows the benefit of multitask learning

provably. To the best of our knowledge, this is the first theoretical result demonstrating the
benefit of representation learning in exploration-based reward-free multitask RL.

• Finally, we apply the learned representation from REFUEL to downstream online and of-
fline learning problems. In offline RL, we propose a new sample efficient algorithm with
the suboptimality gap bounded by Õ(H

√
dξdown + Hmax{d,√p}/

√
Noff), where Noff is

the number of samples of offline dataset and p measures the model complexity of reward.
In online RL, we propose an online algorithm with the suboptimality gap bounded by
Õ
(
Hdξdown +Hd1/2N

−1/2
on max{d,√p}

)
, where Non is the number of iterations in the on-

line algorithm. In both the offline and online settings, the first term captures the approximation
error where ξdown measures the quality of the learned representation from upstream, and is
negligible when the upstream learning is sufficiently accurate, and the second term improves the
dependency on H and d compared with the state of the art (Uehara et al., 2022) for low-rank
MDPs without the knowledge of the representation, showing the benefit of employing the learned
representation from upstream.
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Notations: Throughout the paper, we use [N ] to denote set {1, . . . , N} for N ∈ N, use ∥x∥2 to
denote the ℓ2 norm of vector x, use ∥X∥F to denote the Frobenius norm of matrix X , use △(A) to
denote the probability simplex over set A, and use U(A) to denote uniform sampling over A, given
|A| < ∞. Furthermore, for any symmetric positive definite matrix Σ, we let ∥x∥Σ :=

√
x⊤Σx.

2 Related Work
Multitask bandits, multitask RL and meta-RL: The benefit of multitask learning in linear bandits
has been investigated in Yang et al. (2021); Qin et al. (2022); Cella et al. (2022); Azizi et al. (2022);
Deshmukh et al. (2017); Cella and Pontil (2021); Hu et al. (2021). For multitask RL, Arora et al.
(2020) showed that representation learning can reduce sample complexity for imitation learning.
Calandriello et al. (2015) studied multitask learning under linear MDPs with known representation.
Hu et al. (2021) studied multi-task RL with low inherent Bellman error (Zanette et al., 2020) with
known representation. Assuming all tasks are sampled from an unknown distribution, Brunskill
and Li (2013) studied the benefit of multitask RL when each task is sampled independently from a
distribution over a finite set of MDPs while Müller and Pacchiano (2022) focused on meta-RL for
linear mixture model (Yang and Wang, 2020). Considering all tasks share a common representation,
D’Eramo et al. (2020) showed the benefit in the convergence rate on value iteration and Lu et al.
(2021) proved the sample efficiency gain of multitask RL under low-rank MDPs. None of the above
works took the influence of sequential exploration and temporal dependence in data into consideration,
where Lu et al. (2021) assumed a generative model is accessible and D’Eramo et al. (2020) assumed
that the dataset is given in prior. In our study, we design reward-free exploration for multitask RL.

Single task RL under low-rank MDPs: Low-rank MDPs are first studied byAgarwal et al. (2020),
and Uehara et al. (2022) studied low-rank MDPs for both online and offline RL. Modi et al. (2021)
proposed a model-free algorithm MOFFLE under low-nonnegative-rank MDPs. Du et al. (2019);
Misra et al. (2020); Zhang et al. (2022) studied block MDP which is a special case of low-rank MDPs.

Offine RL under linear and low-rank MDPs: Most of existing works on offline RL focus on single-
task learning, among which Jin et al. (2021) studied offline RL under linear MDPs and proposed an
algorithm with provable suboptimality gap, Uehara et al. (2022) studied offline RL under low-rank
MDPs and proposed an algorithm REP-LCB that leverages pessimism, and Yin et al. (2022); Xiong
et al. (2022) studied offline RL leveraging variance information.

3 Problem formulation
3.1 Episodic MDP

Consider an episodic non-stationary Markov Decision Process (MDP) with finite horizon H , denoted
by M = (S,A, H, P, r), where S is the state space (possibly infinite), A is the finite action space
with cardinality K, H is the number of steps in each episode, P = {Ph}h∈[H] is the collection of
transition measures with Ph : S × A 7→ △(S), r = {rh}h∈[H] is the collection of deterministic
reward functions with rh : S×A 7→ [0, 1]. The initial state s1 is assumed to be fixed for each episode
and the sum of the reward is normalized with

∑H
h=1 rh ∈ [0, 1].

