
Fair Ranking with Noisy Protected Attributes

Anay Mehrotra
Yale University

Nisheeth K. Vishnoi
Yale University

Abstract

The fair-ranking problem, which asks to rank a given set of items to maximize
utility subject to group fairness constraints, has received attention in the fairness,
information retrieval, and machine learning literature. Recent works, however,
observe that errors in socially-salient (including protected) attributes of items can
significantly undermine fairness guarantees of existing fair-ranking algorithms
and raise the problem of mitigating the effect of such errors. We study the fair-
ranking problem under a model where socially-salient attributes of items are
randomly and independently perturbed. We present a fair-ranking framework that
incorporates group fairness requirements along with probabilistic information about
perturbations in socially-salient attributes. We provide provable guarantees on the
fairness and utility attainable by our framework and show that it is information-
theoretically impossible to significantly beat these guarantees. Our framework
works for multiple non-disjoint attributes and a general class of fairness constraints
that includes proportional and equal representation. Empirically, we observe that,
compared to baselines, our algorithm outputs rankings with higher fairness, and
has a similar or better fairness-utility trade-off compared to baselines.

1 Introduction

Given a query and a set of m items, ranking problems require one to output an ordering of a small
subset of items in decreasing order of relevance to the query. Such ranking problems have been
extensively studied in the information retrieval [46] and the machine learning [45] literature, and
algorithms for them are used in applications such as search engines, personalized feed generators, and
online recruiting platforms [44, 12, 8]. Several studies have observed that when the outputs of ranking
algorithms are consumed by end-users, e.g., image results for occupation-related queries, articles with
different political leanings, and job applicants in online recruiting, the outputs can mislead or alter their
perceptions about socially-salient groups [38], polarize their opinions [24, 50], and affect economic
opportunities available to individuals [32]. A reason is that relevance (or utilities) input to ranking algo-
rithms may be influenced by human or societal biases, leading to output rankings that skew representa-
tions of socially-salient, and often legally-protected, groups such as women and Black people [55].

A growing number of works aim to make the output of ranking algorithms fair with respect to socially-
salient attributes [74, 75, 58]. As for notions of fairness, in the case when each item belongs to one
of two socially-salient groups (G1 or G2), equal representation requires that, for every k, (roughly)
k
2 items from each of G1 and G2 appear in the first k positions of the output ranking. Proportional
representation requires that at most k · |Gℓ|

m items from eachGℓ appear in the first k positions. Fairness
criteria that generalize proportional representation and involve p ≥ 2 groups G1, . . . , Gp, where each
item may belong to multiple groups, have also been considered: Given values Ukℓ, they require that
at most Ukℓ items from Gℓ appear in the first k positions of the output ranking [61, 18]. One set
of works in the fair-ranking literature tries to improve fairness in utility-estimation [72, 62, 73, 51].
Such approaches have the benefit that no changes to the existing ranking algorithm are necessary
but they may be unable to guarantee that the output ranking satisfies the required fairness criteria
[27]. Another set of works use the given utilities as-it-is and change the ranking algorithm to output

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

the ranking with the highest utility subject to satisfying the specified fairness criteria by including
them as fairness constraints [61, 9, 18, 27, 30]. While these latter approaches can guarantee fairness,
they require coming up with new algorithms to solve the arising constrained ranking problems. Both
approaches, however, rely on knowledge of the socially-salient attributes of the items [56].

Assuming precise access to socially-salient attributes is reasonable in some contexts and has led to
successful deployment of fair-ranking frameworks; see [27]. However, in several contexts, socially-
salient attributes can be erroneous, missing, or known only probabilistically. For instance, errors can
arise due to misreporting, which is a common concern with self-reported attributes [4]. Attributes can
also be missing, as is the case with images in web-search or in settings where it is illegal to collect
certain socially-salient attributes [20]. Often attributes are predicted using ML-classifiers, but such
prediction has inaccuracies [10]. In such cases, one can calibrate the confidence scores of classifiers
to derive (aggregate) probabilistic information about the true attributes [35]. Moreover, probabilistic
information about socially-salient (protected) attributes can be sometimes computed from other
attributes. For instance, name and location of an individual, combined with aggregate census data
may be used to get a conditional distribution of their race [23, 36, 20]. Even accurate attributes
may be randomly and independently flipped to preserve user privacy, and the distribution of flipped
attributes is determined by public parameters of, e.g., the randomized response mechanism [37, 69].

Several models of inaccuracies in data have been proposed [47, 26]. We consider one such model (due
to [5]) to capture inaccuracies in socially-salient attributes. Each item i belongs to the ℓ-th group with a
known probability Piℓ. For each item i, the distribution corresponding to Piℓs over groups is assumed
to be independent of corresponding distributions of other items. This model can be used in cases where
these probabilities are available or can be derived, as in some of the aforementioned examples (see
Section 5 and Supplementary Material A). In other cases, e.g., when errors are strategic or adversarial,
other models are needed. This model and its variants have also been used by works on designing fair
algorithms in the presence of inaccuracies, for problems including classification [42, 67, 66, 14], sub-
set selection [48], and clustering [25] (Supplementary Material B briefly discusses these works).

In this noise model, while socially-salient attributes are not explicitly specified, one could still use
existing fair-ranking algorithms by first sampling groups for items from the given probabilities. Indeed,
[29] evaluate existing fair-ranking algorithms on attributes obtained from the probabilities derived
from ML classifiers. They find that “errors in [socially-salient attributes] can dramatically undermine
fair-ranking algorithms” and can cause “[non-disadvantaged groups] to become disadvantaged after
a ‘fair’ re-ranking.” We confirm this observation on a synthetic dataset when the goal is to finding
a ranking that satisfies equal representation (Section 5.1). We assigned each item the socially-
salient group that is most likely and find that when existing fair-ranking algorithms (for equal
representation) are run with this group information, they output rankings that significantly violate the
equal representation criteria (Figure 1). Further, we mathematically analyze two natural methods
to sample groups from probabilities and give examples where taking such information as input,
existing fair-ranking algorithms output rankings which provably violate the equal representation
criteria (Supplementary Material C). Thus, new ideas are needed to design fair-ranking frameworks
that can guarantee given fairness criteria under this noise model.

Our contributions. We present a fair-ranking framework that guarantees given fairness criteria
when the socially-salient attributes are assumed to follow the probabilistic noise model mentioned
above. In particular, it finds a utility maximizing ranking subject to a class of constraints that only
rely on given probability distributions (Program (7)). These constraints relax the given fairness
criteria by a carefully chosen factor: for equal representation, the relaxation is by roughly a 1 + 1√

k
multiplicative factor for position k for any k. Moreover, instead of sampling the attribute values and
applying constraints on them, these constraints apply the relaxed-fairness criteria to the expected
number of items from each group that appear in the first k positions. We show that these constraints
ensure that any ranking approximately satisfying the given fairness criteria is feasible for them and
any ranking feasible for them approximately satisfies the given fairness criteria (Theorem 4.1). Our
fair-ranking framework works for the general class of fairness criteria introduced earlier, which
involve multiple overlapping groups G1, . . . , Gp and upper bound Ukℓ for the ℓ-th group and k-th
position (Theorem 4.1), and for their position-weighted versions (Theorem F.1).

We show that our fair-ranking framework, besides nearly satisfying the given fairness criteria, has a
provably high utility (Theorem 4.1). Complementing Theorem 4.1, we prove near-tightness of the
fairness guarantee (Theorem 4.2): for equal representation fairness criteria, this results shows that it

2

is information theoretically impossible to output a ranking that violates this criteria by less than a
multiplicative factor of 1 + Õ(1√

k
) at the k-th position for any k. Finally, we give a polynomial-time

algorithm to approximately solve Program (7) (Theorem 4.3).

Empirically, we evaluate our framework on both synthetic and real-world data against standard
metrics like weighted-risk difference (RD) that measure deviation from specific fairness criteria
(Section 5). We compare its performance to key baselines [18, 61, 27, 48] on both single and multiple
attributes. In all simulations, compared to baselines, our framework has a higher maximum fairness
(2-10% for RD; Figures 1 to 3) and a similar/better fairness-utility trade-off (Figures 2, 8, 10 and 14
to 16).

2 Related work

Work on automated information retrieval dates back to 1940s [43, 21]. Since then the IR literature has
devoted a significant effort in measuring relevance of items to specific queries across different tasks:
including, web search [7], personalization [34], and product rating [22]; we also refer the reader to
[46] and the references therein. In the last three decades, works in the ML literature have also made
significant contributions to relevance-estimation [45], by proposing methods that: (1) supplement
traditional IR approaches, e.g., by automatically tuning their–previously hard to tune–parameters
[65] and by improving their efficiency through clustering-based techniques [64, 3], and(2)substitute
traditional IR approaches by neural-network based models to predict item relevance [12, 11, 68, 8].

Fair ranking. Existing works on the fair-ranking problem take diverse approaches: Among works that
de-bias utilities, different approaches include, post-processing the utilities so that the post-processed
utilities satisfy some fairness requirement [71], introducing a “fairness penalty” in the objective
function used to train learning-to-rank models [62, 73, 49], and modifying feature representations
generated by up-stream algorithms so that the utilities learned from the modified representations
satisfy some fairness requirements [72]. Works that alter the ranking algorithms can also be further
categorized into those which satisfy the constraints for each ranking [18, 70, 27, 30] and those that
satisfy the constraints in aggregate over multiple rankings [61, 9]. Among aforementioned works,
[49] uses a version of adversarial training to make (fair) learning-to-rank models robust to outliers but,
unlike this work, they require socially-salient attributes of items to be accurately known to specify
the “fairness penalty.” All of the other aforementioned works also need access to the socially-salient
attributes of items. When protected attributes are inaccurate, these works can fail to satisfy their
fairness and/or utility guarantees [29].

Effect of inaccuracies on fair-ranking algorithms. Some recent works have considered assessing
fairness of rankings and ranking algorithms with missing or inaccurate protected attributes. [39]
analyze the setting where all protected attributes are missing, but can be purchased at a fixed cost
per item. They give statistical-techniques to estimate the fairness-value of a given ranking at a small
cost. [29] use ML-classifiers to infer protected attributes from real-world data and study performance
of the fair-ranking algorithm by [28] when given inferred attributes as input. While these works
underscore the need for fair-ranking algorithms to be robust to inaccuracies in protected attributes,
they only assess fairness in the presence of noisy protected attributes.

3 Model of fair ranking with noisy attributes

Ranking problem. In ranking problems, given m items, one has to select a subset of n items and
output a permutation of the selected items. This permutation is said to be a ranking. There is a
large body of work on estimating the relevance of items and personalizing these estimates to specific
users/queries [46, 45]. We consider a ranking problem where the relevance of items are known.
Abstracting relevance estimation, in this problem, one is given an m× n matrix W , such that placing
the i-th item at the j-th position generates utility Wij . The utility of a ranking is the sum of utilities
generated by each item in its assigned position. The algorithmic task in the ranking problem is to
output a ranking with the highest utility. We denote rankings by assignment matrices R ∈ {0, 1}m×n,
where Rij = 1 indicates that item i appears in position j, and Rij = 0 indicates otherwise. In this
notation, the utility of a ranking is ⟨R,W ⟩ :=

∑m
i=1

∑n
j=1RijWij . Then this ranking problem is to

solve: maxR∈R ⟨R,W ⟩ . WhereR is the set of all assignment matrices denoting a ranking:

R :=
{
X ∈ {0, 1}m×n : ∀i ∈ [m],

∑n

j=1
Xij ≤ 1, ∀j ∈ [n],

∑m

i=1
Xij = 1

}
. (1)

3

Here, the constraint
∑m

i=1Xij = 1 ensures position j has exactly one item and the constraint∑n
j=1Xij ≤ 1 ensures that item i occupies at most one position. While this model captures a variety

of applications, in some cases, the entries of W may be skewed by an unknown amount [40, 16] or
not known accurately [63] and the utility of the ranking may not be linear in the entries of W [2].
These are interesting directions but are not studied in this work.

Fair-ranking problem. There are several versions of the fair-ranking problem. We consider a version
with p ≥ 2 socially-salient groups G1, G2, . . . , Gp ⊆ [m] (e.g., the group of all women or all Black
people) which are often protected by law. Each of them items belongs to one or more of these socially-
salient groups (henceforth referred to as just groups). This fair-ranking problem is to output the
ranking with maximum utility subject to satisfying certain fairness criteria with respect to these groups.
The appropriate notion of fairness is context dependent, and to capture different fairness criteria nu-
merous fairness constraints have been proposed. We consider a class of general fairness constraints.

Definition 3.1 (Fairness constraints). Given a matrix U ∈ Zn×p
+ , a ranking R satisfies the upper

bound constraint if
∑

i∈Gℓ

∑k
j=1Rij ≤ Ukℓ, for all ℓ ∈ [p] and k ∈ [n].

Existing works consider similar constraints and show that they can encapsulate a variety of fairness
criteria [61]. For instance, when groups are disjoint, to capture equal and proportional representation,
one can choose Ukℓ:=

⌈
k
p

⌉
and Ukℓ:=

⌈
k · |Gℓ|

m

⌉
for all k and ℓ respectively. (That said, they do not

capture qualitative differences among groups, such as, misrepresentation of demographics in image
results [38, 55], which could arise even when rankings has sufficient individuals from each group.)
As a running example, we consider the fair-ranking problem with equal representation with two
disjoint groups, i.e.,

maxR∈R ⟨R,W ⟩ s.t. ∀k ∈ [n] ∀ℓ ∈ [2],
∑

i∈Gℓ

∑k

j=1
Rij ≤

⌈
k

2

⌉
. (2)

To ease readability, we omit ceilings-operators henceforth.

Noise model. If the socially-salient attributes of items are known accurately, then one can solve the
fair-ranking problem. However, as discussed, in many contexts, attributes are inaccurate, missing,
or only probabilistically known. Several models have been proposed to capture different errors in
attributes. Here, we consider a model (due to [5]) which has also appeared in [25, 42, 48].

Definition 3.2 (Noise model). Let P ∈ [0, 1]m×p be a known matrix. The groups G1, . . . , Gp ⊆ [m]
are random variables, such that, for each i ∈ [m] and ℓ ∈ [p], Pr[Gℓ ∋ i] = Piℓ. Moreover, for
different items i ̸= j the events Gℓ ∋ i and Gk ∋ j are independent for all ℓ, k ∈ [p].

Definition 3.2 makes two key assumptions: the matrix P is known and for each item i, the events
Gℓ ∋ i over groups ℓ are independent of the corresponding events for other items. Both of these
assumptions hold when attributes are flipped to preserve local differential privacy (Remark A.1).
In other settings, P ’s estimate can be inaccurate and above events may be correlated. These can
adversely affect the performance of our framework. We empirically study this in simulations where P
is estimated using confidence scores of off-the-shelf classifiers and is miscalibrated (Figures 2 and 3).
Supplementary Material A shows how Definition 3.2 captures both disjoint and overlapping groups.

Fairness constraint with noisy attributes. Most existing fairness constraints assume that the groups
are deterministic. Hence, it is not clear how to impose them when groups are random variables,
as in Definition 3.2. One definition is to require the constraints to be approximately satisfied with
high probability. Consider the instantiation of this definition for equal representation: A ranking R
satisfies (ρ, δ)-equal representation, if with probability 1− δ, at most k

2 (1 + ρ) items from Gℓ appear
in the first k positions in R places for all k ∈ [n] and ℓ ∈ [p]. Naturally, one would like to satisfy this
definition for small δ, ρ. However, it turns out to be too stringent and is infeasible for any small δ, ρ.

Proposition 3.3. No ranking satisfies (ρ, δ)-equal representation for ρ < 1, δ ≤ 1
2 , and P =

[
1
2

]
m×p

.

The proof of Proposition 3.3 shows that any ranking R violates the equal-representation constraint
at the 2nd position by a multiplicative factor of 2 with probability 1

2 . The issue is that the same
relaxation parameter ρ is used for each position k (whereas the information theoretically best-
achievable relaxation parameter at k improves as k increases, this, e.g., follows by Theorem 4.1.)
Motivated by this observation, we consider the following alternate version of upper bound constraints.

4

Definition 3.4 ((ε, δ)-constraint). For any ε ∈ Rn
≥0 and δ ∈ (0, 1], a ranking R is said to satisfy

(ε, δ)-constraint if with probability at least 1− δ over the draw of G1, . . . , Gp

∀k ∈ [n] ∀ℓ ∈ [p],
∑

i∈Gℓ

∑k

j=1
Rij ≤ Ukℓ(1 + εk). (3)

We would like to output a ranking that satisfies Definition 3.4 for small δ and small ε1, ε2, . . . , εn.
Problem 3.5 (Ranking problem with noisy attributes). Given matrices P , U , and W , find the
ranking R maximizing utility ⟨R,W ⟩ subject to satisfying (ε, δ)-constraint for some small ε and δ.

3.1 Challenges in solving Problem 3.5

In this section we discuss potential approaches for solving Problem 3.5. In other words, solving:

maxR∈R ⟨R,W ⟩, s.t., R satisfies (ε, δ)-constraint. (4)

Even for two disjoint groups, given V , it is NP-hard to decide if the value of Program (4) is at least V
(Theorem E.12). To bypass this hardness, one can consider approximation algorithms. Program (4) is
an integer program (IP) because the entries of the matrix R are required to be integers (Equation (1)).
A standard approach to (approximately) solve IPs is to: (1) consider their continuous relaxation that
drops the integrality constraints, (2) compute the optimal solutionRc of the relaxed problem, and then
(3) “round” Rc to satisfy integrality constraints while “retaining” its utility and fairness properties.
To take this approach, we first need an efficient algorithm to find Rc. However, not just Program (4),
but even its continuous relaxation is non-convex. Hence, it is unclear how to solve it to find Rc.