Denote policy π = {πh}h∈[H] as a sequence of mappings where πh : S 7→ △(A). We use
πh(a|s) to denote the probability of selecting action a in state s at step h. Given a starting state
sh, we use sh′ ∼ (P, π) to denote a state sampled by executing policy π under the transition
model P for h′ − h steps and E(sh,ah)∼(P,π) [·] to denote the expectation over states sh ∼ (P, π)
and actions ah ∼ π. Given policy π and a state s at step h, the (state) value function is defined
as V π

h,P,r(s) := E(sh′ ,ah′ )∼(P,π)

[∑H
h′=h rh′(sh′ , ah′)

∣∣∣sh = s
]
. Similarly, the (state-)action value

function for a given state-action pair (s, a) under policy π at step h is defined as Qπ
h,P,r(s, a) :=

rh(s, a)+(PhV
π
h+1,P,r)(s, a), where we define (Phf)(s, a) := Es′∼Ph(·|s,a) [f(s

′)] for any function
f : S 7→ R. For simplicity, we omit subscript h for h = 1. Since the MDP begins with the same initial
state s1, to simplify the notation, we use V π

P,r to denote V π
1,P,r(s1) without any ambiguity. Let P ∗

denote the transition kernel of the underlying environment. Given a reward function r, there always
exists an optimal policy π∗ that yields the optimal value function V π∗

P∗,r = supπ V
π
P∗,r, abbreviated

as V ∗
P∗,r.

This paper focuses on low-rank MDPs (Jiang et al., 2017; Agarwal et al., 2020) defined as follows.
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Definition 1 (Low-rank MDPs). A transition kernel P ∗
h : S × A → △(A) admits a low-rank

decomposition with dimension d ∈ N if there exists two embedding functions ϕ∗
h : S ×A → Rd and

µ∗
h : S → Rd such that

P ∗
h (s

′|s, a) = ⟨ϕ∗
h(s, a), µ

∗
h(s

′)⟩ , ∀s, s′ ∈ S, a ∈ A.

Without loss of generality, we assume ∥ϕ∗
h(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A and for any function g :

S 7→ [0, 1],
∥∥∫ µ∗

h(s)g(s)ds
∥∥
2
≤

√
d. An MDP is a low-rank MDP with dimension d if for h ∈ [H],

its transition kernel P ∗
h admits a low rank decomposition with dimension d. Let ϕ∗ = {ϕ∗

h}h∈[H] and
µ∗ = {µ∗

h}h∈[H] be the embeddings for P ∗, where ϕ∗ is also called representation in RL literature.

3.2 Reward-free multitask RL and its downstream learning

We consider a multitask RL consisting of reward-free upstream and reward-known downstream.

In reward-free multitask upstream learning, the agent is expected to conduct reward-free ex-
ploration over T source tasks, where all reward functions {rt}t∈[T ] are unknown. Each task
t ∈ [T ] is associated with a low-rank MDP Mt = (S,A, H, P t, rt). All T tasks are identical
except for (a) their transition model P t, which admits a low-rank decomposition with dimension d:
P t(s′|s, a) = ⟨ϕ∗(s′), µ(∗,t)(s, a)⟩ for all t ∈ [T ] and (b) their reward rt. Namely, all tasks share
the same feature function ϕ∗, but may differ in µ(∗,t) as well as reward rt. The goal of upstream
learning is to find a near-optimal policy and a near-accurate model for any task t ∈ [T ] and any reward
function rt, t ∈ [T ] via sufficient reward-free exploration, and output a well-learned representation
for downstream task. For each t ∈ [T ], we use P (∗,t) to denote the true transition kernel of task t.

In downstream learning, the agent is assigned with a new target task T +1 associated with a low-rank
MDP MT+1 = (S,A, H, PT+1, rT+1). The task shares the same S,A, H and ϕ∗ with the T
upstream tasks, but has a task-specific µ(∗,T+1). We also assume that the reward for the new task
rT+1 is given to the agent. Here, the agent is assumed to take the learned representation function ϕ̂
during the upstream training, and then interacts with the new task environment MT+1 in an offline or
online manner to find a near-optimal policy for the new task. By utilizing the representation learned
in the upstream, the agent is expected to achieve better sample efficiency in the downstream. Finally,
we use P (∗,T+1) to denote the true transition kernel of task T + 1.

4 Upstream reward-free multitask RL
In this section, we present our proposed algorithm for upstream reward-free multitask RL in low-rank
MDPs and characterize its theoretical performance.

Since it is impossible to learn a model in polynomial time if there is no assumption on features ϕh

and µh, we first adopt the following conventional assumption (Agarwal et al., 2020).
Assumption 1. (Realizability). A learning agent can access to a model class {(Φ,Ψ)} that contains
the true model, namely, for any h ∈ [H], t ∈ [T ], the embeddings ϕ∗

h ∈ Φ, µ
(∗,t)
h ∈ Ψ.

While we assume the cardinality of function classes to be finite for simplicity, extensions to infinite
classes with bounded statistical complexity are not difficult (Sun et al., 2019; Agarwal et al., 2020).