Due to the independence assumption in Definition 3.2, the number of items from Gℓ appearing in the
first k positions of a ranking is concentrated around its expectation (for large k). This implies that if,
in expectation, less that Ukℓ items from Gℓ appear in the top k positions then, with high probability,
the number of items from Gℓ in the top k positions is not much larger than Ukℓ. Using this one can
show that a ranking satisfying the following constraints

∀k ∈ [n] ∀ℓ ∈ [p], E
[∑

i∈Gℓ

∑k

j=1
Rij

]
≤ Ukℓ (5)

also satisfies (ε, δ)-constraint for small ε and δ. One idea is to find the ranking maximizing util-
ity subject to satisfying Constraint (5). A feature of Constraint (5) is that it is linear in R as
E[
∑

i∈Gℓ

∑k
j=1 Rij] =

∑m
i=1

∑k
j=1 PiℓRij and, hence, one may hope to find the ranking with the max-

imum utility subject to satisfying Constraint (5). However, the issue is that there are examples where
any ranking satisfying Constraint (5) has 0 utility and there are rankings that satisfy (ε, δ)-constraint
and have a large positive utility (Lemma E.10). Hence, this approach can output rankings whose
utility is significantly smaller than the utility of the solution to Problem 3.5. To overcome this, we
relax Constraint (5) by a carefully chosen position-dependent factor, such that, any ranking satisfying
the (ε, δ)-constraint (for appropriate ε and δ) is also feasible for our framework.

4 Theoretical results
In this section we present our optimization framework and its fairness and utility guarantees.

Input: Matrices P∈ [0, 1]m×p, W∈Rm×n
≥0, U∈Rn×p

Parameters: Constant c > 1, failure probability
δ ∈ (0, 1], and k ∈ [n], relaxation parameter

γk := 12 · log
(
2np
δ

)
·maxℓ∈[p]

√
1

Ukℓ
. (6)

Our Fair-Ranking Program

maxR∈R ⟨R,W ⟩ , (Noise Resilient) (7)
s.t. ∀ℓ ∈ [p] ∀k ∈ [n]∑

i∈[m],
j∈[k]

PiℓRij ≤ Ukℓ

(
1 +

(
1− 1

2
√
c

)
γk

)
. (8)

The above program modifies the program for fair ranking with accurate groups: It has the same
objective but different constraints. Instead of sampling the attribute values and applying constraints
on the sampled values, Constraint (8) applies upper bounds on the expected number of items in the
first k positions from group ℓ (Section 3.1). Further, Constraint (8) relaxes upper bounds Ukℓ by a
small position-dependent factor. Like for Constraint (5), one can show that any ranking satisfying
Constraint (8) also satisfies (ε, δ)-constraint (for small ε1, . . . , εn and δ). But unlike Constraint (5),

5

and somewhat surprisingly, any rankingthatsatisfies(ε, δ)-constraint (for appropriateε1, . . . , εn and
δ) must also satisfy Constraint (8). (In fact, γk is chosen to be the smallest, up to logarithmic factors,
value such that this is true.) We use this to prove Theorem 4.1’s utility guarantee.

Our first result bounds the fairness and utility of the optimal solution of Program (7).
Theorem 4.1. Let γ ∈ Rn be as defined in Equation (6). There is an optimization program
(Program (7)), parameterized by a constant c and failure probability δ, such that for any c > 1 and
δ ∈ (0, 12] its optimal solution satisfies (cγ, δ)-constraint and has a utility at least as large as the
utility of any ranking satisfying ((c−

√
c)γ, δ)-constraint.

For equal representation, γk is Õ
(

1√
k

)
. Thus, Theorem 4.1 guarantees that, with high probability, the

optimal solution of Program (7) multiplicatively violates equal representation at the k-th position by
at most 1+ Õ

(
1√
k

)
. Further, this solution’s utility is higher than the utility of any ranking satisfying a

slight relaxation of this fairness guarantee. Theorem 4.1 can be extended to position-weighted versions
of fairness constraints (Theorem F.1), where the fairness constraint is

∑
i∈Gℓ

∑
j∈[k]vjRij≤Ukℓ (for all

k and ℓ) for specified discount factors v1 ≥ · · · ≥ vn such as NDCG [33]. If we are also guaranteed
Ukℓ ≥ ψk for some constant ψ > 0 and all k and ℓ, then we can improve γk’s dependence on δ from
log 1

δ
to

√
log 1

δ
(Supplementary Material E.3). The proof of Theorem 4.1 appears in Section 6.

Lower bound on fairness guarantee. Our next result complements Theorem 4.1’s fairness guarantee.

Theorem 4.2. There is a family of matrices U ∈ Zn×p
+ such that for any U in the family and

any parameters δ ∈ [0, 1) and ε1, . . . , εn ≥ 0, if for any position k ∈ [n], εk ≤ 1 and εk <

maxℓ∈[p]

√
1

2Ukℓ
log 1

4δ then there exists a matrix P ∈ [0, 1]m×p, such that it is information theoreti-

cally impossible to output a ranking that satisfies (ε, δ)-constraint. This family, in particular, contains
the matrices U corresponding to equal representation and proportional representation constraints.

Since γk is O
(
log(np

δ
) ·maxℓ

√
1

Ukℓ

)
, Theorem 4.2 shows that Theorem 4.1’s fairness guarantee is

optimal up to log-factors. Supplementary Material D.1 proves Theorem 4.2.

An efficient algorithm. As for solving our optimization program, it is NP-hard to check its feasi-
bility (Theorem E.7). However, because Constraint (8) is linear in R, the continuous relaxation of
Program (7) is a standard linear program and can be solved efficiently. Our algorithm (Algorithm 1)
solves the standard linear programming relaxation of Program (7) to find a solution Rc and then uses
a dependent-rounding algorithm by [19] to convert Rc to a ranking. (See Supplementary Material D.2
for brief discussion of why straightforward rounding approaches are insufficient.)
Theorem 4.3. There is a randomized algorithm (Algorithm 1) that given constants d > 2, a
failure probability 0 < δ ≤ 1, and matrices P ∈ [0, 1]m×p and W ∈ [0, 1]m×n, outputs a
ranking satisfying (O(dγ), δ)-constraint and with probability at least 1− δ, and has a utility at least(
1− 1

d

)
· V − Õ(

√
dn), where V is the utility of any ranking satisfying ((d−

√
d)γ, δ)-constraint.

The algorithm runs in polynomial time in d and the bit complexity* of the input.

The tension in setting d is that decreasing d improves the fairness guarantee and the utility guarantee’s
second term, but worsens the first term in the utility guarantee. Under the mild assumption that
V =Ω(n), increasing d improves the utility guarantee because the first term in the utility guarantee
dominates the second term. In this case, the utility guarantee improves to (1− 1

d − o(1)) · V . Finally,
while Theorem 4.3 requires utilities to be between 0 and 1, it can be extended to any non-negative
and bounded utilities by scaling. The proof of Theorem 4.3 appears in Supplementary Material D.2.

5 Empirical results

In this section we evaluate our framework’s performance on synthetic and real-world data.†

Baselines and metrics. The correct choice of fairness metric is context-dependent and beyond the
scope of this work [60]. To illustrate our results, we arbitrarily fix the fairness metric as weighted

*The bit complexity of the inputs is the number if bits required to encode the input using the standard binary encoding (which, e.g., maps
integers to their binary representation, rational numbers as pair of integers, and vectors/matrices as a tuple of their entries) [31, Section 1.3].

†Code for our simulations is available at https://github.com/AnayMehrotra/FairRankingWithNoisyAttributes

6

https://github.com/AnayMehrotra/FairRankingWithNoisyAttributes

1.01.21.41.61.82.0
(Looser constraint) Fairness const. () (Stricter constraint)

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

(L
es

s f
air

)		
	<

fu
nc

tio
n

co
m

pu
te_

we
ig

ht
ed

_r
isk

_d
iff

 at
 0

x7
fe

96
67

8b
6a

8>
			

(M
or

e f
air

)

Synthetic data
(m, n, g) = (500,25,2),ITER=501,occ_lists=[NA,NA].

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

...
...

W
ei

gh
te

d
ri

sk
-d

iff
er

en
ce

...
...

——————————ϕ——————————(more fair)(less fair)

.

Figure 1: Synthetic Data: Nonuniform Er-
ror Rate. We consider synthetic data where
imputed socially-salient attributes have a
higher false-discovery rate on the minor-
ity group. We vary the fairness constraint
(ϕ) and observe the weighted risk-difference
(RD) of algorithms. The y-axis plots RD
and x-axis plots ϕ. (Note that the x-axis de-
creases toward the right). We observe that
NResilient achieves the most fair RD, while
obtaining a similar utility for all ϕ (Figure 8).
Error-bars denote the error of the mean.

risk-difference (RD). This is a position-weighted version of the standard risk-difference metric [13]
and measures the extent to which a ranking violates equal representation. The RD of a ranking R is:

1− 1

Z

∑
k=5,10,...

1

log k
maxℓ,q∈[p]

∣∣∣∣∑i∈Gℓ,j∈[k],
Rij −

∑
i∈Gq,j∈[k],

Rij

∣∣∣∣ ,
Where G denotes the ground-truth protected groups and Z is a constant so that RD has range [0, 1].
Here, RD = 1 is most fair and RD = 0 is least fair. We compare our framework, NResilient, against
state-of-the-art fair-ranking algorithms: CSV (“greedy” in [18]), SJ [61], and GAK (“DetGreedy” in
[27]). We also compare against MC, which ranks the items, in the subset output by [48]’s algorithm,
to maximize utility. Finally, we compare against the baseline, Uncons, which outputs the utility
maximizing ranking without fairness considerations. We present additional discussion of baselines
and results, additional plots for RD, and comparisons with weighted selection-lift (instead of RD)
and different choices of U (than the ones below) in Supplementary Material G.

Setup. We consider the DCG model of utilities [33] and a relaxation of equal representation con-
straints: (1) Given an intrinsic value wi ≥ 0, for each item i, we set Wij := wi (log (j + 1))

−1 ∀j∈
[n]. (2) Given a parameter ϕ∈ [1, p], we set upper bounds Ukℓ :=

ϕ
p · k for each k∈ [n] and ℓ∈ [p]. In

simulations, we set m = 500, n = 25, and vary ϕ from p to 1. To gain some intuition about the
relevant values of ϕ, note that satisfying the 80% rule requires ϕ ≤ 5p

5p−1 , i.e., ϕ ≤ 1.11 for p = 2

and ϕ ≤ 1.05 for p = 4. For each ϕ, we draw m items uniformly without replacement and compute
an estimate P̂ of the matrix P (from Definition 3.2) using, e.g., off-the-shelf ML classifiers or public
APIs (see the paragraphs “Estimating P̂ ” in simulation with image data and “Setup” in simulation
on name data). We infer socially-salient groups Ĝ1, . . . , Ĝp via P̂ by assigning each item to its
most-likely group. Finally, we run all algorithms using P̂ or Ĝ1, . . . , Ĝp as discussed next.

Implementation details. NResilient and MC take probabilistic information about socially-salient
attributes as input and are given P̂ . CSV, SJ, and GAK require access to socially-salient groups and
are given Ĝ1, . . . , Ĝp. NResilient, SJ, and CSV use fairness constraints from Definition 3.1 and are
given: for each k and ℓ, Ukℓ =

ϕ
p ·k. MC requires, for each ℓ ∈ [p], an upper bound on the number of

items from Gℓ that can appear in top-n positions. It is given ϕ
p · n for each ℓ ∈ [p]. GAK requires the

desired proportion αℓ for each group Gℓ and, roughly, satisfies the constraint Ukℓ = αℓ · k for each
k ∈ [n] and ℓ ∈ [p]. It is given αℓ =

1
p for each ℓ ∈ [p], this corresponds to ϕ = 1 (hence, figures

only plot the GAK at ϕ = 1). As a heuristic, we set γk = 1
20

maxℓ∈[p]

√
1

Ukℓ
in all simulations. We

find that this suffices and expect a more refined approach to improve the performance of NResilient.

5.1 Simulation on synthetic data

We show that on synthetic data, where error-rates of given socially-salient attributes vary over groups,
existing fair-ranking algorithms have worse RD than Uncons.

Data. We generate w and P for two groups using code by [48] and fix P̂ = P . For all items i, wi is
i.i.d. from the uniform distribution over [0, 1]. P̂ is constructed such that attributes inferred from P̂
have a higher false-discovery rate for the minority group compared to the majority (40% vs 10%).‡

‡This 30% difference in false-discovery rates is comparable to the 34% difference in the false-discovery rates of dark-skinned females and
light-skinned men observed by [10] for a commercial classifier.

7

0.55 0.60 0.65 0.70 0.75 0.80
(Less fair)																							<function compute_weighted_risk_diff at 0x7f5aa530b598>																							(More fair)

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ut
ili

ty

UPDATED -- Image data (DCG Utility)
(m, n, g) = (500,25,2),ITER=1000,occ_lists=[NA,NA].

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

...
...

U
til

ity
...

...

————Weighted risk-difference————(more fair)(less fair)

Figure 2: Real-world image data. In this simula-
tion, given non-gender labeled images and their
utilities, our goal is to generate a high-utility
gender-balanced ranking. We estimate P using an
off-the-shelf ML-classifier and vary ϕ from p = 2
(less fair) to 1 (more fair). The y-axis plots the
utility of algorithms and the x-axis plots RD. We
observe that NResilient has the most fair RD and
the best fairness-utility trade-off. Error bars show
the error of the mean.

Results. See Figure 1 for the observed RD averaged over 500 iterations. We observe that NResilient
achieves best RD (≈0.81), while not losing significant utility (≥ 98% of max.; see Figure 8). MC
achieves the next best RD (≈0.79). In contrast, CSV, SJ, and GAK, which do not account for noise
in the socially-salient attributes, achieve a worse RD (≤0.68) for ϕ ≤ 1.2 than Uncons (≈0.75). This
range of ϕ can be desired in practice: e.g., a platform must set ϕ ≤ 1.1 to guarantee the 80% rule is
satisfied two groups. Thus, we observe that existing fair-ranking algorithms may achieve a worse RD
than Uncons.

5.2 Simulation on real-world image data

In this simulation, given non-gender labeled images-search results and their utilities, our goal is to
generate a high-utility and gender-balanced ranking.

Data. We use the Occupations dataset [15] which contains the top 100 Google Image results for 96
occupation-related queries. For each image, the data has its position in search results, gender (coded
as male/female) of the individual depicted in the image, collected via MTurk. We use the (true)
gender labels in the data to compute RD and to estimate P̂ , but do not provide them to algorithms.

Setup. For each image i, with rank ri, we define wi := (log (1 + ri))
−1. We say an occupation

is gender-stereotypical if more than 80% of images for this occupation have the same gender label
(41/96 occupations). An image is said to be stereotypical if it is in a gender-stereotypical occupation
and its gender label is the majority label for its occupation. We define the socially-salient groups as
the sets of stereotypical and non-stereotypical images in gender-stereotypical occupations.

Estimating P̂ . After pre-processing, we use a CNN-based gender-classifier f [59] to predict the
(apparent) gender of the person depicted in each image. We calibrate the confidence scores output
by f by binning and use these to estimate P̂ (see Supplementary Material G for more details).
We perform this calibration once and on all occupations and, then, use it for gender-stereotypical
occupations. Because of this P̂ is miscalibrated (and hence, inaccurate). For instance, among samples
i for which 0.25 ≤ P̂ i,male ≤ 0.5, more than 75% are labeled as ‘man’ (instead of some percentage
between 25% and 50%). This violates the assumption that P is accurately known.

Results. See Figure 2 for RD and utilities (NDCG) averaged over 1000 iterations. We observe that
NResilient achieves the best RD (≈0.81) and has a better RD-utility trade-off than the other baselines.
In contrast, CSV, SJ, and GAK, achieve a worse RD (≤0.77). MC achieves the worst RD (≤0.70)
and a worst RD-utility trade-off. In particular, NResilient’s RD-utility trade-off strictly dominates all
baselines for RD ≥ 0.66. This value of RD can arise in practice: Figure 9 plots the RD vs ϕ for this
simulation and shows that if ϕ ≤ 1.1 (as required to, e.g., guarantee satisfaction of the 80% rule),
then all baselines have RD at least 0.66. We further evaluate the robustness of NResilient to varying
levels of noise on the Occupations dataset in Supplementary Material G.3.2 and observe NResilient
has a better or similar RD than each baseline at all noise levels.

5.3 Simulation on real-world name data

We consider gender and race (encoded as binary) as socially-salient attributes. Our goal is to ensure
equal representation across the four disjoint groups formed by combinations of these: non-White
non-men, White non-men, non-White men, and White men.

Data. We consider the chess ranking data [29] which has of 3,251 chess players. For each player,
among other attributes, the data has their full-name, self-identified gender (coded as male/female),

8

1.01.52.02.53.03.54.0
(Looser constraint) Fairness const. () (Stricter constraint)

0.3

0.4

0.5

0.6

0.7

(L
es

s f
air

)		
	<

fu
nc

tio
n

co
m

pu
te_

we
ig

ht
ed

_r
isk

_d
iff

 at
 0

x7
f1

3a
bf

c7
ae

8>
			

(M
or

e f
air

)

UPDATED -- Name data (DCG Utility) + Intersectional attributes
(m, n, g) = (500,25,4),ITER=500.

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

...
...

W
ei

gh
te

d
ri

sk
-d

iff
er

en
ce

...
...

——————————ϕ——————————(more fair)(less fair)

Figure 3: Real-World Name Data: Multi-
ple Attributes. In this simulation, the goal is
to ensure equal representation across four dis-
joint groups formed by combinations of two at-
tributes (non-White non-men, White non-men,
non-White men, and White men). We estimate
P by querying public APIs and libraries with
names in the data. The y-axis plots RD and x-
axis plots ϕ. (Note that the values decrease to-
ward the right). We observe that all algorithms
have a better RD than Uncons and NResilient
has the best RD compared to all other baselines.
Error bars represent the error of the mean.

FIDE rating, and race (Asian, Black, Hispanic, White) collected via MTurk. We use the (true) gender
and race labels in the data to evaluate RD, but do not provide them to algorithms.

Setup. We partition the races into White (81.66%) and non-White (18.34%). For each player
i, we query Genderize and EthniColr§ with i’s full-name to obtain the “probabilities” pf (i) and
pnw(i) that player i is labeled as a women and non-white respectively. We assume that these
probabilities are correct and that the gender and race of players are drawn independently. Hence,
e.g., we set the probability that i is a non-white women as P̂ i,nw+f=pnw(i)pf (i). Similarly, we set
P̂ i,w+f=(1− pnw(i))pf (i), P̂ i,nw+m = pnw(i)(1− pf (i)), and P̂ i,w+m = (1− pnw(i))(1− pf (i)).

Notably, we do not calibrate P̂ on this data. We verify that, like the previous simulation, P̂ is
miscalibrated in this simulation. E.g., only 31% of the samples i for which P̂ i,nw+m > 0.75 are
labeled as ‘Non-white man’ (instead of 75%). Hence, the assumption that P is accurately known is
violated in this simulation. We expect calibration to improve NResilient’s performance.

Results. See Figure 3 for RD averaged over 500 iterations. We observe that all algorithms (NResilient,
CSV, GAK, SJ, and MC) have better RD than Uncons. Among these, NResilient achieves the best
RD (≈0.67), next CSV, GAK, and SJ obtain RD (≈0.61), and MC achieves RD (≤ 0.53). More
specifically, for all ϕ ≤ 1.75, NResilient has a strictly better RD than all baselines (this range of ϕ
subsumes, e.g., the range ϕ ≤ 1.05–required guarantee satisfaction of the 80% rule with four groups.)
Further, in Figure 10, we observe that all algorithms have a similar fairness-utility trade-off.

6 Proof of Theorem 4.1
In this section we prove Theorem 4.1. Some of the details are deferred to Supplementary Material E.3
due to space constraints. The proof is divided into two propositions:
Proposition 6.1. For any δ ∈ (0, 1], any ranking feasible for Prog. (7) satisfies (cγ, δ)-constraint.
Proposition 6.2. For any δ ∈ (0, 12) and c > 1, any ranking satisfying the ((c−

√
c)γ, δ)-constraint

is feasible for Program (7).

Proof of Theorem 4.1. Let R⋆ be the optimal solution of Program (7). Since R⋆ is feasible by
definition, Proposition 6.1 implies that R⋆ satisfies the (cγ, δ)-constraint. Pick any R′ that satisfies
the ((c−

√
c)γ, δ)-constraint. Proposition 6.2 implies that R′ is feasible for Program (7). Since R⋆

is an optimal solution of Program (7), R⋆’s utility is at least as large as the utility of R′.

Notation. For each item i and group ℓ, let Ziℓ ∈ {0, 1} be the indicator random variable Zi :=
I[Gℓ ∋ i]. By Definition 3.2, Pr[Ziℓ] = Piℓ and Ziℓ and Zjℓ are independent for any i ̸= j. Given
ranking R ∈ R, group ℓ ∈ [p], and position k ∈ [n], let Z#(R, ℓ, k) be the number of items from Gℓ

in the top k positions of R and let P#(R, ℓ, k) = E[Z#(R, ℓ, k)]. From the above, we get:

P#(R, ℓ, k) = E [Z#(R, ℓ, k)] =
∑

i∈[m]

∑
j∈[k] PiℓRij .

We use the following concentration result (proved in Supplementary Material E.2) in the proof.
Lemma 6.3. For any position k ∈ [n], group ℓ ∈ [p], parameters ε ≥ 0 and L,U ∈ R, and ranking
R ∈ R, where R is possibly a random variable independent of {Ziℓ}i,ℓ, if P#(R, ℓ, k) ≤ U or

§gender-api.com and github.com/appeler/ethnicolr respectively

9

gender-api.com
github.com/appeler/ethnicolr

P#(R, ℓ, k) ≥ L then the following equations hold respectively Pr [Z#(R, ℓ, k) < (1 + ε)U] ≥
1− e−

Uε2

2+ε and Pr [Z#(R, ℓ, k) > (1− ε)L] ≥ 1− e−
Lε2

2(1−ε) .

Proof of Proposition 6.1. Fix any k and ℓ. Let

ϕ :=1− 1
2
√
c
, U ′:=Ukℓ (1 + ϕγk), and ζ := (1−ϕ)γk

1+ϕγk
. (9)

Here, U ′ and ζ satisfy U ′(1 + ζ) = Ukℓ(1 + cγk). Fix any ranking R that is feasible for Program (7).
Since R is feasible, it satisfies that

∀ℓ ∈ [p], k ∈ [n], P#(R, ℓ, k) ≤ Uℓk (1 + ϕγk) . (10)

Using U ′(1 + ζ) = Ukℓ(1 + cγk), Equation (10), and Lemma 6.3, we get that

Pr [Z#(R, ℓ, k) ≥ U ′(1 + ζ)] ≤ e−
2U′ζ2
2+ζ

(9)
= e

− (1−ϕ)2c2γ2
kUkℓ

2+(1+ϕ)cγk
(ϕ≤1)
= e

− (1−ϕ)2c2γ2
kUkℓ

2(1+cγk) . (11)

Fact 6.4. For all x, y ≥ 0, if x ≥ y +√y, then x2

1+x ≥ y.

Using Fact 6.4 and Equation (6), we can show that for each k, c2γ2
k

1+cγk
≥ 2

(1−ϕ)2Ukℓ
· log 2np

δ . (This
uses δ < 1

2 and Ukℓ, n ≥ 1.) Substituting this in Equation (11) we get:

Pr [Z#(R, ℓ, k) ≥ Uℓk(1 + cγk)] ≤ δ
2np . (12)

Taking the union bound over all positions k and ℓ, we get (as desired) that with probability at least
1− δ, for all k∈ [n] and ℓ∈, Z#(R, ℓ, k) ≤ Uℓk(1 + cγk).

Proof of Proposition 6.2. Let ϕ := 1− 1
2
√
c
. Towards a contradiction, suppose that R′ satisfies

((c−
√
c)γ, δ)-constraint but is not feasible for Program (7). Then there exists ℓ and k such that

P#(R
′, k, ℓ) > Ukℓ · (1 + ϕγk) . Fix any k and ℓ satisfying this. Let

b :=1− 1√
c
, L′ :=Ukℓ (1 + ϕγk) and ζ := (1+b)γk

1+ϕγk
. (13)

It holds that L′(1− ζ) = Ukℓ(1 + bγk) and, hence, we get

Pr [Z#(R′, k, ℓ) ≤ L′(1− ζ)]
(13), Lem.6.3

≤ e−
L′ζ2

2(1−ζ)
(13)
= e

−(c−b)2Ukℓγk
2(1+b) ≤ e

−Ukℓcγk
4(2

√
c−1)

√
c
(c>0)
= e

−Ukℓγk
8 . (14)

Since γk ≥ 8 log np
δ

·maxℓ

√
1

Ukℓ
, δ < 1

2
, and U ≥ 1, we have Pr [Z#(R′, k, ℓ) ≤ Ukℓ] ≤ δ

np < 1− δ.
Since R′ satisfies ((c−

√
c)γ, δ)-constraint we have a contradiction, hence R′ must be feasible.

7 Limitations and conclusion
Recent studies find that errors in socially-salient attributes can adversely affect fairness and utility
of existing fair-ranking algorithms [29]. We consider a model of random and independent errors in
socially-salient attributes and present a framework that can output rankings with high fairness and
utility in this model. This framework works for a general class of fairness criteria, which involve mul-
tiple overlapping groups and upper bounds on the number of items that appear in the first k positions
from each group. We also show near-tightness of the framework’s fairness guarantee. Empirically, on
both synthetic and real-world datasets, we observe that, compared to baselines, our framework can
achieve higher fairness-values and a similar or better fairness-utility trade-off for standard metrics.

Compared to existing fair-ranking frameworks, our framework does not need accurate socially-salient
attributes, but assumes that errors in attributes are random and independent. When these assumptions
do not hold, our framework may not satisfy its guarantees and a careful assessment of this on
application-specific data would be important to avoid any (unintended) negative social impact.

Our work only addresses one aspect of how bias may show up in rankings, and more generally, on the
web. For instance, while we consider a large class of fairness constraints, it does not capture some
important notions such as the qualitative representation of different groups [38, 55]. It is important to
take an holistic approach to mitigate bias and incorporate our work as a part of such a broader effort.
Finally, our work adds to the line of works that develop fair decision-making algorithms robust to
inaccuracies in data [42, 6, 54, 25, 67, 66, 48, 14].

Acknowledgements. This research was supported in part by NSF Awards CCF-2112665 and
IIS-2045951, and an AWS MLRA Award.

10

References
[1] OpenCV: Open Source Computer Vision Library. https://github.com/opencv/opencv_

3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_
140000.caffemodel.

[2] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diversifying Search
Results. In Proceedings of the Second ACM International Conference on Web Search and
Data Mining, WSDM ’09, page 5–14, New York, NY, USA, 2009. Association for Computing
Machinery.

[3] Ismail Sengor Altingovde, Engin Demir, Fazli Can, and Özgür Ulusoy. Incremental Cluster-
Based Retrieval Using Compressed Cluster-Skipping Inverted Files. ACM Transactions on
Information Systems (TOIS), 26(3):1–36, 2008.

[4] McKane Andrus, Elena Spitzer, Jeffrey Brown, and Alice Xiang. What We Can’t Measure, We
Can’t Understand: Challenges to Demographic Data Procurement in the Pursuit of Fairness. In
FAccT, pages 249–260. ACM, 2021.

[5] Dana Angluin and Philip D. Laird. Learning From Noisy Examples. Mach. Learn., 2(4):343–
370, 1987.

[6] Pranjal Awasthi, Matthäus Kleindessner, and Jamie Morgenstern. Equalized Odds Postprocess-
ing under Imperfect Group Information. In International Conference on Artificial Intelligence
and Statistics, pages 1770–1780. PMLR, 2020.

[7] Ziv Bar-Yossef and Maxim Gurevich. Random Sampling from a Search Engine’s Index. Journal
of the ACM (JACM), 55(5):1–74, 2008.

[8] Michael Bendersky and Xuanhui Wang. Advances in TF-Ranking, July 2021. https://ai.
googleblog.com/2021/07/advances-in-tf-ranking.html.

[9] Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. Equity of Attention: Amortizing
Individual Fairness in Rankings. In SIGIR, pages 405–414. ACM, 2018.

[10] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification. In FAT, volume 81 of Proceedings of Machine Learning
Research, pages 77–91. PMLR, 2018.

[11] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to Rank Using Gradient Descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96, 2005.

[12] Christopher J.C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview.
Learning, 2010.

[13] Toon Calders and Sicco Verwer. Three Naive Bayes Approaches for Discrimination-Free
Classification. Data Min. Knowl. Discov., 21(2):277–292, 2010.

[14] L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. Fair Classification
with Noisy Protected Attributes. In ICML, volume 120 of Proceedings of Machine Learning
Research. PMLR, 2021.

[15] L. Elisa Celis and Vijay Keswani. Implicit Diversity in Image Summarization. Proc. ACM Hum.
Comput. Interact., 4(CSCW2):139:1–139:28, 2020.

[16] L. Elisa Celis, Anay Mehrotra, and Nisheeth K. Vishnoi. Interventions for Ranking in the
Presence of Implicit Bias. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, FAT* ’20, page 369–380, New York, NY, USA, 2020. Association for
Computing Machinery.

[17] L. Elisa Celis, Anay Mehrotra, and Nisheeth K. Vishnoi. Fair Classification with Adversarial
Perturbations. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

11

https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://ai.googleblog.com/2021/07/advances-in-tf-ranking.html
https://ai.googleblog.com/2021/07/advances-in-tf-ranking.html

[18] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with Fairness Constraints.
In ICALP, volume 107 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

[19] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted Matchings and Matroid
Intersection via Dependent Rounding. In Dana Randall, editor, Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, pages 1080–1097. SIAM, 2011.

[20] Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell. Fairness
Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. In FAT, pages
339–348. ACM, 2019.

[21] Cyril W Cleverdon. The Significance of the Cranfield Tests on Index Languages. In Proceedings
of the 14th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 3–12, 1991.

[22] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the Peanut Gallery: Opin-
ion Extraction and Semantic Classification of Product Reviews. In Proceedings of the 12th
international conference on World Wide Web, pages 519–528, 2003.

[23] Marc Elliott, Peter Morrison, Allen Fremont, Daniel Mccaffrey, Philip Pantoja, and Nicole
Lurie. Using the Census Bureau’s Surname List to Improve Estimates of Race/Ethnicity and
Associated Disparities. Health Services and Outcomes Research Methodology, 9:252–253, 06
2009.

[24] Robert Epstein and Ronald E Robertson. The Search Engine Manipulation Effect (SEME) And
Its Possible Impact on the Outcomes of Elections. Proceedings of the National Academy of
Sciences, 112(33):E4512–E4521, 2015.

[25] Seyed A. Esmaeili, Brian Brubach, Leonidas Tsepenekas, and John Dickerson. Probabilistic
Fair Clustering. In NeurIPS, 2020.

[26] Benoı̂t Frénay and Michel Verleysen. Classification in the Presence of Label Noise: A Survey.
IEEE Trans. Neural Networks Learn. Syst., 25(5):845–869, 2014.

[27] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-Aware Ranking in
Search & Recommendation Systems with Application to LinkedIn Talent Search. In KDD,
pages 2221–2231. ACM, 2019.

[28] Sahin Cem Geyik and Krishnaram Kenthapadi. Building Representative Talent Search at
LinkedIn. LinkedIn Engineering, October 2018. http://bit.ly/2x65HDJ.

[29] Avijit Ghosh, Ritam Dutt, and Christo Wilson. When Fair Ranking Meets Uncertain Inference.
In SIGIR, pages 1033–1043. ACM, 2021.

[30] Sruthi Gorantla, Amit Deshpande, and Anand Louis. On the Problem of Underranking in
Group-Fair Ranking. In ICML, volume 139 of Proceedings of Machine Learning Research,
pages 3777–3787. PMLR, 2021.

[31] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tion. Algorithms and Combinatorics. Springer Berlin Heidelberg, 2012.

[32] Anikó Hannák, Claudia Wagner, David Garcia, Alan Mislove, Markus Strohmaier, and Christo
Wilson. Bias in Online Freelance Marketplaces: Evidence from TaskRabbit and Fiverr. In
CSCW, page 1914–1933, 2017.

[33] Kalervo Järvelin and Jaana Kekäläinen. Cumulated Gain-Based Evaluation of IR Techniques.
ACM Trans. Inf. Syst., 20(4):422–446, oct 2002.

[34] Glen Jeh and Jennifer Widom. Scaling Personalized Web Search. In Proceedings of the 12th
international conference on World Wide Web, pages 271–279. ACM, 2003.

12

http://bit.ly/2x65HDJ

[35] Christopher Jung, Changhwa Lee, Mallesh Pai, Aaron Roth, and Rakesh Vohra. Moment
Multicalibration for Uncertainty Estimation. In Mikhail Belkin and Samory Kpotufe, editors,
Proceedings of Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of
Machine Learning Research, pages 2634–2678. PMLR, 15–19 Aug 2021.

[36] Nathan Kallus, Xiaojie Mao, and Angela Zhou. Assessing Algorithmic Fairness with Unob-
served Protected Class Using Data Combination. In FAT*, page 110. ACM, 2020.

[37] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam D. Smith. What Can We Learn Privately? SIAM J. Comput., 40(3):793–826, 2011.

[38] Matthew Kay, Cynthia Matuszek, and Sean A. Munson. Unequal Representation and Gender
Stereotypes in Image Search Results for Occupations. In CHI, pages 3819–3828. ACM, 2015.

[39] Ömer Kirnap, Fernando Diaz, Asia Biega, Michael D. Ekstrand, Ben Carterette, and Emine
Yilmaz. Estimation of Fair Ranking Metrics with Incomplete Judgments. In WWW, pages
1065–1075. ACM / IW3C2, 2021.

[40] Jon M. Kleinberg and Manish Raghavan. Selection Problems in the Presence of Implicit Bias.
In ITCS, pages 33:1–33:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[41] Nikola Konstantinov and Christoph H. Lampert. On the Impossibility of Fairness-Aware
Learning from Corrupted Data. In Jessica Schrouff, Awa Dieng, Miriam Rateike, Kweku
Kwegyir-Aggrey, and Golnoosh Farnadi, editors, Proceedings of The Algorithmic Fairness
through the Lens of Causality and Robustness, volume 171 of Proceedings of Machine Learning
Research, pages 59–83. PMLR, 13 Dec 2022.

[42] Alexandre Louis Lamy and Ziyuan Zhong. Noise-Tolerant Fair Classification. In NeurIPS,
pages 294–305, 2019.