4.1 Algorithm design

We first describe our proposed algorithm REFUEL depicted in Algorithm 1.

In each iteration n, for each task t and time step h, the agent executes the exploration policy πn−1
t

followed by two uniformly chosen actions to collect trajectories for H episodes. Note that πn−1
t

is designed at the previous iteration. Then, to utilize the common feature of data collected from
different source tasks, the agent processes the data jointly as following steps.

Joint MLE-based Modeling Learning: The agent passes all previously collected data to
estimate the low-rank components ϕ̂

(n)
h , µ̂

(n,1)
h , . . . , µ̂

(n,t)
h simultaneously via the MLE oracle

MLE
(⋃

t∈[T ] D
(n,t)
h

)
(line 8) on the joint distribution defined as follows:(

ϕ̂
(n)
h , µ̂

(n,1)
h , . . . , µ̂

(n,T )
h

)
= argmax
ϕh∈Φ,µ1

h,...,µ
T
h∈Ψ

N∑
n=1

log

(
T∏

t=1

⟨ϕh(s
(n,t,h)
h , a

(n,t,h)
h ), µt

h(s
(n,t,h)
h+1 )⟩

)
. (1)
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Algorithm 1 REFUEL (REward Free mUltitask rEpresentation Learning)
1: Input: Regularizer λn, parameter α̃n, ζn,B , δ, ϵu, Models {(µ, ϕ) : µ ∈ Ψ, ϕ ∈ Φ}.
2: Initialize π0(·|s) to be uniform, set D(0,t)

h = ∅ for h ∈ [H], t ∈ [T ].
3: for n = 1, . . . , Nu do
4: for h = 1, . . . ,H do
5: for t = 1, . . . , T do
6: Under MDP Mt, use πn−1

t to roll into s
(n,t,h)
h−1 , uniformly choose a

(n,t,h)
h−1 , a

(n,t,h)
h and

enter into s
(n,t,h)
h , s

(n,t,h)
h+1 and collect data s

(n,t,h)
1 , a

(n,t,h)
1 , . . . , s

(n,t,h)
h , a

(n,t,h)
h , s

(n,t,h)
h+1 .

7: Add the triple (s
(n,t,h)
h , a

(n,t,h)
h , s

(n,t,h)
h+1 ) to the dataset D(n,t)

h = D(n−1,t)
h ∪

{(s(n,t,h)h , a
(n,t,h)
h , s

(n,t,h)
h+1 )}.

8: Learn
(
ϕ̂
(n)
h , µ̂

(n,1)
h , . . . , µ̂

(n,T )
h

)
via MLE

(⋃
t∈[T ] D

(n,t)
h

)
as Equation (1).

9: for t = 1, . . . , T do
10: Update transition kernels P̂

(n,t)
h (·|·, ·) = ⟨ϕ̂(n)

h (·, ·), µ̂(n,t)
h (·)⟩, empirical covariance

matrix Û
(n,t)
h as Equation (2) and exploration-driven reward b̂(n,t)(·, ·) as Equation (3).

11: Set Pseudo Cumulative Value Function PCV
(
P̂ (n,t), b̂

(n,t)
h , πt;T

)
as Equation (4).

12: Get exploration policy πn
1 , . . . , π

n
T = argmaxπ1,...,πT

PCV
(
P̂ (n,t), b̂

(n,t)
h , πt;T

)
.

13: if 2PCV
(
P̂ (n,t), b̂

(n,t)
h , πt;T

)
+ 2

√
KTζn ≤ Tϵu then

14: Terminate and set nu = n and output ϕ̂ = ϕ̂(nu), P̂ (1) = P̂ (nu,1), . . . , P̂ (T ) = P̂ (nu,T ).
15: Output: ϕ̂ = ϕ̂(nu), P̂ (1) = P̂ (nu,1), . . . , P̂ (T ) = P̂ (nu,T ).

The MLE oracle above generalizes the MLE oracle commonly adopted for single-task RL in the
literature (Agarwal et al., 2020; Uehara et al., 2022). In practice, MLE oracle can be efficiently
implemented if the model classes Φ,Ψ are properly parameterized such as by neural networks.

Next, for each task t, the agent uses the learned embeddings ϕ̂
(n)
h , µ̂

(n,t)
h to update the estimated

transition kernel P̂ (n,t) at each step h as P̂ (n,t)
h (s′|s, a) = ⟨ϕ̂(n)

h (s, a), µ̂
(n,t)
h (s′)⟩.