[43] Elizabeth D. Liddy. Automatic Document Retrieval. In Encyclopedia of Language and
Linguistics. Elsevier, 2005.

[44] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. Personalized News Recommendation Based
on Click Behavior. In Proceedings of the 15th international conference on Intelligent user
interfaces, pages 31–40. ACM, 2010.

[45] Tie-Yan Liu. Learning to Rank for Information Retrieval. 3(3):225–331, mar 2009.

[46] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Natural Language Engineering, 16(1):100–103, 2010.

[47] Naresh Manwani and P. S. Sastry. Noise Tolerance Under Risk Minimization. IEEE Trans.
Cybern., 43(3):1146–1151, 2013.

[48] Anay Mehrotra and L. Elisa Celis. Mitigating Bias in Set Selection with Noisy Protected
Attributes. In FAccT, pages 237–248. ACM, 2021.

[49] Omid Memarrast, Ashkan Rezaei, Rizal Fathony, and Brian D. Ziebart. Fairness for robust
learning to rank. CoRR, abs/2112.06288, 2021.

[50] Christopher Mims. Why Social Media Is So Good at Po-
larizing Us, October 2020. https://www.wsj.com/articles/
why-social-media-is-so-good-at-polarizing-us-11603105204.

[51] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. Controlling Fairness and
Bias in Dynamic Learning-to-Rank. In SIGIR, pages 429–438. ACM, 2020.

[52] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge university
press, 1995.

[53] Nima Mousavi. How Tight Is Chernoff Bound, 2010.

13

https://www.wsj.com/articles/why-social-media-is-so-good-at-polarizing-us-11603105204
https://www.wsj.com/articles/why-social-media-is-so-good-at-polarizing-us-11603105204

[54] Hussein Mozannar, Mesrob I. Ohannessian, and Nathan Srebro. Fair Learning with Private
Demographic Data. In ICML, volume 119 of Proceedings of Machine Learning Research, pages
7066–7075. PMLR, 2020.

[55] Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU
Press, 2018.

[56] Gourab K. Patro, Lorenzo Porcaro, Laura Mitchell, Qiuyue Zhang, Meike Zehlike, and Nikhil
Garg. Fair Ranking: A Critical Review, Challenges, and Future Directions. In 2022 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’22, page 1929–1942, New
York, NY, USA, 2022. Association for Computing Machinery.

[57] Ulrich Pferschy, Joachim Schauer, and Clemens Thielen. Approximating the Product Knapsack
Problem. Optimization Letters, 15(8):2529–2540, 2021.

[58] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. Fairness in Rankings and Recom-
mendations: An Overview. The VLDB Journal, 2021.

[59] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep Expectation of Real and Apparent
Age from a Single Image without Facial Landmarks. International Journal of Computer Vision,
126(2-4):144–157, 2018.

[60] Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet
Vertesi. Fairness and Abstraction in Sociotechnical Systems. In Proceedings of the Conference
on Fairness, Accountability, and Transparency, FAT* ’19, pages 59–68, New York, NY, USA,
2019. ACM.

[61] Ashudeep Singh and Thorsten Joachims. Fairness of Exposure in Rankings. In KDD, pages
2219–2228. ACM, 2018.

[62] Ashudeep Singh and Thorsten Joachims. Policy Learning for Fairness in Ranking. In NeurIPS,
pages 5427–5437, 2019.

[63] Ashudeep Singh, David Kempe, and Thorsten Joachims. Fairness in Ranking under Uncertainty.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[64] Pavan Kumar C Singitham, Mahathi S Mahabhashyam, and Prabhakar Raghavan. Efficiency-
quality tradeoffs for vector score aggregation. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 624–635, 2004.

[65] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris Burges. Optimi-
sation Methods for Ranking Functions with Multiple Parameters. In Proceedings of the 15th
ACM international conference on Information and knowledge management, pages 585–593,
2006.

[66] Jialu Wang, Yang Liu, and Caleb Levy. Fair Classification with Group-Dependent Label Noise.
In FAccT, pages 526–536. ACM, 2021.

[67] Serena Wang, Wenshuo Guo, Harikrishna Narasimhan, Andrew Cotter, Maya R. Gupta, and
Michael I. Jordan. Robust Optimization for Fairness with Noisy Protected Groups. In NeurIPS,
2020.

[68] Jason Weston, Samy Bengio, and Nicolas Usunier. Large Scale Image Annotation: Learning to
Rank with Joint Word-Image Embeddings. Machine learning, 81(1):21–35, 2010.

[69] Grace Hui Yang and Sicong Zhang. Differential Privacy for Information Retrieval. In WSDM,
pages 777–778. ACM, 2018.

[70] Ke Yang, Vasilis Gkatzelis, and Julia Stoyanovich. Balanced Ranking with Diversity Constraints.
In IJCAI, pages 6035–6042. ijcai.org, 2019.

[71] Ke Yang, Joshua R. Loftus, and Julia Stoyanovich. Causal Intersectionality and Fair Ranking.
In FORC, volume 192 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

14

[72] Ke Yang and Julia Stoyanovich. Measuring Fairness in Ranked Outputs. In SSDBM, pages
22:1–22:6. ACM, 2017.

[73] Meike Zehlike and Carlos Castillo. Reducing disparate exposure in ranking: A learning to rank
approach. In WWW, pages 2849–2855. ACM / IW3C2, 2020.

[74] Meike Zehlike, Ke Yang, and Julia Stoyanovich. Fairness in Ranking, Part I: Score-Based
Ranking. ACM Comput. Surv., apr 2022. Just Accepted.

[75] Meike Zehlike, Ke Yang, and Julia Stoyanovich. Fairness in Ranking, Part II: Learning-to-Rank
and Recommender Systems. ACM Comput. Surv., apr 2022. Just Accepted.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See the theorems in Section 4 and Figures 1 to 3
(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 7

discusses the importance of assessing the performance of our algorithm on application-
specific data and using it as a part of a larger framework for mitigating discrimination.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See, e.g.,

Theorems 4.1 to 4.3 and F.1
(b) Did you include complete proofs of all theoretical results? [Yes] See Supplementary

Materials D to F
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]
Code for our simulations is available at https://github.com/AnayMehrotra/
FairRankingWithNoisyAttributes

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Supplementary Material G

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see, e.g., Figures 1 to 3

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Supplementary Material G

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5
(b) Did you mention the license of the assets? [N/A] We use existing code by [48] and

data by [15, 29]. To the best of our knowledge these assets are not licensed.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

https://github.com/AnayMehrotra/FairRankingWithNoisyAttributes
https://github.com/AnayMehrotra/FairRankingWithNoisyAttributes

Contents

1 Introduction 1

2 Related work 3

3 Model of fair ranking with noisy attributes 3

3.1 Challenges in solving Problem 3.5 . 5

4 Theoretical results 5

5 Empirical results 6

5.1 Simulation on synthetic data . 7

5.2 Simulation on real-world image data . 8

5.3 Simulation on real-world name data . 8

6 Proof of Theorem 4.1 9

7 Limitations and conclusion 10

A Further discussion on applicability of the noise model 19

B Other related work on fair decision making with inaccuracies in attributes 19

C Existing fair-ranking algorithms with rounding is insufficient 20

C.1 Proof of Proposition C.1 . 20

C.2 Proof of Proposition C.2 . 22

D Proofs of Theorems 4.2 and 4.3 23

D.1 Proof of Theorem 4.2 . 23

D.2 Proof of Theorem 4.3 . 24

E Proofs of additional theoretical results 28

E.1 Proof of Proposition 3.3 . 28

E.2 Proof of Lemma 6.3 . 28

E.3 Improved dependence of Theorem 4.1 on γ on δ 30

E.4 NP-hardness result . 32

E.5 Proof of Proposition E.8 . 32

E.6 Proof of Lemma E.10 . 33

E.7 Proof of Proposition E.11 . 35

E.8 Proof of Theorem E.12 . 35

F Extension of theoretical results to position-weighted constraints 41

G Implementation details and additional empirical results 42

17

G.1 Implementation details . 43

G.2 Further discussion and plots for simulations from Section 5 45

G.3 Additional empirical results . 47

18

A Further discussion on applicability of the noise model

The noise in Definition 3.2, arises in real-world settings where local differential privacy is ensured
e.g., using the randomized response mechanism.

Remark A.1 (Model’s assumptions hold if attributes are perturbed by randomized response).
The randomized response mechanism flips each item’s protected attribute to an incorrect value with
some (public) probability 0 < η < 1

2 , independent of all other items. Here, the independence
assumption holds (by design) and P ’s entries can be deduced from η. To see the latter concretely,
consider two protected groups G1 and G2 (p = 2), and their noisy versions N1 and N2 corresponding
to the “flipped” attributes. For any item i ∈ N1,

Pi1 = (1− η) · |G1|
|N1|

and Pi2 = 1− Pi1.

For items in N2, replace Pi1, Pi2, G1, and N1 with Pi2, Pi1, G2, and N2. When there are more than
two groups (p > 2), then the randomized response mechanism publicly specifies the probability ηa,b
with which it flips protected attribute value ℓ = a to another value ℓ = b (for any a, b ∈ [p]). As in
the binary case above, P’s entries can be deduced from parameters {ηa,b : a, b ∈ [p]}.

Further, in other real-world settings such as image search and online recruiting, the entries of P can
be estimated using the confidence scores of classifiers or using auxiliary attributes. In more detail:

• If the protected attribute is skin tone, then a classifier C can be used to predict if image i contains
a person with a dark skin tone. If C has a calibrated confidence score 0 ≤ c(i) ≤ 1 in this
prediction, then Pi,darkskin−tone = c(i). See Figure 2 in Section 5 for results from a simulation
that estimates P in this fashion.

• If the protected attribute is race and individuals are uniformly drawn from the population, then for
an individual i with surname S and zip-code Z, Pi,L = f(Z, S), where f(Z, S) is the fraction
of individuals with surname S in zip-code Z who have the L-th race; which can be estimated
using census data [23] (see Figure 3 in Section 5).

Discussion on the noise model with disjoint groups vs. overlapping groups. For each item i and
group Gℓ (ℓ ∈ [p]), the noise model specifies the marginal probability that i belongs to Gℓ:

Piℓ := Pr[Gℓ ∋ i].

For any i, the model allows for any joint probability distribution over the events

(G1 ∋ i), (G2 ∋ i), . . . , (Gp ∋ i)

that is consistent with the above marginal probabilities. This allows the model to capture the setting
where all groups are disjoint – by requiring the events

(G1 ∋ i), . . . , (Gp ∋ i)

to be mutually exclusive. It also allows the model to capture the cases where all or only some of the
groups can overlap. For instance, the case where G1 can overlap with G2 but both G1 and G2 are
disjoint from G3 can be captured by requiring the events (G3 ∋ i) to be mutually exclusive of the
events (G1 ∋ i) and (G2 ∋ i). Importantly, we do not need additional information to capture these
settings–it suffices to know the marginal probabilities specified by P .

B Other related work on fair decision making with inaccuracies in attributes

Several recent works develop fair algorithms for tasks different from ranking that are robust to
inaccuracies in the socially-salient attributes [42, 6, 54, 25, 67, 48, 66, 14, 17, 25]. In particular,
several works study classification and clustering [42, 6, 54, 25, 67, 48, 66, 14, 17, 25], and develop
fair algorithms robust to inaccuracies in protected attributes. Many of these works consider the same
random error model as us (or one of its variants) [42, 6, 67, 48, 14, 25], but some very recent works
have also considered adversarial noises in protected attributes [67, 41, 17]. However, because the

19

underlying algorithmic tasks are fundamentally different from the variant of the ranking problem
we study it is not clear how to adapt their approaches to our setting. [48] studies the problem of
fair subset selection under the same noise model. In subset selection, given m items the goal is to
output an unordered subset of n ≤ m items with the highest utility. They develop an optimization
framework outputs a subset satisfying the fairness constraint up to a small multiplicative error with
high probability but leave the problem of ranking open. We compare against an adaptation of their
approach, MC, to ranking in our empirical results.

C Existing fair-ranking algorithms with rounding is insufficient

Since existing fair-ranking algorithms require access to protected attributes, one way to use them
under the above model is to imputed groups Ĝ1, . . . , Ĝp using the specified probabilities. Then
run these algorithms w.r.t. the imputed groups. To see an illustration, consider two groups G1 and
G2. A natural imputation strategy is to use the Bayes optimal classifier, which assigns item i to
Ĝ1 if and only if Pi1 > 0.5 and has the lowest expected imputation error. This may be reasonable
when the imputation error is negligible. However, on exploring this strategy with non-negligible
imputation error, we find that the output rankings can violate equal representation significantly (see
Proposition C.1). To gain some intuition consider an extreme case where all items in some set S, of
size n, have Pi1 = 0.51. The Bayes classifier assigns all items in S to Ĝ1, i.e.,

|S ∩ Ĝ1| = |S| .

However, with high probability,
|S ∩G1| ≈ 0.51 |S| .

Since |S ∩G1| and |S ∩ Ĝ1| are far, a ranking that selects n items from S and satisfies the constraints
for Ĝ1 and Ĝ2 but violate constraints with respect to the true groups. Proposition C.1 gives an
example where this occurs.

Another imputation strategy, is independent rounding: it assigns each item i to Ĝ1 with probability
Pi1 and otherwise to Ĝ1. This addresses the issue with Bayes imputation, because, it has property
that for any set T of size n, |T ∩G1| are |T ∩ Ĝ1| close with probability 1− eΘ(n). However, when
m≫ n, there are (

m

n

)
≫ en

sets of size n, and hence, with high probability, there exists a set S of size n for which |S ∩ Ĝ1| and
|S ∩G1| are arbitrarily far. In this case also, existing fair-ranking algorithms can output rankings
which violate equal representation significantly. Proposition C.2 gives an example where this occurs.
Proposition C.1 (Imputing protected groups using the bayes optimal classifier is not sufficient).
Let R be any optimal solution to (2) with protected groups imputed using the Bayes optimal classifier
for given p. There exists a matrix P ∈ [0, 1]m×2 such that R does not satisfy the (ε, δ)-equal
representation constraint

for any δ <
1

2
and ε s.t. εk <

1

20
for some k ≥ 2.

Proposition C.2. Let R be a random variable denoting the optimal solution to the fair-ranking
problem (Program (2)) for protected groups imputed using independent rounding with given P ∈
[0, 1]m×2. For every β > 0, there exists sufficiently large n and m and a matrix P ∈ [0, 1]m×2, such
that, with probability at least 1− β R does not satisfy the (ε, δ)-equal representation constraint

for any δ < 1− β and ε ∈ (0, 1)n.

C.1 Proof of Proposition C.1

Proof of Proposition C.1. Pick any even n ∈ N. Let m := 3n
2 . Let β > 0 be a small constant that

we will fix later. We will divide the items into the following three types:

20

• Type A: For each 1 ≤ i ≤ n
2 and 1 ≤ j ≤ n,

Pi1 := 0 = 1− Pi2 and Wij := 1.

• Type B: For each n
2 + 1 ≤ i ≤ n and 1 ≤ j ≤ n,

Pi1 :=
1

2
+ β = 1− Pi2 and Wij := 1.

• Type C: For each n+ 1 ≤ i ≤ 3n
2 and 1 ≤ j ≤ n,

Pi1 := 1 = 1− Pi2 and Wij := 0.

Let Ĝ1 and Ĝ2 be the groups imputed using maximum likelihood rounding. By construction, Ĝ1

contains all items of Types A and B and no items of Type C, whereas Ĝ2 contains all items of Type C
and no items of Types A and B.

Let R be an optimal solution of Program (2) with parameters G1 = Ĝ1 and G2 = Ĝ2. Since Wij ≤ 1
for all i ∈ [m], j ∈ [n],

⟨R,W ⟩ ≤ n.
Because R satisfies the equal representation constraints for two disjoint groups, for any even k ∈ [n],
R places exactly k

2 items of Type A and k
2 items of Type B in the top k positions. From Ĝ1, R only

places items of Type A: If R picks no items of Type C, then ⟨R,W ⟩ = n, whereas, if R picks one or
more items of Type C, then ⟨R,W ⟩ ≤ n− 1, which is a contradiction since there is a ranking with
utility n that satisfies equal representation constraints (e.g., a ranking which places items of Type A
and B in alternate positions).

Since all items of Type A are (always) in Ĝ2, R places at least k
2 items from Ĝ2 in the first k positions.

We will show that with probability larger than 1
2 , at least k

20 of the k
2 items of Type B are in Ĝ2. Thus,

with probability larger than 1
2 , R places more than k

2 ·
11
10 items from Ĝ2 in the top-k positions, and

hence, R does not satisfy the (ε, δ)-equal representation constraint for any δ < 1
2 and ε ∈

(
0, 1

10

)n
.

It remains to prove our claim. Select any k ∈ {2, 4, . . . , n}. Let i1, i2, . . . , ik/2 ∈ [m] be the n items
of Type B that R places in the first k positions. Let Zij ∈ {0, 1} be the indicator random variable that
ij ∈ Ĝ2. Thus, Zi1 , . . . , Zik/2

are independent random variables, such that, for j ∈ [k], Pr[Zij] =

1 − Pij = 1
2 − β. It follows that E[

∑k/2
j=1 Zij] =

k
2

(
1
2 − β

)
and Var[

∑k/2
j=1 Zij] =

k
2

(
1
4 − β

2
)
.

Thus, using the Chebyshev’s inequality on
∑k/2

j=1 Zij ,

Pr

∣∣∣∣∣∣
k/2∑
j=1

Zij −
k

4
(1− 2β)

∣∣∣∣∣∣ > k

8

(
1− 4β2

)
·
√
2 + β

 ≤ 1

2 + β
.

Thus,

Pr

k/2∑
j=1

Zij <
k

4
(1− 2β)− k

8

(
1− 4β2

)
·
√
2 + β

 ≤ 1

2 + β
.

Since k
4 (1− 2β)− k

8

(
1− 4β2

)
·
√
2 + β = k

(
1
4 −

√
2
8

)
+ k ·O(β), for a sufficiently small β > 0,

k

4
(1− 2β)− k

8

(
1− 4β2

)
·
√
2 + β >

k

20
.

Hence,

Pr

k/2∑
j=1

Zij <
k

20

 ≤ 1

2 + β

(β>0)
<

1

2
. (15)

21

C.2 Proof of Proposition C.2

Proof of Proposition C.2. Let ϕ > 0 be a small constant that we will fix later. We will divide the
items into the following two types:

• Type A: For each item i of Type A

Pi1 := ϕ, Pi2 := 1− ϕ and Wij := 1 for all j ∈ [n].

• Type B: For each item i of Type B

Pi1 := 1, Pi2 := 0 and Wij := 0 for all j ∈ [n].

• Type B: For each item i of Type C

Pi1 := 0, Pi2 := 1 and Wij := 0 for all j ∈ [n].

Let there be mA := O

(
log
(

n
β

)
· n

log(1
1−ϕ)

)
items of Type A, mB := n items of Type B, and

mC := n items of Type C.

Note that a ranking which ranks items of Type B and Type C alternately, satisfies the equal repre-
sentation constraints with probability 1. So in this instance, there exists a ranking which satisfies
(δ, ε)-equal representation. However, we will show that R does not satisfy (δ, ε)-equal representation
with probability at least 1− β.

Let Ĝ1 and Ĝ2 be the groups imputed by independent rounding. Let E be the event that Ĝ1 contains
at least n items of Type A and F be the event that Ĝ2 contains at least n items of Type A. Both E
and F occur with probability at most O(β). To see this, divide the items of Type A into n groups of
equal size. From each group, at least one item is selected in Ĝ1 and Ĝ2 with probabilities at least
1− (1− ϕ)

mA
n and 1− (ϕ)

mA
n respectively. Taking a union bound over all groups and substituting

mA, we get

Pr[E] ≥ 1− β andPr[F] ≥ 1− β.

Since only items of Type A have a nonzero contribution to the utility of a ranking and because there
are at least n items of Type A in each imputed group, it follows that R only selects items of Type A.
Now, the claim follows because, for small ϕ, most items of Type A belong to G1.

Suppose E and F happen and, hence, R only selects items of Type A. Let Zj be the indicator
random variable that the item in the j-th position of R is in G1. We have that Pr[Zj] = ϕ. Therefore,
Var[

∑n
j=1 Zj] = nϕ(1− ϕ). Thus, using the Chebyshev’s inequality we have

Pr

∣∣∣∣∣∣
n∑

j=1

Zj − nϕ

∣∣∣∣∣∣ ≥ nεn
4

 ≤ 4nϕ(1− ϕ)
n2ε2n

.

Hence, for ϕ = Θ(ε2nβ), we have that

Pr

 n∑
j=1

Zj ≤
nεn
2

 ≥ 1− β.

The result follows since whenever
∑n

j=1 Zj ≤ nε
2 , R violates the equal representation constraint at

the n-th position by a multiplicative factor larger than 1 + εn.

22

D Proofs of Theorems 4.2 and 4.3

D.1 Proof of Theorem 4.2

We consider the family of matrices U ∈ Rn×p that satisfy the following condition: For each position
k ∈ [n], there exists an attribute ℓ such that

Ukℓ ≤
k

4
.

Notably, equal representation constraints satisfy this condition for any p ≥ 4. We will use Fact D.1 to
prove Theorem 4.2.
Fact D.1 (Theorem 2 in [53]). For all p ∈ (0, 14], 0 ≤ ε ≤ 1

p (1 − p), and s ∈ N independent 0/1
random variables Z1, Z2, . . . , Zs ∈ {0, 1}, such that for all i ∈ [s], Pr[Zi = 1] = p,

Pr

[∑
i∈[s]

Zi ≥ (1 + ε)ps

]
≥ 1

4
exp

(
−2ε2ps

)
.

Proof of Theorem 4.2. Fix the k to the value specified in the theorem. Let ℓ ∈ [n], be any attribute
such that Ukℓ ≤ k

4 . Such a ℓ exists because of the family of constraints we chose. Without loss of
generality suppose ℓ ̸= 1. Fix any n,m ≥ k. For each item i ∈ [m], set

Piℓ :=
Ukℓ

k
and Pi1 := 1− Uk1

k
(16)

Further, for all k ∈ [p], k ̸= p and k ̸= 1, let Pik := 0.

Suppose, toward a contradiction, that there is a ranking R ∈ R that satisfies the (ε, δ)-constraint. R
must satisfy the following equation:

Pr [Z#(R, k, ℓ) ≤ Ukℓ · (1 + εk)] ≥ 1− δ. (17)

For each position j ∈ [n], let Zj ∈ {0, 1} be the indicator random variable that the item placed in the
j-th place in the ranking R is in the protected group Gℓ. From Equation (16) and Definition 3.2, it
follows that:

∀j ∈ [n], Pr[Zj] =
Ukℓ

k
, (18)

∀u, v ∈ [n], s.t., u ̸= v, Zu and Zv are independent. (19)

Using linearity of expectation and Equation (18), we get that:

Pr [Z#(R, k, ℓ) ≤ (1 + εk) · Ukℓ] = Pr

[∑
j∈[k]

Zj ≥ (1 + εk) · E
[∑k

j=1
Zj

]]
. (20)

Since 0 ≤ εk ≤ 1 and 1
k E
[∑k

j=1 Zj

]
≤ 1

4 , we can use Fact D.1 with ε := εk, p :=

1
k E
[∑k

j=1 Zj

]
≤ 1

4 , s := k, and for all j ∈ [n], Zj = Zj . Using this, we get that

Pr

[∑
j∈[k]

Zj ≥ (1 + εk) · E
[∑k

j=1
Zj

]]
≤ 1− 1

4
exp

(
−2ε2k · E

[∑k

j=1
Zj

])
≤ 1− 1

4
exp

(
−2ε2kUkℓ

)
.

(Using Equation (18)) (21)

Chaining Equations (17), (20), and (21), we get that

1− 1

4
exp

(
−2ε2kUkℓ

)
≥ 1− δ.

23

Hence,

εk ≥
√

1

2Ukℓ
log

1

4δ
.

This is a contradiction since εk is specified to be less than
√

1
2Ukℓ

log 1
4δ . Thus, no ranking R satisfies

the (ε, δ)-constraint for any U in the chosen family chosen.

D.2 Proof of Theorem 4.3

In this section, we prove Theorem 4.3. Our algorithm uses the dependent-rounding algorithm of [19]
as a subroutine.

Remark. Desirable properties and potential approaches for rounding. At a high level, the goal
of this dependent-rounding algorithm is the following: Given a feasible solution Rc of the standard
linear programming relaxation of Program (7) output a ranking R such that for any matrix A with
nonnegative entries, ⟨R,A⟩ is approximately equal to ⟨Rc, A⟩. This property guarantees that, with
high probability, R approximately satisfies the fairness constraints and has a similar utility as Rc.

A naive approach to achieve this property is to do independent rounding: For each i and j, setRij = 1
with probability (Rc)ij . The desired concentration property then follows from, e.g., the Chernoff
bound. However, the resulting R may not be a valid ranking because it could set Rij = Rik = 1 for
j ̸= k, hence requiring i to appear at two different positions (which is not possible). Similarly, it
could also place more than one items at one position (which also violates the constraints).

Another approach is (1) to express Rc as a convex combination of rankings
∑

i αiRi (αi ≥ 0)
(e.g., using the Birkhoff von Neumann decomposition) and (2) set R := Ri with probability ∝
αi. Since each Ri is a ranking this guarantees that R is a ranking, but it may violate fairness
constraints significantly. For example, consider the fractional assignment in which the k-th best
female (respectively male) appears in the k-th position with weight 0.5 for all positions k. This can
be decomposed into two rankings: 1) females are ranked in decreasing order of utility, and 2) males
are ranked in decreasing order of utility. The fractional solution satisfies equal representation, but
both rankings violate equal representation significantly.

The dependent-rounding algorithm of [19], which we use, also expresses Rc as a convex combination
of rankings

∑
i αiRi (αi ≥ 0). But it does not output Ri for any i. Instead, it initially, sets R := R1.

Then it iteratively “merges” R with R2, then R3, and so on.

[19]’s algorithm satisfies the following guarantees.
Theorem D.2 (Theorem 1.1 from [19]). Let P ⊆ [0, 1]N be either a matroid intersection polytope or
a (non-bipartite graph) matching polytope. For any fixed 0 < α ≤ 1

2 , there is an efficient randomized
rounding procedure, such that given a (fractional) point RF ∈ P , it outputs a random feasible
solution R corresponding to a (integer) vertex of P such that E[1R] = (1− α) ·RF . In addition, for
any linear function w(R) :=

∑
i∈R wi, where wi ∈ [0, 1] it holds that

1. for any δ ∈ [0, 1] and µ ≤ E[1R], Pr[w(R) ≤ (1− δ)µ] ≤ exp
(
− 1

20 · µαδ
2
)
,

2. for any δ ∈ [0, 1] and µ ≥ E[1R], Pr[w(R) ≥ (1− δ)µ] ≤ exp
(
− 1

20 · µαδ
2
)
,

3. for any ∆ ≥ 1 and µ ≥ E[1R], Pr[w(R) ≥ µ(1 + ∆)] ≤ exp
(
− 1

20 · µα(2∆− 1)
)
.

The algorithm runs in time polynomial in the size of the ground set, N , and 1
α , and makes at most

poly(N, d) calls to the independence oracles for the underlying matroids.

We claim that the following algorithm satisfies the claim in Theorem 4.3

For each item i ∈ [m] and protected attribute ℓ ∈ [p], let Ziℓ ∈ {0, 1} be the indicator random
variable that the i-th item is in the ℓ-th protected group, i.e., if i ∈ Gℓ, then Zi = 1, and other Zi = 0.
Using Definition 3.2, it follows that:

∀i ∈ [m], ℓ ∈ [p], Pr[Ziℓ] = Piℓ, (22)
∀i, j ∈ [m], ℓ ∈ [p], s.t., i ̸= j, Ziℓ and Zjℓ are independent. (23)

24

Algorithm 1 Algorithm from Theorem 4.3

Input: Matrices P ∈ [0, 1]m×p, W ∈ Rm×n
≥0 , U ∈ Rn×p

Parameters: Constant d > 2 and c > 1, a failure probability δ ∈ (0, 1], and for each k ∈ [n], a
relaxation parameter

γk := 12 · log
(
2np

δ

)
·max
ℓ∈[p]

√
1

Ukℓ
.

1. Initialize RF ← Solve the linear-programming relaxation of Program (7) with the specified inputs
2. Round R← Run [19]’s rounding algorithm with input α := 1

d and P := conv (R)
3. Return R

To simplify the notation, given a ranking R ∈ R, a protected attribute ℓ ∈ [p], and a position k ∈ [n],
let Z#(R, ℓ, k) ∈ Z be the random variable equal to the number of items from Gℓ in the top k
positions of R and let P#(R, ℓ, k) ∈ R be the expectation of Z#(R, ℓ, k), i.e.,

Z#(R, ℓ, k) :=
∑
i∈[m]

∑
j∈[k]

ZiℓRij and P#(R, ℓ, k) := E [Z#(R, ℓ, k)] .

Using Equation (22) and linearity of expectation it follows that

P#(R, ℓ, k) =
∑
i∈[m]

∑
j∈[k]

PiℓRij .

Proof. .

Running time. The Step 1 of Algorithm 1 runs in polynomial time when implemented with any
polynomial-time linear programming solver. Observe thatR corresponds to the bipartite matching
polytope, whose bi-partitions have size n and m respectively. Since the bipartite matching polytope is
a matroid intersection polytope, we can use Theorem D.2. The independence oracle for this polytope
can be implemented in poly(m) time, e.g., using the Birkhoff–von Neumann theorem. Finally, since
α = 1

d and N = O(m2), it follows that Step 2 of Algorithm 1 runs in polynomial time in d and the
bit complexity of the input (which is at least m).

Let

ϕ :=
2
√
c− 1

2
√
c

.

Let RF and R be the rankings from Steps 1 and 2 of Algorithm 1. From Theorem D.2, we have that
E[1R] = (1− α) ·RF . Hence, for any weights V ∈ Rn×m, it holds that

E [⟨R, V ⟩] = (1− α) · ⟨RF , V ⟩ . (24)

Fix any position k ∈ [n] and group ℓ ∈ [p]. Since ℓ, k, and R are fixed, we use Z#(R) and Z#(R
′)

and P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k) respectively.

Utility guarantee. Let R⋆ be the solution of Program (7) for c = d. Let V := ⟨W,R⋆⟩. Let
0 ≤ ∆ ≤ V be a parameter. Since RF is a solution of the LP-relaxation of Program (7) and R⋆ is a
solution of Program (7), RF ’s utility is at least as large as the utility of R⋆. From this it follows that

Pr [⟨W,R⟩ ≤ ⟨W,R⋆⟩ · (1− α)−∆] ≤ Pr [⟨W,R⟩ ≤ ⟨W,RF ⟩ · (1− α)−∆] . (25)

Since W ∈ [0, 1]m×n, we can use Theorem D.2 with a =W . Using this we get can upper bound the
RHS of the above equation.

Pr [⟨W,R⟩ ≤ ⟨W,RF ⟩ · (1− α)−∆] = Pr [⟨W,R⟩ ≤ E [⟨W,R⟩]−∆] (Using Equation (24))

≤ exp

(
− α

20
· ∆2

⟨W,RF ⟩ · (1− α)

)
.

25

Let ∆ :=
√

20
α · ⟨W,RF ⟩ · (1− α) · log

(
2np
δ

)
. Substituting the value of ∆ in the above equation,

we have:

Pr [⟨W,R⟩ ≤ E [⟨W,R⟩]−∆] ≤ δ

2np
. (26)

Chaining the inequalities in Equations (25) and (26)

Pr [⟨W,R⟩ ≤ ⟨W,R⋆⟩ · (1− α)−∆] ≤ δ

2n
.

Since each entry of W is at most 1 and
∑

i,j (RF)ij = n, it follows that ⟨W,RF ⟩ ≤ n. Using this
and that α = 1

d ,

∆ = O

(√
dn · log 2np

δ

)
.

Thus, the utility guarantee follows.

Fairness guarantee. Since RF is feasible for the LP-relaxation of Program (7), it holds that

P#(RF) ≤ Ukℓ(1 + ϕγk). (27)

Let ε > 0 be some constant such that

ε ≥ ϕγk. (28)

We divide the analysis into two cases depending on the value of ε.

Case A (P#(R) ≥ 1
2Ukℓ(1 + ε)): Since P#(R) ≥ 1

2 · Ukℓ(1 + ε), we have that

U(1 + ε)− P#(R)

P#(R)
≤ 1. (29)

We have that

Pr [Z#(R) > Ukℓ(1 + ε)] = Pr

[
Z#(R) > P#(R) ·

(
1 +

Ukℓ(1 + ε)− P#(R)

P#(R)

)]
From Equation (24) it follows that P#(R) = P#(RF)(1− α). Then from Equations (27) and (28)
we have that P#(R) ≤ Ukℓ(1 + ε). Hence, Ukℓ(1+ε)−P#(R)

P#(R) ≥ 0. Further, from Equation (29)
Ukℓ(1+ε)−P#(R)

P#(R) ≤ 0. Hence, we can use the second statement of Theorem D.2. Using this we get

≤ exp

(
− α

20
· P#(R) ·

(
Ukℓ(1 + ε)− P#(R)

P#(R)

)2
)

≤ exp

(
− α

20
· P#(RF) ·

(
Ukℓ(1 + ε)− P#(RF)

P#(RF)

)2
)

(Fact E.2 and that P#(R) ≤ P#(RF))

≤ exp

(
− α

20
· Ukℓ ·

(ε− ϕγk)2

1 + ϕγk

)
.

(Fact E.2 and Equation (27)) (30)

Case B (P#(R) <
1
2Ukℓ(1 + ε)): Since P#(R) <

1
2 · Ukℓ(1 + ε), we have that

Ukℓ(1 + ε)− P#(R)

P#(R)
≥ 1. (31)

26

We have that

Pr [Z#(R) > Ukℓ(1 + ε)] = Pr

[
Z#(R) > P#(R) ·

(
1 +

Ukℓ(1 + ε)− P#(R)

P#(R)

)]
≤ exp

(
− α

20
· P#(R) ·

(
2 · Ukℓ(1 + ε)− P#(R)

P#(R)
− 1

))
(Using third statement in Theorem D.2 and that Equation (31))

= exp
(
− α

20
· (2Ukℓ(1 + ε)− 3P#(R))

)
≤ exp

(
− α

40
· Ukℓ(1 + ε)

)
.

(Using that P#(R) <
1
2 · Ukℓ(1 + ε)) (32)

Combining Equations (30) and (32) we get that

Pr [Z#(R) > U(1 + ε)] ≤ max

{
exp

(
− α

20
· Ukℓ

(ε− ϕγk)2

1 + ϕγk

)
, exp

(
− α

40
· Ukℓ(1 + ε)

)}
.