Pseudo Cumulative Value Function Construction for Exploration: The agent first uses the
representation estimator ϕ̂(n)

h to update the empirical covariance matrix Û
(n,t)
h as

Û
(n,t)
h =

∑n
τ=1 ϕ̂

(n)
h (s

(τ,t,h+1)
h , a

(τ,t,h+1)
h )(ϕ̂

(n)
h (s

(τ,t,h+1)
h , a

(τ,t,h+1)
h ))⊤ + λnI, (2)

where {s(τ,t,h+1)
h , a

(τ,t,h+1)
h , s

(τ,t,h+1)
h+1 } is the tuple collected at the τ -th iteration, (h+1)-th episode,

and step h. Then, the agent uses both ϕ̂
(n)
h and Û

(n,t)
h to provide an exploration-driven reward as

b̂
(n,t)
h (sh, ah) = min

{
α̃n

∥∥∥ϕ̂(n)
h (sh, ah)

∥∥∥
(Û

(n,t)
h )−1

, B

}
, (3)

where B and α̃n are pre-determined parameters. To integrate information of learned models and
exploration-driven rewards for T tasks, we define a Pseudo Cumulative Value Function (PCV) as

PCV
(
P̂ (n,t), b̂

(n,t)
h , πt;T

)
=
∑H−1

h=1

√∑T
t=1

{
E sh∼(P̂ (n,t),πt)

ah∼πt

[
b̂
(n,t)
h (sh, ah)

]}2

. (4)

Joint Policy Learning for Exploration: The agent then learns T policies via optimization over
the PCV, and uses these policies as the exploration policy for each task in the next iteration. Since
PCV measures the cumulative model estimation error over all tasks, these policies will explore the
state-action space where the model estimation has large uncertainty on average of T tasks. Here we
adopt an optimization oracle for line 12 in Algorithm 1.

Termination: REFUEL is equipped with a termination condition and outputs the current estimated
model and representation during iterations if the PCV plus certain minor term is below a threshold,
which suffices to guarantee that for each task t, the returned model P̂ (t) from REFUEL reaches an
average proximity to the true model P (∗,t).
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The joint learning and decision making among all tasks involved in the four main components differ-
entiate REFUEL from single-task RL algorithms, and enable it to exploit the shared representation
across the source tasks to improve the sample efficiency.

4.2 Theoretical results on sample complexity

In this section, we first establish the sample complexity upper bound for REFUEL and then compare
our multitask result with that of single-task RL.

Theorem 1. For any fixed δ ∈ (0, |Ψ|min{T,− K
d2

}), set λn = O(d log(|Φ|nTH/δ)), ζn =

O(log
(
|Φ||Ψ|TnH/δ

)
/n), α̃n = O(

√
K log(|Φ||Ψ|TnH/δ) + λndT ) and B = O(

√
T +K/d2).

Let ϕ̂, P̂ (1), . . . , P̂ (T ) be the output of Algorithm 1. Then, under Assumption 1, with probability at
least 1− δ, for any policy πt of task t ∈ [T ] and any step h ∈ [H], we have

1
T

∑T
t=1Esh∼(P (∗,t),πt),ah∼πt

[∥∥∥P̂ (t)
h (·|sh, ah)− P

(∗,t)
h (·|sh, ah)

∥∥∥
TV

]
≤ ϵu. (5)

Further, for any task t, given any reward rt, let π̂t = argmaxπV
π
P̂ (t),rt

. Then with probability at

least 1− δ, 1
T

∑T
t=1[V

∗
P (∗,t),rt

− V π̂t

P (∗,t),rt
] ≤ ϵu.

Meanwhile, the number of trajectories collected by each task is at most

Õ

(
H3d2K2

Tϵ2u
+

(H3d4K+H5dK2+H5d3K)
ϵ2u

+ H5K3

dTϵ2u

)
. (6)

Equation (5) in Theorem 1 indicates that the estimated transition kernels of the T MDPs meet the
required accuracy on average. Theorem 1 further indicates that with the data collected during such
reward-free exploration, if every task is further given any reward function, near-optimal policies can
be found for all tasks on average as well.

For the sample complexity bound in Equation (6), the first term is inversely proportional to T , which
captures sample-benefit for each task due to learning the T models jointly. The second term is related
to the number of samples to guarantee the concentration of empirical covariance matrix Û

(n,t)
h in

order to identify desirable exploration policies. Such concentration needs to be satisfied for each
task t independently and can not be implemented jointly, which makes the second term independent
with T . The third term originally arises from the model estimation error shift among T tasks when
implementing joint MLE-based model estimation. In the algorithm, this error shift is then transferred
to B defined in Equation (3), which provides an explicit upper bound for the exploration-driven
reward b̂

(n,t)
h . Note that b̂(n,t)h consists the PCV to guide exploration, which finally contributes to

convergence of REFUEL and affects its sample complexity.

Compared with the state-of-the-art sample complexity that scales in Õ
(

H5d4K2

ϵ2u

)
1 when performing

T single-task RL independently (Uehara et al., 2022), REFUEL achieves lower sample complexity
when T = Ω

(
K
d5

)
, and it reduces the single-task sample complexity in (Uehara et al., 2022) by an

order of O
(
min{H2d2T ,H2K, d3, dK, d5T

K }
)

.

Technically, the joint learning feature of REFUEL requires new analytical techniques. We outline the
main steps of the proof of Theorem 1 here and defer the detailed proof to Appendix A. Step 1: We
develop a new upper bound on model estimation error for each task, which captures the advantage
of joint MLE model estimation over single-task learning, as shown in Proposition 1. Step 2: We
establish the PCV as an uncertainty measure that captures the difference between the estimated and
ground truth models. This justifies using such a PCV as a guidance for further exploration, as shown
in Proposition 2. Step 3: We show that the summation of the PCVs over all iterations is sublinear
with respect to the total number Nu of iterations, as shown in Proposition 3, which further implies
polynomial efficiency of REFUEL in learning the models.

5 Downstream offline and online RL
In downstream RL, the agent is given a new target task T + 1 under MDP MT+1 and aims to
find a near-optimal policy for it. The downstream task is assumed to share the same representation

1We convert their results in discounted setting to our episodic MDP setting by replacing 1/(1− γ) = Θ(H).
And similarly in following sections, we convert results in other settings to the same setting with us for a fair
comparason .

6



as upstream tasks, and hence the agent can adopt the representation learned from the upstream to
expedite its learning. Since the agent does not know the task-specific embedding function µT+1, the
agent is allowed to interact with MDP MT+1 in an online RL setting or have access to an offline
dataset Ddown = {(sτh, aτh, rτh, sτh+1)}

Noff ,H
τ,h=1 in an offline RL setting, which is rolled out from some

behavior policy ρ.

In this section, we first introduce the connections between upstream and downstream MDPs in
Section 5.1. We then provide algorithms for the downstream task and characterize their suboptimality
gap for offline RL in Section 5.2, and for online RL in Section 5.3, respectively.

5.1 Connections between upstream and downstream MDPs

In downstream RL tasks, the agent will adopt the feature ϕ̂ learned from upstream Algorithm 1. To
ensure that the feature learned in upstream can still work well in downstream tasks, upstream and
downstream MDPs should have certain connections. We next elaborate some reasonable assumptions
on transition kernels to build such connections.

The following reachability assumption is common in relevant literature (Modi et al., 2021).
Assumption 2 (Reachability). For each source task t in upstream, whose transition kernel is P (∗,t),
there exists a policy π0

t such that mins∈S P(π0
t ,t)

h (s) ≥ κu, where P(π0
t ,t)

h (·) : S → R is the density
function over S using policy π0

t to roll into state s at timestep h.
Assumption 3. The state space S is compact.

Combining Assumption 3 with Assumption 2, it can be shown that there exists a uniform distribution
on S with the density function f(s) = υ, where 1/υ is the measure of S. Then, we denote U(S) as
the uniform distribution over S and U(S,A) as the uniform distribution over S ×A.
Assumption 4. For any two different models in the model class {(Φ,Ψ)}, say P 1(s′|s, a) =〈
ϕ1(s, a), µ1(s′)

〉
and P 2(s′|s, a) =

〈
ϕ2(s, a), µ2(s′)

〉
, there exists a constant CR such that for all

(s, a) ∈ S ×A and h ∈ [H],

∥P 1
h (·|s, a)− P 2

h (·|s, a)∥TV ≤ CRE(sh,ah)∼U(S,A)∥P 1
h (·|sh, ah)− P 2

h (·|sh, ah)∥TV . (7)

For normalization, we assume that for any ϕ ∈ Φ, ∥ϕ(s, a)∥2 ≤ 1 and for any µ ∈ Ψ and any
function g : S → [0, 1],

∥∥∫ µh(s)g(s)ds
∥∥
2
≤

√
d.

Assumption 4 ensures that for each source task t any (s, a) ∈ S × A, the total variation distance
between the learned P̂ (t)(·|s, a) and true transition kernels P̂ (∗,t)(·|s, a) will not be too large when
the expectation of the total variation distance over the entire state action space is small.
Assumption 5. For the underlying MDP of task T + 1, we assume that the reward function rT+1 is
chosen from a function class R with ε-covering number NR(ε) for any given ε, and NR(ε) = Õ

(
1
εp

)
.