(33)

Let

ε :=
40

α
· γk. (34)

We claim that for this value of ε, it holds that

Pr [Z#(R) > Ukℓ(1 + ε)] ≤ δ

2n
. (35)

Now by taking a union bound over bound over all ℓ ∈ [n] and using that α := 1
d , it follows that R

satisfies the fairness guarantee with probability at least δ
2n .

We can upper bound the second term in Equation (33), as follows

exp
(
− α

40
· Ukℓ(1 + ε)

)
≤ exp

(
− α

40
· Ukℓ · ε

)
≤ exp (−Ukℓ · γk)

≤ δ

np
.

(Using that γk ≥ 1
Ukℓ
· log 2np

δ ; which follows from Equation (6), Ukℓ ≥ 1, and log 2np
δ ≥ 1)

To upper bound the first term in Equation (33), we use Fact D.3.

Fact D.3. For all x, y ≥ 0, if x ≥ y +√y, then x2

1+x ≥ y.

Proof. Since 1 + x > 0, x2

1+x ≥ y holds if and only if x2 − xy − y ≥ 0. The roots of the quadratic
f(x) := x2 − xy − y are

y

2
−
√
y2

4
+ y and

y

2
+

√
y2

4
+ y.

If x is larger than both roots, then f(x) ≥ 0 and, hence, x2

1+x ≥ y. It follows that x ≥ y
2 +

√
y2

4 + y

suffices. Then using that for all a, b ≥ 0,
√
a+
√
b ≥
√
a+ b, we get that

y +
√
y ≥ y

2
+

√
y2

4
+ y.

Thus, it suffices x ≥ y +√y implies that x2

1+x ≥ y.

27

We have

(ε− ϕγk)2

1 + ϕγk
≥
(
39

α

)2

· γk
2

1 + ϕγk
(Using that 0 ≤ ϕ ≤ 1, α ≤ 1

2 , and Equation (34))

≥
(
39

α

)2

· γk
2

1 + γk
. (Using that 0 < ϕ ≤ 1)

To proof Equation (35), it suffices to prove that

γk
2

1 + γk
≥ 1

Ukℓ
· log

(
n+ 2

δ

)
. (36)

Further, Fact D.3 implies that to prove Equation (36) it suffices to prove that

γk ≥ y +
√
y,

where y := 1
Ukℓ
· log n+2

δ . To prove this, observe that

log
np

δ
· 1

Ukℓ
≤ log

np

δ
·
√

1

Ukℓ
, (Using that Ukℓ ≥ 1)√

log
np

δ
· 1

Ukℓ
≤ log

np

δ
·
√

1

Ukℓ
. (Using that log np

δ ≥
1
2 as n ≥ 1 and δ ≤ 1

2)

Hence, Equation (36) follows from Equation (6).

E Proofs of additional theoretical results

E.1 Proof of Proposition 3.3

Proof of Proposition 3.3. Suppose R is deterministic. Suppose it places items i, j ∈ [m] on the first
and second position respectively. With probability pi · pj = 1

4 , both i and j belong to G1, and with
probability pi · pj = 1

4 both i and j belong to G2. Thus, at least one of these events occurs with
probability 1

2 . If either of these events hold, then R violates the equal representation constraint on
the top-2 positions by a multiplicative factor of 2. The last two statements imply that R violates
(ρ, δ)-equal representation for any ρ < 1 and δ < 1

2 .

If R is a random variable, then any draw R′ of R is a deterministic ranking, and hence, by the above
argument R′ violates the equal representation constraint on the top-2 positions by a multiplicative
factor of 2 with a probability 1

2 (over the randomness in G1 and G2). Since this holds for all draws of
R and R is independent of G1 and G2, it follows that R violates the equal representation constraint
on the top-2 positions by a multiplicative factor of 2 with a probability 1

2 (over the randomness in G1

and G2, and R). Thus, R does not satisfy (ρ, δ)-equal representation for any ρ < 1 and δ < 1
2 .

E.2 Proof of Lemma 6.3

In this section, we prove certain concentration inequalities which are used in the proof of Theorem 4.1.
We divide the proof of Lemma 6.3 into two parts: Lemmas E.1 and E.6

For each item i ∈ [m] and protected attribute ℓ ∈ [p], let Ziℓ ∈ {0, 1} be the indicator random
variable that the i-th item is in the ℓ-th protected group, i.e., if i ∈ Gℓ, then Zi = 1, and other Zi = 0.
Using Definition 3.2, it follows that:

∀i ∈ [m], ℓ ∈ [p], Pr[Ziℓ] = Piℓ, (37)
∀i, j ∈ [m], ℓ ∈ [p], s.t., i ̸= j, Ziℓ and Zjℓ are independent. (38)

28

To simplify the notation, given a ranking R ∈ R, a protected attribute ℓ ∈ [p], and a position k ∈ [n],
let Z#(R, ℓ, k) ∈ Z be the random variable equal to the number of items from Gℓ in the top k
positions of R and let P#(R, ℓ, k) ∈ R be the expectation of Z#(R, ℓ, k), i.e.,

Z#(R, ℓ, k) :=
∑
i∈[m]

∑
j∈[k]

ZiℓRij and P#(R, ℓ, k) := E [Z#(R, ℓ, k)] .

Using Equation (37) and linearity of expectation it follows that

P#(R, ℓ, k) =
∑
i∈[m]

∑
j∈[k]

PiℓRij .

Lemma E.1. For any position k ∈ [n], attribute ℓ ∈ [p], parameters ε ≥ 0 and L ∈ R, and ranking
R ∈ R, where R is possibly a random variable and is independent of {Ziℓ}i,ℓ, if P#(R, ℓ, k) ≥ L
then with probability at least 1− exp

(
− Lε2

2(1−ε)

)
, it holds that Z#(R, ℓ, k) > L (1− ε).

Proof. Since ℓ, k, and R are fixed, we use Z# and P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k)
respectively.

Since R and {Ziℓ}i,ℓ are independent, we can bound the required probability as follows

Pr [Z# ≤ L(1− ε)] = Pr

[
Z# ≤ P# ·

(
1− P# − L(1− ε)

P#

)]
≤ exp

(
−P#

2
·
(
P# − L(1− ε)

P#

)2
)

(Chernoff bound, see [52])

= exp

(
−1

2
· (P# − L(1− ε))2

P#

)
. (39)

To bound the right-hand side of Equation (39), we will use the following fact.

Fact E.2. For all L, ε > 0, (x−L(1−ε))2

x attains its minima at L over the domain [L,∞).

Since P# ≥ L, from Fact E.2 it follows that the right-hand side of Equation (39) attains its maxima
at P# = L. Substituting P# = L in Equation (39), we get:

Pr [Z# ≤ L(1− ε)] ≤ exp

(
−1

2
· (Lε)

2

L(1− ε)

)
= exp

(
−Lε2

2(1− ε)

)
.

Lemma E.3. For any position k ∈ [n], attribute ℓ ∈ [p], parameters ε ≥ 0 and U ∈ R, and
ranking R ∈ R, where R is possibly a random variable and is independent of {Ziℓ}i,ℓ, if R satisfies

that P#(R, ℓ, k) ≤ U then with probability at least 1 − exp
(
−Uε2

2+ε

)
, it holds that Z#(R, ℓ, k) <

(1 + ε) · U .

Proof. Since ℓ, k, and R are fixed, we use Z# and P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k)
respectively. Since R and {Ziℓ}i,ℓ are independent, we can bound the required probability as follows

Pr [Z# ≥ U(1 + ε)] = Pr

[
Z# ≤ P# ·

(
1 +

U(1 + ε)− P#

P#

)]

≤ exp

P# ·
(
U(1 + ε)− P#

P#

)2

· 1

2 +
U(1+ε)−P#

P#

 .

29

Where we used the fact that: For any δ > 0 and independent 0/1 random variables Y1, Y2, . . . , Yn,
Pr [
∑

i Yi > (1 + δ)µ] < exp
(

µδ2

2+δ

)
, where µ := E[

∑
i Yi] (see[52]). Simplifying the right-hand

side of the above equation, we get:

Pr [Z# ≥ U(1 + ε)] = exp

(
− (U(1 + ε)− P#)

2

U(1 + ε) + P#

)
. (40)

To bound the right-hand side of Equation (40), we will use the following fact.

Fact E.4. For all U, ε > 0, (U(1+ε)−x)2

U(1+ε)+x attains its minima at U over the domain [0, U].

Since P# ≤ U , from Fact E.4 it follows that the right-hand side of Equation (40) attains its maxima
at P# = U . Substituting P# = U in Equation (40), we get:

Pr [Z# ≥ U(1 + ε)] ≤ exp

(
−Uε2

2 + ε

)
. (41)

E.3 Improved dependence of Theorem 4.1 on γ on δ

In this section, we show that given a constant ψ > 0, if U satisfies that

∀ℓ ∈ [p],∀k ∈ [n], Ukℓ ≥ ψk,

then we can improve the dependence of γ (from Equation (6)) on log 2np
δ and α. Concretely,

Theorem 4.1 holds for the following γ:

∀k ∈ [n], γk := max
ℓ∈[p]

√
1

2ψ
· log

(
2np

δ

)
· 1

Ukℓ
. (42)

The proof of this relies on analogous of Lemmas E.1 and E.3: Lemmas E.5 and E.6.
Lemma E.5. For any position k ∈ [n], attribute ℓ ∈ [p], parameter ε ≥ 0, and lower bound
constraint L ∈ Zn×p

≥0 , and ranking x ∈ R, if x satisfies that P#(R, ℓ, k) ≥ L then with probability
at least 1− exp

(
−2L2ε2k−1

)
, it holds that Z#(R, ℓ, k) > L (1− ε).

Lemma E.6. For any position k ∈ [n], attribute ℓ ∈ [p], parameters ε ≥ 0 and U ∈ R, and
ranking R ∈ R, where R is possibly a random variable and is independent of {Ziℓ}i,ℓ, if R

satisfies that P#(R, ℓ, k) ≤ U then with probability at least 1 − exp
(
− 2U2ε2

k

)
, it holds that

Z#(R, ℓ, k) < U (1 + ε).

To prove the improved dependence of γ, it suffices to prove Propositions 6.1 and 6.2. For the new
value of γ, their proofs change as follows:

Proof of Proposition 6.1. The parameters in Equation (9) remain the same. Hence, following the
same argument, Equation (10) holds. Now, we can prove Equation (12) as follows:

Pr [Z#(R, ℓ, k) ≥ Uℓk(1 + ϕγk)] = Pr [Z#(R, ℓ, k) ≥ U ′(1 + ζ)]

(Using that U ′(1 + ζ) = Ukℓ(1 + ϕγk))

≤ exp

(
−2 (U ′)

2
ζ2

k

)
(Using Lemma E.6)

= exp

(
−2(1− ϕ)2U2

ℓkγ
2
k

k

)
(Using Equation (9))

≤ exp
(
−2ψ(1− ϕ)2Uℓkγ

2
k

)
(Using that Ukℓ ≥ ψk)

≤ δ

2np
. (Using Equation (42)) (43)

30

Proposition 6.1 follows by replacing Equation (12) by Equation (43) in the rest of its proof.

Proof of Proposition 6.2. The parameters in Equation (13) remain the same. Now, we can prove
Pr [Z#(R

′, k, ℓ) ≤ Ukℓ] < 1− δ as follows:

Pr [Z#(R
′, k, ℓ) ≤ Ukℓ] = Pr [Z#(R

′, k, ℓ) ≤ L′ · (1− ζ)]

(Using that L′(1− ζ) = Ukℓ(1 + bγk))

≤ exp

(
−2 (L′)

2
ζ2

k

)
(Using Lemma E.5)

= exp

(
−2(ϕ− b)2γ2kU2

kℓ

k

)
(Using Equation (13))

≤ exp
(
−2ψ(ϕ− b)2γ2kUkℓ

)
(Using that Ukℓ ≥ ψk)

<
δ

2np
(Using Equation (42) and Equation (13)) (44)

< 1− δ. (Using that δ < 1
2 and n ≥ 1) (45)

The rest of the proof is identical.

Proof of Lemma E.5. First, note that since x is not a function of the outcomes of the random variables
Ziℓ, x is independent of the random variables {Ziℓ}i,ℓ. Since ℓ, k, and x are fixed, we use Z# and
P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k) respectively. Now, we can bound the required probability
as follows

Pr [Z# ≤ L(1− ε)] = Pr

[
Z# ≤ P# ·

(
1− P# − L(1− ε)

P#

)]
≤ exp

(
−2

k
· P 2

·
(
P# − L(1− ε)

P#

)2
)

(Where we used the fact that: For any δ > 0 and bounded random variables Y1, Y2, . . . , Yn ∈ [0, 1],
Pr [
∑

i Yi < (1− δ)µ] < exp
(
−2µ2δ2n−1

)
, where µ := E[

∑
i Yi])

= exp

(
−2

k
· (P# − L(1− ε))2

)
≤ exp

(
−2L2ε2k−1

)
.

Proof of Lemma E.6. Since ℓ, k, and R are fixed, we use Z# and P# to denote Z#(R, ℓ, k) and
P#(R, ℓ, k) respectively. SinceR and {Ziℓ}i,ℓ are independent, we can bound the required probability
as follows

Pr [Z# ≥ U(1 + ε)] = Pr

[
Z# ≤ P# ·

(
1 +

U(1 + ε)− P#

P#

)]
≤ exp

(
−2

k
· P 2

·
(
U(1 + ε)− P#

P#

)2
)
.

Where we used the fact that: For any δ > 0 and bounded random variables Y1, Y2, . . . , Yn ∈ [0, 1],
Pr [
∑

i Yi > (1 + δ)µ] < exp
(
−2µ2δ2n−1

)
, where µ := E[

∑
i Yi] ([52]). Simplifying the right-

hand side of the above equation, we get

Pr [Z# ≥ U(1 + ε)] ≤ exp

(
−2

k
(U(1 + ε)− P#)

2

)
≤ exp

(
−2U2ε2

k

)
. (Using that P# ≤ U)

31

E.4 NP-hardness result

Theorem E.7. Given constants c > 1 and vector γ ∈ Rn
≥0, , and matrices P ∈ [0, 1]m×p, W ∈

Rm×n
≥0 , U ∈ Rn×p, it is NP-hard to decide if Program (7) is feasible.

Theorem E.7 follows from Theorem 5.2 of [48], which proves that checking the feasibility of the
following program is NP-hard.¶

max
x∈{0,1}m

∑m

i=1
w◦

i xi (46)

s.t., ∀ ℓ ∈ [p◦],
∑m◦

i=1
q◦iℓxi ≤ U◦

ℓ , (47)∑m◦

i=1
xi = n◦. (48)

Where we used a superscript “◦” on the variables of [48], to differentiate between ours and [48]’s
variables. Theorem E.7 follows from Theorem 5.2 of [48] by observing that Program (46) is a special
case of Program (7), when:

n := n◦, m := m◦, p := p◦, γ := 1n, P = q◦,
∀k ∈ [n], γk = 1,

Unℓ = U◦
ℓ ,

∀k ∈ [n] \ {1} , Ukℓ = n,

∀i ∈ [m], j ∈ [n], Wij = w◦
i .

Finally, we can choose any c > 1.

E.5 Proof of Proposition E.8

Given a non-empty subset C ⊆ R denoting a constraint, let RC be the ranking with the highest utility
in C, i.e.,

RC := argmaxR∈C ⟨R,W ⟩ .
In other words, RC is the utility maximizing ranking subject to satisfying the “constraint” C.

Proposition E.8. Let C⋆ be the set of all rankings that satisfy (ε, δ)-constraint. For any subset
C ⊆ R, such that C ̸= C⋆, at least one of the following holds:

• there exists a matrix W ∈ Rm×n
≥0 such that, RC does not satisfy (ε, δ)-equal representation,

• there exists a matrix W ∈ Rm×n
≥0 such that, ⟨RC ,W ⟩ ≤ ⟨RC⋆ ,W ⟩ ·

(
1− 1

n

)
.

We will use the following lemma in the proof of Proposition E.8.

Lemma E.9. For all rankings R ∈ R, there exists a matrix W ∈ Rm×n
≥0 such that for all other

rankings R′ ∈ R, R ̸= R′, it holds that ⟨R′,W ⟩ ≤ ⟨R,W ⟩ ·
(
1− 1

n

)
.

Proof. Suppose R ranks items i1, i2, . . . , in, in that order, in the first n positions. Pick W ∈
[0, 1]n×m such that Wij = 1 if i = ij and 0 otherwise. R has utility ⟨W,R⟩ =

∑n
j=1 (W)ijj = n.

We claim that ⟨W,R′⟩ ≤ n− 1. If this is true, then the lemma follows.

¶Theorem 5.2 of [48] states an NP-hardness result holds for a generalization of Program (46). However, in
their proof they only consider the special case of Program (46). Thus, their proof also implies NP-hardness of
Program (46).

32

Since R ̸= R′, there exists a position k ∈ [n] such that (xC)ikk = 0. We can upper bound ⟨W,R′⟩ as
follows:

⟨W,R′⟩ =
n∑

j=1

m∑
i=1

I[i = ij] (R
′)ij (By the choice of W)

=

n∑
j=1

(R′)ijj

=

k−1∑
j=1

(R′)ijj + 0 +

n∑
j=k+1

(R′)ijj (Using that (R′)ikk = 0)

≤ n− 1. (Using that for all i ∈ [m] and j ∈ [n], (W)ij ≤ 1)

Proof of Proposition E.8. Since C ̸= C⋆, at least one of the sets C \ C⋆ or C⋆ \ C is nonempty. We
divide the proof into two cases.