The true transition kernel P (∗,T+1) can be ξ-approximated by a linear combination of T source tasks,
i.e. there exist T (unknown) coefficients c1, . . . , cT ∈ [0, CL] such that

∀(s, a) ∈ S ×A, h ∈ [H],
∥∥∥P (∗,T+1)(·|s, a)−

∑T
t=1 ctP

(∗,t)(·|s, a)
∥∥∥
TV

≤ ξ. (8)

Assumption 5 establishes the underlying connection between upstream source tasks and the down-
stream target task. The assumption on Nε(R) is more general than the common assumption on
reward under linear MDP and can be easily achieved in practice. For example, if the reward is
linear with respect to an unknown feature ϕ̃ : S ×A → Rp, i.e., there exists θ ∈ Rp and ∥θ∥ ≤ R,
r(s, a) = ⟨ϕ̃(s, a), θ⟩, then Nε(R) = Õ

((
1 + 2R

ε

)p)
(see Lemma D.5 in Jin et al. (2020)), which

satisfies the assumption.

Since the downstream task applies the estimated feature from the upstream, the downstream perfor-
mance is highly affected by the upstream estimation accuracy of the feature. Hence, we first introduce
the definition of ϵ-approximate linear MDP, and provide a guarantee for the estimated feature.
Definition 2 (ϵ-Approximate linear MDP). For any ϵ > 0, MDP M = (S,A, H, P, r) is an ϵ-
approximate linear MDP with a time-dependent feature map ϕ : S × A → Rd if for any h ∈ [H],
there exist a time-dependent unknown (signed) measures µ over S such that for any (s, a) ∈ S ×A,

∥Ph(·|s, a)− ⟨ϕh(s, a), µh(·)⟩∥TV ≤ ϵ. (9)
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Any ϕ satisfying Equation (9) is called an ϵ-approximate feature map for M.

Let ξdown = ξ + CLCRTυϵu
κu

. The following lemma shows that the feature ϕ̂ learned in upstream is a
ξdown-approximate feature map and can approximate the true feature in the new task.

Lemma 1. Under Assumptions 2 to 5, the output of Algorithm 1 ϕ̂ is a ξdown-approximate feature
for MDP MT+1 = (S,A, H, P (∗,T+1), r, s1), i.e. there exist a time-dependent unknown (signed)
measures µ̂∗ over S such that for any (s, a) ∈ S ×A, we have∥∥∥P (∗,T+1)

h (·|s, a)−
〈
ϕ̂h(s, a), µ̂

∗
h(·)
〉∥∥∥

TV
≤ ξdown. (10)

Furthermore, for any g : S → [0, 1],
∥∥∫ µ̂∗

h(s)g(s)ds
∥∥
2
≤ CL

√
d.

The proof of Lemma 1 is presented in Appendix B.

5.2 Downstream Offline RL

We present our pessimistic value iteration algorithm for downstream offline RL called DOFRL and
defer detailed Algorithm 2 to Appendix C. Although our algorithm shares similar design principles
as traditional algorithms for linear MDPs (Jin et al., 2021), it differs from them significantly as
described in the following, due to the misspecification of representation from upstream and the
general rather than linear reward function adopted. For ease of exposition, we define Bellman
operator Bh as (Bhf)(s, a) = rh(s, a) + (P

(∗,T+1)
h f)(s, a) for any f : S ×A 7→ R. The main body

of the algorithm consists of a backward iteration over steps. In each iteration h, the agent executes
the following main steps.

Approximate Bellman update with general reward function. We construct an estimated Bellman
update B̂hV̂h+1 based on the dataset Ddown to approximate BhV̂h+1. Here V̂h+1 is an estimated value
function constructed in the previous iteration based on Ddown. Since our reward function is more
general and not necessarily linear in the feature, we choose to parameterized P

(∗,T+1)
h V ∗

h+1 instead of

Q∗,T+1
h (s, a) = rh(s, a) + (P

(∗,T+1)
h V ∗

h+1)(s, a) due to the linear structure of P (∗,T+1)
h . Although

the ground truth representation is unknown, the agent is able to use the estimated representation
learned from the upstream learning to parameterize the linear term (P

(∗,T+1)
h V ∗

h+1)(s, a). Then, the
coefficient w∗

h can be estimated by solving the following regularized least squares problem:

ŵh = argminw∈Rd λ ∥w∥22 +
∑Noff

τ=1

[
w⊤ϕ̂h(s

τ
h, a

τ
h)− V̂h+1(s

τ
h+1)

]2
, (11)

which has the closed-from solution ŵh = Λ−1
h

∑Noff

τ=1 ϕ̂h(s
τ
h, a

τ
h)V̂h+1(s

τ
h+1) with Λh = λI +∑Noff

τ=1 ϕ̂h(s
τ
h, a

τ
h)ϕ̂h(s

τ
h, a

τ
h)

⊤. We obtain an estimate (B̂hV̂h+1)(·, ·) = rh(·, ·) + ŵ⊤
h ϕ̂h(·, ·).