Case A (|C \ C⋆| ≠ 0): In this case, there exists a rankingR ∈ C such thatR ̸∈ C⋆. Since C⋆ is the set
of all rankings that satisfy (ε, δ)-constraint, it follows thatR does not satisfy (ε, δ)-constraint. Further,
from Lemma E.9 it follows that there exists a matrix W such that R := argmaxR′∈R ⟨R′,W ⟩. Since
C ⊆ R, it follows that RC = R. Therefore, for this W , RC does not satisfy (ε, δ)-constraint.

Case B (|C⋆ \ C| ̸= 0): In this case, there exists a ranking R ∈ C⋆ such that R ̸∈ C. From Lemma E.9
it follows that there exists a matrix W such that, for rankings R′ different from R (i.e., R ̸= R′),

⟨R′,W ⟩ ≤ ⟨R,W ⟩ ·
(
1− 1

n

)
.

Thus, for this W , it follows that

⟨RC⋆ ,W ⟩ ·
(
1− 1

n

)
≥ ⟨R,W ⟩ ·

(
1− 1

n

)
≥ ⟨R′,W ⟩ .

In particular, for R′ = RC , we get ⟨RC⋆ ,W ⟩ ·
(
1− 1

n

)
≥ ⟨R′,W ⟩.

E.6 Proof of Lemma E.10

Suppose there are two groups G1 and G2. Let RE be the optimal solution to Equation (5) and let R⋆

be the ranking with the highest utility subject to satisfying (γ, δ)-equal representation constraints for
the following γ:

∀k ∈ [n], γk :=
1

k
+ 2

√
6

k
· log

(
2n

δ

)
. (49)

Lemma E.10. There exists a matrices P ∈ [0, 1]m×2 and W ∈ [0, 1]m×2 such that

• RE satisfies (γ, δ)-equal representation and has utility 0,

• R⋆ has utility 1.

Proof. Let P be the matrix with Pi1 = Pi2 = 1
2 for all i ∈ {1, 2, . . . ,m− 1} and Pm1 = 1 and

Pm1 = 0. Let W be the matrix whose first m− 1 rows are 0, and the last row has is all 1s. Hence,
only the last item, say im, has a nonzero contribution to the utility: If a ranking R ranks im in the
first n positions, then the utility of R is 1, otherwise the utility of R is 0.

33

Our first claim will follow because the choice of P ensures that any ranking which ranks im in the
first n positions cannot satisfy Equation (5). To see this, suppose R ranks im at the k-th position, then

E
[∑

i∈G1

∑k

j=1
Rij

]
=
∑

i∈[m]

∑k

j=1
Pi1Rij

= 1 +
∑

i∈[m]\{im}

∑k−1

j=1
Pi1Rij (Using that Pim,1 = 1)

=
k + 1

2
(Using that Pi,1 = 1

2 for all i ̸= im)

>
k + 1

2
.

Hence, R cannot satisfy Equation (5).

To prove our second claim, we will construct a ranking which has utility 1 and satisfies (γ, δ)-equal
representation . It suffices to choose any ranking R which places im in the first n position satisfies
constraint. By our earlier argument this ranking has a utility 1. LetZj be the indicator random variable
that the item in the j-th position inR belongs toG1. This implies that

∑
i∈G1

∑k
j=1Rij =

∑k
j=1 Zj

for all k. Further, by the choice of P , we have

k

2
≤ E

[∑k

j=1
Zj

]
≤ k + 1

2
. (50)

Further, by Definition 3.2, we have that Zj is independent of Zk for any j ̸= k. Let εk :=√
6
k · log

(
2n
δ

)
. Using the above, we have

Pr

[∑
i∈G1

∑k

j=1
Rij ≥

k + 1

2
· (1 + εk)

]
= Pr

[∑k

j=1
Zj ≥

k + 1

2
· (1 + εk)

]
≤ Pr

[∑k

j=1
Zj ≥ E

[∑k

j=1
Zj

]
· (1 + εk)

]
(Using Equation (50))

≤ exp

(
−ε

2
k

3
· E
[∑k

j=1
Zj

])
(Using the Chernoff’s bound, see [52])

≤ exp

(
−ε

2
kk

6

)
(Using Equation (50))

≤ δ

2n
. (Using that εk :=

√
6
k · log

(
2n
δ

)
)

Further, as γk ≥ k+1
k · (1 + εk), we get

Pr

[∑
i∈G1

∑k

j=1
Rij ≥

k

2
· (1 + γk)

]
≤ Pr

[∑
i∈G1

∑k

j=1
Rij ≥

k + 1

2
· (1 + εk)

]
≤ δ

2n
.

34

Further, considering 1− Zj and repeating a similar argument for G2, we get

Pr

[∑
i∈G2

∑k

j=1
Rij ≥

k

2
· (1 + εk)

]
= Pr

[∑k

j=1
(1− Zj) ≥

k

2
· (1 + γk)

]
≤ Pr

[∑k

j=1
(1− Zj) ≥ E

[∑k

j=1
(1− Zj)

]
· (1 + γk)

]
(Using Equation (50))

≤ exp

(
−γ

2
k

3
· E
[∑k

j=1
(1− Zj)

])
(Using the Chernoff’s bound, see [52])

≤ exp

(
−γ

2
k(k − 1)

6

)
(Using Equation (50))

≤ δ

2n
. (Using Equation (49))

By taking the union bound over all k, one can show that R satisfies (γ, δ)-equal representation.

E.7 Proof of Proposition E.11

Proposition E.11. There exist p ∈ [0, 1]m such that (4) is non-convex in R.

Proof. It suffices to specify n, m, p, ε, δ, and two rankings R1 and R2 such that both R1 and R2

satisfy (ε, δ)-equal representation, but R1+R2

2 does not satisfy (ε, δ)-equal representation.

Define n := 2, m := 4, and ε := [1
3

1
3]

⊤. Fix any 0 < δ < 1
2 . Define

p := [1 0 δ 1− δ]⊤ .

Let R1 be the ranking that places items 1 and 3 in the first and second position, and R2 be the ranking
that places items 2 and 4 in the first and second position, i.e.,

R1 :=

[
1 0 0 0
0 0 1 0

]
and R2 :=

[
0 1 0 0
0 0 0 1

]
.

If 1 ∈ G1 and 3 ∈ G2, then R1 places an equal number of items from G1 and G2 in the first two
positions, and hence, satisfies equal representation. This event, happens with probability p1(1−p3) =
1− δ. Thus, R1 satisfies (0, δ)-equal representation, and hence, (ε, δ)-equal representation. Replace
item 1 and 3 with 2 and 4 and swap G1 and G2 in the above argument, to get that R2 also satisfies
(ε, δ)-equal representation.

However, we claim that R1+R2

2 does not satisfy (ε, δ)-equal representation. Note that with probability
1, 1 ∈ G1 and 2 ∈ G2. If 3, 4 ∈ G1 or 3, 4 ∈ G2, then R1+R2

2 violates the equal representation
constraint on the top-2 positions by a multiplicative factor of 3

2 . At least one of these events happens
with probability p3p4 + (1− p3)(1− p4) = 2δ(1− δ) > δ, as δ < 1

2 . Thus, R1+R2

2 does not satisfy
(ε, δ)-equal representation for the specified ε := [1

3
1
3]

⊤ and δ < 1
2 .

E.8 Proof of Theorem E.12

In this section, we prove the following theorem.

Theorem E.12. Given p ∈ [0, 1]m, δ ∈ (0, 1], W ∈ Rm×n
≥0 , ε ∈ [0, 1]n, and V ≥ 0 it is NP-hard to

decide if the value of Program (4) is at least V .

35

Recall that constraint (52) is necessary and sufficient to satisfy (ε, δ)-equal representation, and hence,
the value of (51) is the maximum utility of a ranking subject to satisfying (ε, δ)-equal representation.

max
R∈R

⟨R,W ⟩ (51)

s.t. w.p. at least 1− δ over draw of G1, G2, (52)

∀k ∈ [n], ∀ℓ ∈ [2],
∑

i∈Gℓ

k∑
j=1

Rij ≤
k

2
· (1 + εk).

We will show that the decision version of (51) is NP-hard:

Theorem E.13. Given L ≥ 0, δ ∈ [0, 1], ε ∈ [0, 1]n, P ∈ [0, 1]m×p, and W ∈ Rm×n
≥0 it is NP-hard

to decide if the value of (51) is at least L.

The proof of Theorem E.13 proceeds in two steps. In the first step, we reduce (53) to (51). In the
second step, we prove that (53) is NP-hard because the NP-complete product partition problem
reduces to (53). Together, the two steps imply the hardness of (51). The proof of the second step is
inspired by the construction of [57] for the product knapsack problem, which is similar to (53).

Step 1: Reduction from (53) to (51). In this step, we will reduce the following problem to (51).

Input: L ≥ 0, n ∈ [m], δ ∈ [0, 1], U ∈
[
0, n2

]
v ∈ Rm

≥0, and P ∈ [0, 1]m×p

Decision problem: Is the value of (53) at least L?

max
S⊆[m] : |S|=n

∑
i∈S

vi (53)

s.t. w.p. at least 1− δ over draw of G1, G2,

|S ∩G1| ≤ U +
n

2
and |S ∩G2| ≤ U +

n

2
.

Reduction. Given an instance of (53) we construct the following instance of (51):

W := v1⊤n , (54)

ε1 = ε2 = · · · = εn−1 :=
2n

k
− 1, (55)

εn :=
2U

n
− 1, (56)

where 1n := (1, . . . , 1) ∈ Rn.|| The parameters L, δ, and P are the same as the instance of (53).

The reduction from (53) to (51) is as follows: First solve (51) to obtain a ranking R. Let S be the set
of items R places in the top-n positions. Output S. Clearly, this is a polynomial-time reduction. It
remains to prove that it is sound and complete.

In our construction, Condition (54) implies that the utility of a ranking only depends on the set
of n items it places in the top-n positions, and hence, any two rankings that place the same set of
items in the top-n positions have the same utility. Condition (55) ensures that any ranking satisfies
the constraints in the first n − 1 positions with probability 1. This is because, for all k ∈ [n − 1],
k
2 (1 + εk) = n > k. Thus, a ranking R is feasible for (51) if and only if it satisfies: With probability
at least 1− δ over draw of G1, G2,

∀ℓ ∈ [2],
∑
i∈Gℓ

k∑
j=1

Rij ≤
n

2
· (1 + εn) = U +

n

2
.

||To be precise, we consider ε1 = ε2 = · · · = εn−1 := min
{
1, 2n

k
− 1

}
and εn := min

{
1, 2U

n
− 1

}
.

36

Soundness and completeness. Fix any R ∈ R. Let S be the set of items R places in the top-n
positions. It holds that

⟨R,W ⟩ (54)
=
∑
i∈S

vi.

It remains to show that R is feasible for (51) if and only if S is feasible for (53). Due to conditions
(55) and (56), R is feasible for (51) iff: With probability at least 1− δ over draw of G1, G2,

∀ℓ ∈ [2],
∑
i∈Gℓ

k∑
j=1

Rij ≤ U +
n

2
.

Since by the definition of S, for all T ⊆ [m],
∑

i∈T

∑n
j=1Rij = |S ∩ T |, it follows that with

probability 1
∑

i∈Gℓ

∑n
j=1Rij = |S ∩Gℓ|. Thus, S is feasible for (53) if and only if R is feasible

for (51). Thus, the reduction is sound and complete.

Step 2: Reduction from product partition problem to (53). We consider the following version of
the product partition problem:

Cardinality constrained product partition problem (CPPP)

Input: a1, a2, . . . , aq ∈ Z≥0 and ℓ ∈ {0, 1, . . . , q}.
Decision problem: Is there a set S ⊆ [q] of size ℓ such that∏

i∈S

ai =
∏

i∈[q]\S

ai?

The usual product partition problem (PPP) does not require S to have size ℓ and is known to be
NP-complete. CPPP is clearly in NP. To see that CPPP is NP-complete, one can reduce PPP to
CPPP: To see this, given an instance of PPP, construct q + 1 instances of CPPP, one for each value
of ℓ ∈ {0, 1, . . . , q}. Then, PPP is a ‘Yes’ instance if and only if at least one of the q + 1 CPPP
instances in a ‘Yes’ instance. Thus, it follows that CPPP is also NP-complete.

Assumptions on CPPP instances without loss of generality. The decision problem for CPPP is
simple for instances with ℓ = 0, or with one or more of a1, . . . , aq as 0. As all inputs are integral,
without loss of generality, we assume that ℓ ≥ 1 and a1, . . . , aq ≥ 1. Note that if in an CPPP√∏q

i=1 ai is non-integral, then it is a ‘No’ instance. This can be verified in polynomial time, and
hence, without loss of generality, we assume that

√∏q
i=1 ai is integral.

Reduction from CPPP to (53). Given an instance of CPPP, we construct an instance of (53) with

n := 2ℓ, m := q + ℓ, U := ℓ− 1, and δ :=

(
1

amax

)ℓ2

, (57)

where amax := maxi∈[q] ai. Further, define constants

M := (ℓ+ 2) ·

√√√√ q∏
i=1

ai and B := q ⌈M log(amax)⌉+ 1. (58)

We choose v so that the first q items correspond to the q numbers in the CPPP instance, and the next
ℓ items have a “high” value:

∀i ∈ [q], vi := ⌈M log(ai)⌉ , (59)
∀i ∈ [ℓ], vi+q := L. (60)

37

Note that each of the last ℓ items has a value larger than the total value of the first q items, i.e.,

∀ i ∈ [ℓ], vi+q = B >
∑
j∈[q]

vj . (61)

We choose P so that for the first q items Pi,1 ∝ aℓi and the next ℓ are in G1 with probability 1:

∀i ∈ [q], Pi,1 :=

(
ai
amax

)ℓ

· 1√∏q
i=1 ai

and Pi,2 = 1− Pi,1, (62)

∀i ∈ [ℓ], Pi+q,1 := 1 and Pi+q,2 = 1− Pi+q,1. (63)

Finally, let

L := ℓB +

⌊
M

2

q∑
i=1

log(ai)

⌋
. (64)

The reduction from CPPP to (53) is as follows: First solve the constructed instance of (53) to get S.
Then output S\Q, where

Q := [ℓ+ q] \ [q]
is the set of the last ℓ items.

Let C ∈ Z be the bit complexity of the input for the given instance of (53). To show that the reduction
is polynomial time, it suffices to show that L and ⌈M log(a1)⌉ , . . . , ⌈M log(aq)⌉ can be computed
in poly(C) time. Note that, M ≤ 2O(C), and hence, to compute ⌈M log(ai)⌉ it suffices to compute
log(ai) up to O(C) bits, which can be done in poly(C) time. Similarly, to compute L it suffices to
compute

∑q
i=1 log(ai) up to O(C) bits, which can be done in poly(C) time. Thus, the reduction is

polynomial time.

The choice of L and v ensures that the following fact holds.
Fact E.14. If a set S ⊆ [q] satisfies

∑
i∈S vi ≥ L and |S| = n, then S ⊇ Q.

Proof. Suppose toward a contradiction that satisfies
∑

i∈S vi ≥ L and |S| = n but S does not
contain Q. Since S = n = 2ℓ Then,∑

i∈S

vi =
∑

i∈S∩Q

vi +
∑

i∈S\Q

vi

≤ |S ∩Q| ·max
i∈Q

vi +
∑

i∈[q]\Q

vi (Using S ⊆ [q] and vi ≥ 0)

(60), (61)
< |S ∩Q| ·B +B

< |Q| ·B (Using that |S ∩Q| ≤ |Q| − 1 and B > 0)

≤ L. (Using (64), |Q| = ℓ, and L ≥ ℓB)

Soundness. Suppose S is feasible for (53) and satisfies
∑

i∈S vi ≥ L. Due to (63), with probability
1, G1 ⊇ Q. Hence, G2 ∩Q = ∅. Thus,

with probability 1, |S ∩G2| = |(S \Q) ∩G2| ≤ |S \Q| .

Since
∑

i∈S vi ≥ L and |S| = n (as S is feasible for (53)), Fact E.14 implies that S ⊇ Q, hence
|S \Q| = |S| − ℓ. Combining this with the above equation, we get that

with probability 1, |S ∩G2| ≤ |S| − ℓ = ℓ. (Using that |S| = n = 2ℓ)

38

Since U ≥ 0,

with probability 1, |S ∩G2| ≤ U + ℓ. (65)

S is feasible for (53) iff:

Pr
G1,G2

[|S ∩G1| ≤ U + ℓ and |S ∩G2| ≤ U + ℓ] ≥ 1− δ

(65)⇐⇒ Pr
G1,G2

[|S ∩G1| ≤ U + ℓ] ≥ 1− δ

⇐⇒ Pr
G1,G2

[|(S \Q) ∩G1| ≤ U + ℓ] ≥ 1− δ

(Using that with probability 1, S,G1 ⊇ Q)

⇐⇒ Pr
G1,G2

[|S′ ∩G1| ≤ U] ≥ 1− δ

⇐⇒ Pr
G1,G2

[|S′ ∩G1| > U] ≤ δ

⇐⇒ Pr
G1,G2

[|S′ ∩G1| = n] ≤ δ (Using that U = n− 1 and |S′| = ℓ)

⇐⇒
∏
i∈S′

Pi1 ≤ δ

(63),(62),(57)⇐⇒ a
−ℓ·|S′|
max ·

∏
i∈[q]

ai

−|S′|/2

·
∏
i∈S′

aℓi ≤
(

1

aℓmax

)ℓ

⇐⇒
∏
i∈S′

ai ≤
√∏

i∈[q]

ai. (Using that ℓ > 0, a1, . . . , aq > 0, and |S′| = ℓ) (66)

Since S is feasible for (53), it holds that∏
i∈S′

ai ≤
√∏

i∈[q]

ai.