Design pessimism for incorporating upstream misspecification of representation. Pessimism
is realized by subtracting an uncertainty metric Γh from Q̂h (line 5). The uncertainty metric Γh

quantifies the Bellman update error |(B̂hV̂h+1 − BhV̂h+1)(s, a)| at step h. Our selection of Γh is
in the form of ξdown + β(ϕ̂hΛ

−1
h ϕ̂h)

1/2, which captures both the approximation error (first term)
and the estimation error in the Bellman update (second term). Both of the above errors are affected
by the misspecification of representation from upstream learning. Intuitively, m := (ϕ̂hΛ

−1
h ϕ̂h)

−1

represents the effective number of samples the agent has explored along the ϕ̂ direction, and the
penalty term β/

√
m represents the uncertainty along the ϕ̂ direction. By choosing a proper value

for β, we can prove that with high probability, the uncertainty metric Γh always upper bounds the
Bellman update error.

Select greedy policy. Line 6 executes a greedy policy π̂h to maximize Q̂h, which will be the output
of the algorithm after the backward iteration over steps completes.

Then we make the following coverage assumption, which can be easily checked in practice.
Assumption 6 (Feature coverage). There exists absolute constant κρ such that

∀h ∈ [H], λmin(Σh) ≥ κρ, where Σh = Eρ[ϕ̂h(sh, ah)ϕ̂h(sh, ah)
⊤|s1 = s].

We are ready to provide our main result in the following theorem and defer the proof to Appendix C.
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Theorem 2. Under Assumptions 2 to 5, for any δ ∈ (0, 1), if we set λ = 1 and β = O (d
√
ι

+
√
dNoffξdown +

√
p logNoff

)
, where ι = O (log (pdHNoff max{ξdown, 1}/δ)), then with proba-

bility at least 1− δ, the suboptimality gap of Algorithm 2 is at most

V ∗
P (∗,T+1),r − V π̂

P (∗,T+1),r ≤ 2Hξdown + 2β

H∑
h=1

Eπ∗

[∥∥∥ϕ̂h(sh, ah)
∥∥∥
Λ−1

h

∣∣∣∣s1 = s

]
. (12)

If Assumption 6 holds, and Noff ≥ 40κρ · log(4dH/δ), then the suboptimality gap is at most

O

(
κ
−1/2
ρ Hd1/2ξdown+κ

−1/2
ρ Hd

√
log(pdHNoff max{ξdown,1}/δ)

Noff
+κ

−1/2
ρ H

√
p logNoff

Noff

)
. (13)

Further, if the linear combination misspecification error in Assumption 5 satisfies ξ = Õ(
√
d/

√
Noff),

then with at most Õ
(
H3dK2TNoff +H5d3K2T 2Noff + H5K3TNoff

d2

)
trajectories collected in up-

stream, we have

V ∗
P (∗,T+1),r−V π̂

P (∗,T+1),r ≤ Õ
(
κ−1/2
ρ N

−1/2
off Hmax{d,√p}

)
. (14)

To the best of our knowledge, Theorem 2 provides the first suboptimality gap for offline RL with
approximation error in representation. The first result in Theorem 2 characterizes the suboptimality
gap if the offline data is rolled out from a behavior policy2. If the offline data further satisfies the
feature coverage assumption, we are able to upper bound the suboptimality gap by three terms in
Equation (13). Such a result can be further simplified as Õ

(
Hd1/2ξdown +N

−1/2
off Hmax{d,√p}

)
,

where the first term is a constant error that arises from the approximation error in Bellman update.
The second term diminishes as Noff grows to infinity, and it arises from the estimation error of ŵh

in regularized linear regression. The dependence on d and
√
p arises from the model complexity of

the linear function approximation class when we seek concentration of the estimated value function.

Compared to standard linear MDP with the knowledge of ground truth representation Jin et al.
(2021), our suboptimality gap contains an additional upstream misspecification error (i.e., ξdown).
The remaining term yields an order of Õ(HdN

−1/2
off ) which matches that in Jin et al. (2021) if we

specialize our reward to be linear with p = O(d).

Theorem 2 also demonstrates that our downstream offline RL benefits from the learned represen-
tation in upstream. As shown in Equation (14), if the linear combination misspecification error ξ
is small enough, and the number of trajectories collected in upstream learning is sufficient large,
then the suboptimality gap is dominated by the term Õ

(
N

−1/2
off Hmax{d,√p}

)
, which improves

Õ(N
−1/2
off H2d2) of REP-LCB (Uehara et al., 2022) under low-rank MDP with unknown representa-

tion, with better dependence on H and d due to the benefit of upstream representation learning.

5.3 Downstream Online RL

We present our downstream online RL algorithm called DONRL and defer the detailed Algorithm 3
in Appendix D, where the agent is allowed to interact with the new task environment for policy
optimization, and utilizes the learned feature from upstream to implement linear approximation for
state-action value function with traditional UCB type of algorithms.

The algorithm consists of three iterations, one outer iteration and two inner backward iterations over
steps. Construct optimistic action value function: In each inner backward iteration, the agent first
constructs the empirical feature covariance matrices and estimates the weights ŵ via the trajectories
collected in previous iterations. Then, the empirical covariance matrices and the weights ŵ are used
to approximate Bellman update and construct an optimistic action value function (line 7). Learn
optimistic policy: Next, in the forward inner iteration, the agent learns a greedy optimistic policy
and uses it to explore and collect a new trajectory. After the outer iteration completes, the greedy
policies are output by Algorithm 3.

Algorithm 3 differs from traditional UCB type of algorithms under linear MDP (i.e., LSVI-UCB in
Jin et al. (2020)) as follows. First, Jin et al. (2020) assumes the true representation ϕ∗ is known with a

2The result remains valid if offline data is compliant with MDP MT+1 (Assumption 2.2 in Jin et al. (2021)).
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small model misspecification error, whereas our representation is obtained from upstream, and hence
the upstream learning error affects the learning accuracy here. Second, Algorithm 3 is applicable to
reward functions from a general function class R, which do not need to be linear with respect to the
representation. Both of the above differences will require additional techniques in our analysis of the
performance guarantee.

To analyze our downstream online Algorithm 3, we need to characterize how misspecification error
of the learned representation from upstream affects downstream suboptimality gap. We further need
to handle the general reward rather than the linear reward. Both make our analysis different from that
in Jin et al. (2020) which directly assumes an approximation of the representation and works with
linear reward functions. We next provide our main result and defer the proof to Appendix D.
Theorem 3. Under Assumptions 2 to 5, fix δ ∈ (0, 1). If we set λ = 1 and βn =

O
(
d
√
ιn +

√
ndξdown +

√
p log n

)
where ιn = log (2pdnHmax{ξdown, 1}/δ). Let π̃ be the uni-

form mixture of π1, . . . , πn. Then with probability at least 1−δ, the suboptimality gap of Algorithm 3
satisfies

V ∗
P (∗,T+1),r − V π̃

P (∗,T+1),r = Õ
(
Hdξdown +Hd1/2N−1/2

on max{d,√p}
)
. (15)

Furthermore, if the linear combination misspecification error ξ in Assumption 5 satisfies
Õ(

√
d/

√
Non), then with at most Õ

(
H3dK2TNon +H5d3K2T 2Non + H5K3TNon

d2

)
trajectories

collected in upstream, ξdown reduces to Õ(
√
d/

√
Non) and the second term in Equation (15) domi-

nates so that the the suboptimality gap is bounded as

V ∗
P (∗,T+1),r − V π̃

P (∗,T+1),r = Õ
(
Hd1/2N−1/2

on max{d,√p}
)
. (16)

We first explain the terms in suboptimality gap in Equation (15). The first term captures how the
approximation error of using the estimated representation from upstream affects suboptimality
gap, and becomes small if such the approximation error is well controlled. The second term arises
from the estimation error of ŵh in constructing the optimistic action value function and vanishes
as the number Non of samples becomes large. The dependence on d and

√
p arises from model

complexity of the linear function approximation class when we seek a concentration of the estimated
value function. Thus, if the learned representation in upstream approximates the ground truth
well and ξdown reduces to Õ(

√
d/

√
Non), then suboptimality gap is dominated by the second term

Õ
(
Hd1/2N

−1/2
on max{d,√p}

)
as in Equation (16). If we specialize rewards to be linear and

p = O(d), this matches suboptimality gap Õ
(√

H2d3/Non

)
in linear MDP (Jin et al., 2020).

Theorem 3 also demonstrates that our downstream online RL benefits from the learned representation
from upstream. Compared to the state-of-the-art work under the low-rank MDP with unknown repre-
sentation (Uehara et al., 2022) which has the suboptimality gap being bounded as Õ(

√
H5d4K2/Non)

, our downstream online RL has an improved suboptimality gap in terms of the dependence on H, d
and K benefited from the upstream representation learning.

6 Conclusion
In this paper, we showed that a shared representation of low rank MDPs can be learned more
efficiently and in a transferred manner. We provided upper bounds on the sample complexity of
upstream reward-free multitask RL, and on the suboptimality gap of both downstream offline and
online RL settings with the help of the learned representation from upstream. Our results show
that multitask representation learning is provably more sample efficient than learning each task
individually and capture the benefit of employing the learned representation from upstream to learn
a near-optimal policy of a new task in downstream that shares the same representation. As future
work, we note that our analysis of the downstream RL depends on some assumptions that connect
the upstream and downstream MDPs. It is interesting to explore whether these assumptions can be
further relaxed.
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