To show that S′ is feasible for CPPP, it remains to show that the above equation holds with equality.

Suppose toward a contradiction that
∏

i∈S′ ai <
√∏

i∈[q] ai. Then, because
√∏

i∈[q] ai and
a1, . . . , aq are integral

∏
i∈S′

ai ≤
√∏

i∈[q]

ai − 1.

Because M ≥ 0, taking the logarithm we get

M
∑
i∈S′

log ai ≤M log

√∏
i∈[q]

ai − 1

 . (67)

To upper bound the RHS, we will use the following fact:
Fact E.15. For all x ≥ 1, log x− log (x− 1) ≥ 1

x .

Using Fact E.15 with x =
√∏

i∈[q] ai (as a1, . . . , aq ≥ 1), we get

log

√∏
i∈[q]

ai

− log

√∏
i∈[q]

ai − 1

 ≥ 1√∏
i∈[q] ai

.

39

Hence, by (58)

M = (ℓ+ 2) ·
√∏

i∈[q]

ai ≥
ℓ+ 2

log
(√∏

i∈[q] ai

)
− log

(√∏
i∈[q] ai − 1

) .
On rearranging, we get

M log

√∏
i∈[q]

ai − 1

 ≤M log

√∏
i∈[q]

ai

− ℓ− 2.

Substituting this in (67), we get

M
∑
i∈S′

log ai ≤M log

√∏
i∈[q]

ai

− ℓ− 2.

Since for all i ∈ S′, vi ≤M log (ai) + 1, it follows that

∑
i∈S′

vi ≤
M

2
log

∏
i∈[q]

ai

− 2 <

M
2

log

∏
i∈[q]

ai

 . (68)

Thus, ∑
i∈S

vi =
∑

i∈S∩Q

vi +
∑

i∈S\Q

vi

= ℓB +
∑
i∈S′

vi (Using that S ⊇ Q and S′ := S \Q)

(68)
< ℓB +

M log

√∏
i∈[q]

ai


= L.

This is a contradiction to
∑

i∈S vi ≥ L.

Completeness. It suffices to show that if S′ is feasible for the given instance of CPPP, then
S := S′ ∪Q is feasible for (53) and satisfies

∑
i∈S vi ≥ A.

Due to (63), with probability 1, G1 ⊇ Q. Hence, G2 ∩Q = ∅. Thus,

with probability 1, |S ∩G2| = |(S \Q) ∩G2| ≤ |S \Q| = |S′| = ℓ,

where the last equality holds as S′ is feasible for the given instance of CPPP. This implies that (65)
holds. Hence, by following the same arguments, (66) also holds. Thus, S := S′ ∪Q is feasible for
(53)

It remains to show that
∑

i∈S vi ≥ L.∑
i∈S

vi =
∑
i∈Q

vi +
∑
i∈S′

vi (Using that S := S′ ∪Q)

(60)
= ℓB +

∑
i∈S′

vi

(59)
≥ ℓB +

∑
i∈S′

M log ai

= ℓB +
M

2
log

∏
i∈[q]

ai

 (Using that
∏

i∈S′ ai =
∏

i∈[q] ai)

(64)
≥ A.

40

F Extension of theoretical results to position-weighted constraints

In this section, we extend Theorem 4.1 to position-weighted version of fairness constraints. In
particular, given position-discounts

v1 ≥ v2 ≥ · · · ≥ vn
and a matrix U ∈ Zn×p

+ the position-weighted fairness constraint requires a ranking R to satisfy:

∀k ∈ [n], ℓ ∈ [p],
∑
i∈Gℓ

∑
j∈[k]

vjRij≤Ukℓ

for all k and ℓ. For these constraints, we consider the following analogue of (ε, δ)-constraints: A
ranking R is said to satisfy (ε, δ, v)-constraint if with probability at least 1 − δ over the draw of
G1, . . . , Gp

∀k ∈ [n] ∀ℓ ∈ [p],
∑

i∈Gℓ

∑k

j=1
vjRij ≤ Ukℓ(1 + εk). (69)

For these position-dependent constraints, our framework largely remains the same and is stated in
Program (72). Compared to Program (7), the main difference is in the left-hand side of Program (71).
We can prove the guarantees on the fairness and accuracy of the optimal solution of Program (72),
under the additional assumption that, for a constant ψ > 0, U satisfies that

∀ℓ ∈ [p],∀k ∈ [n], Ukℓ ≥ ψk. (70)

The parameter ψ shows up in Equation (71).

Our Fair-Ranking Framework for Position-Dependent Constraints

Input: Matrices P ∈ [0, 1]
m×p, W ∈ Rm×n

≥0 , U ∈ Rn×p

Parameters: A constant c > 1, a failure probability δ ∈ (0, 1], and for each k ∈ [n], a relaxation
parameter

γk :=
1

ψ
· log

(
2np

δ

)
·max
ℓ∈[p]

√
1

Ukℓ
. (71)

Program:
maxR∈R ⟨R,W ⟩ , (72)
s.t. ∀ℓ ∈ [p] ∀k ∈ [n]∑

i∈[m],j∈[k]
vjPiℓRij ≤ Ukℓ

(
1 +

2
√
c− 1

2
√
c
· γk
)
. (73)

We prove the following guarantees on the fairness and accuracy of the optimal solution of Pro-
gram (72).
Theorem F.1. Let γ ∈ Rn be as defined in Equation (71). If the matrix U ∈ Zn×p

+ satisfies that for
all ℓ ∈ [p] and k ∈ [n], Ukℓ ≥ ψk, then is an optimization program Program (72), parameterized
by a constant c and failure probability δ, such that for any c > 1 and δ ∈ (0, 12] its optimal solution
satisfies (cγ, δ, v)-constraint and has a utility at least as large as the utility of any ranking satisfying
((c−

√
c)γ, δ, v)-constraint.

The proof of Theorem F.1 is analogous to the proof of Theorem 4.1. Here, we highlight the differences.

Notation. Recall that for each item i ∈ [m] and group ℓ ∈ [p], let Ziℓ ∈ {0, 1} is indicator random
variable that Zi := I[Gℓ ∋ i].
The first change is in the definition of Z#(R, ℓ, k). In particular, we need to define

Z#(R, ℓ, k) =
∑

i∈Gℓ

∑k

j=1
vjRij .

For the new definition of Z#, we have following concentration result.

41

Lemma F.2. For any position k ∈ [n], group ℓ ∈ [p], parameters ε ≥ 0 and L,U ∈ R, and ranking
R ∈ R, where R is possibly a random variable independent of {Ziℓ}i,ℓ, if P#(R, ℓ, k) ≤ U or
P#(R, ℓ, k) ≥ L then the following equations hold respectively

Pr [Z#(R, ℓ, k) < (1 + ε)U] ≥ 1− e− 2U2ε2

k ,

Pr [Z#(R, ℓ, k) > (1− ε)L] ≥ 1− e− 2L2ε2

k .

The proof of Lemma F.2 is identical to the proofs of Lemmas E.5 and E.6; the only change is the new
definition of Z#.

To prove Theorem F.1, it suffices to prove analogues of Propositions 6.1 and 6.2 for the new definition
of Z#. Their proofs change as follows:

Proof of Proposition 6.1 The parameters in Equation (9) remain the same. Hence, following the
same argument, Equation (10) holds. Now, we can prove Equation (12) as follows:

Pr [Z#(R, ℓ, k) ≥ Uℓk(1 + ϕγk)] = Pr [Z#(R, ℓ, k) ≥ U ′(1 + ζ)]

(Using that U ′(1 + ζ) = Ukℓ(1 + ϕγk))

≤ exp

(
−2 (U ′)

2
ζ2

k

)
(Using Lemma F.2)

= exp

(
−2(1− ϕ)2U2

ℓkγ
2
k

k

)
(Using Equation (9))

≤ exp
(
−2ψ(1− ϕ)2Uℓkγ

2
k

)
(Using that Ukℓ ≥ ψk)

≤ δ

2np
. (Using Equation (71)) (74)

Proposition 6.1 follows by replacing Equation (12) by Equation (74) in the rest of its proof.

Proof of Proposition 6.2 The parameters in Equation (13) remain the same. Now, we can prove
Pr [Z#(R

′, k, ℓ) ≤ Ukℓ] < 1− δ as follows:

Pr [Z#(R
′, k, ℓ) ≤ Ukℓ] = Pr [Z#(R

′, k, ℓ) ≤ L′ · (1− ζ)]

(Using that L′(1− ζ) = Ukℓ(1 + bγk))

≤ exp

(
−2 (L′)

2
ζ2

k

)
(Using Lemma F.2)

= exp

(
−2(ϕ− b)2γ2kU2

kℓ

k

)
(Using Equation (13))

≤ exp
(
−2ψ(ϕ− b)2γ2kUkℓ

)
(Using that Ukℓ ≥ ψk)

<
δ

2np
(Using Equation (71) and Equation (13)) (75)

< 1− δ. (Using that δ < 1
2 and n ≥ 1) (76)

The rest of the proof is identical.

G Implementation details and additional empirical results

In this section, we present the implementation details of our simulations (Supplementary Materials G.1
and G.1.1), give additional plots for the simulation in Section 5 (Supplementary Material G.2), and
additional simulations that use weighted-selection risk as the fairness metric or vary the amount of
noise in the data (Supplementary Materials G.3 and G.3.2)

42

Code. The code for all simulations is available at https://github.com/AnayMehrotra/
FairRankingWithNoisyAttributes.

G.1 Implementation details

In this section, we give implementation details of our algorithm and baselines.

• NResilient: We implement NResilient in Python 3 and use the Gurobi optimization library to
solve the linear program in Step 1 of Algorithm 1. We state complete pesudocode of NResilient’s
implementation as Algorithm 2.

• SJ: This is [61]’s algorithm. SJ (1) solves a linear program whose objective encodes the utility
of the ranking and whose constraints capture the fairness constraints, and (2) decomposes the
solution as a convex combination of the rankings, and uses this convex combination to generate
rankings (see [61, Section 3.4]).

– More precisely, [61]’s approach works for any linear constraint on the ranking (see the last
equation in [61, Section 3.3]). For instance, as noted in [61, Section 3.3], their approach can
satisfy multiple constraints of the form: Given any vectors f ∈ Rm, g ∈ Rn, and h ∈ R,
require the ranking R ∈ {0, 1}m×n to satisfy f⊤Rg = h. By introducing a class variable s
with constraint s ≥ 0, their approach extends to constraints of the form

f⊤Rg ≤ h.

These are sufficient to encode the constraint in Definition 2.2: For any k and ℓ, define

∀i ∈ [m], fi = I[i ∈ Gℓ],

∀j ∈ [n], gj = I[j ≤ k],
h = Ukℓ.

The constraint f⊤Rg ≤ h with the above values is equivalent to the upper bound specified
by Ukℓ in Definition 3.2. Repeating this construction for each k and ℓ, we get a set of
constraints that capture the fairness constraints specified by U .

[61] do not provide an implementation of SJ and we implement SJ in Python3: We (1) construct
an optimization program as defined above, (2) use the Gurobi optimization library to solve the
linear program constructed by [61], and (3) use the code available at https://github.com/
jfinkels/birkhoff to compute the Birkhoff-von Neumann decomposition of the solution
([61] also use the same code to compute the decomposition, see [61, Section 3.4]).

• CSV: This is the greedy algorithm from [18, Theorem 3.3]. [18] do not provide an implementa-
tion of CSV, we implement their algorithm in Python3 with NumPy.

• GAK: This is the Det-Greedy algorithm of [27]. [27] do not provide an implementation of GAK,
we implement GAK in Python3 with NumPy.

• MC : This first uses the algorithm of [48] to compute a subset S and then selects a ranking
of these items that maximize the utility (in the simulations this amounts to sorting items by
wi). We used the implementation of [48]’s algorithm available at https://github.com/
AnayMehrotra/Noisy-Fair-Subset-Selection and use Python3’s in-built sorting function
to generate the ranking. [48]’s algorithm takes P and parameters U specifying upper bound
constraints as input.

• Uncons: This is the baseline that outputs the ranking with the maximum utility. In the simulation,
this amounts to sorting all items in decreasing order of wi and outputting the ranking with the
first n items (in that order). We implement Uncons in Python3 with NumPy.

Computational resources used. All simulations were run on a t3.xlarge instance with 4 vCPUs
and 16Gb RAM, on Amazon’s Elastic Compute Cloud (EC2).

G.1.1 Pre-processing details of the simulation with image data

In this section, we present additional preprocessing details to estimate P̂ in the simulation with the
Occupations dataset presented in Section 5.

43

https://github.com/AnayMehrotra/FairRankingWithNoisyAttributes
https://github.com/AnayMehrotra/FairRankingWithNoisyAttributes
https://github.com/jfinkels/birkhoff
https://github.com/jfinkels/birkhoff
https://github.com/AnayMehrotra/Noisy-Fair-Subset-Selection
https://github.com/AnayMehrotra/Noisy-Fair-Subset-Selection

Algorithm 2 Pseudo-code of the implementation of NResilient

Require: Matrices P ∈ [0, 1]m×p, W ∈ Rm×n
≥0 , U ∈ Rn×p

Ensure: A ranking R ∈ R
.Parameters: Constant c > 1, failure probability δ ∈ (0, 1], and for each k ∈ [n], relaxation parameter γk > 0

1: Compute a solution RF to the standard linear programming relaxation of Program (72)
▷ In the implementation, we use the Gurobi optimization library in Python 3 to compute RF

2: Compute rankings R1, R2, . . . , R∆ ∈ R and coefficients α1 ≥ α2 ≥ · · · ≥ α∆ ∈ [0, 1] such that

RF =

∆∑
i=1

αiRi.

▷ In the implementation, we use the code available at https://github.com/jfinkels/birkhoff to
compute this decomposition. This code implements an algorithm to compute the Birkhoff-von Neumann
decomposition. The value of ∆ does not need to be specified: It is the number of rankings output by the
algorithm to compute the Birkhoff-von Neumann decomposition.

3: Construct matchings M1, . . . ,M∆ corresponding to each ranking R1, . . . , R∆ such that, for each t ∈ [∆],
Mt has an edge between item i and position j if i appears in position j in Rt

4: Initialize N1 = Mi

5: for t = 1, 2, ,̇∆− 1 do
6: Nt+1 = Merge(αt+1,Mt+1,

∑t
ℓ=1 αℓ, Nt)

7: end for

8: Construct a ranking R corresponding to N∆: Item i appears at position j in R, if and only if, i and j are
matched in N∆

9: return R

Algorithm 3 Merge procedure used by Algorithm 2
Require: Numbers 0 < α, β ≤ 1 and matchings M and N
Ensure: A matching K

.Parameters: A constant t (Set to t := 100 in the implementation)

1: while M ̸= N do
2: P = getPaths(M,N, t)
3: P ′ = getPaths(M,N, t)
4: Set ρ := t−1

|P | and σ := t
|P ′| , and p = βσ

aρ+βσ

5: Draw variables v, u u.a.r. from [0, 1]

6: if u ≤ βσ
αρ+βσ

then
7: Draw i u.a.r. from [|P |] and set M = M∆Pi

8: else
9: Draw i u.a.r. from [|P ′|] and set N = N∆P ′

i

10: end if

11: end while
12: return K := M

Estimating P̂ . We begin by removing all images with gender label NA; this leaves 5,825 images
(out of 9600). On the remaining images, we use an off-the-shelf face-detector [1] to extract the faces
of the people from the images and remove all images where the face-detector did not detect a face;
this leaves 4,494 the images. We use a CNN-based gender classifier [59] on the detected faces to
predict the apparent gender of the depicted individuals. For each image i, the classifier outputs a
gender (coded as male and female) and an uncalibrated confidence score ci ∈ [0, 1]. We take the
set of uncalibrated confidence scores {ci ∈ [0, 1]}i and calibrate them by first binning them, then
computing the distribution of gender labels (provided in the dataset) for each bin. For each image i,
we set P̂ i1 (respectively P̂ i2) equal to the fraction of images in the same bin as i whose gender label
is female (respectively male). We perform this calibration once and on all occupations and, then, use
it for a subset of occupations.

44

https://github.com/jfinkels/birkhoff

Algorithm 4 getPaths procedure used by Algorithm 3
Require: Matchings M and N and a parameter t ≥ 1
Ensure: A set of paths P
1: Set P = ∅
2: if |M∆N | ≤ 2t then
3: Construct t paths p1, . . . , pt, where pi = M∆N for each i
4: Let N\M := {v1, . . . , vn}
5: For each i ∈ [t], remove vi from pi
6: Set P := {p1, . . . , pt}
7: else if M∆N is a path then
8: Let the path formed by M∆N be (v1, . . . , vn)
9: for j = 1, 2, . . . , t+ 1 do

10: If v1 ∈ N set ℓ = 1 else set ℓ = 0
11: Set D := {vℓ+2tk : k ∈ N, ℓ+ 2tk ≤ |M∆N |}
12: Set P = P ∪ {(M∆N)\D}
13: end for
14: else ▷ Here, M∆N is a cycle
15: Let the cycle formed by M∆N be (v1, . . . , vn)
16: for i = 1, 2, . . . , |M∆N | do
17: If vi ∈ M : continue
18: S :=

{
v(i+j)%|M∆N| : j = 0, 1, . . . , 2t− 1

}
19: Set P = P ∪ S
20: end for
21: end if
22: return K := M

G.2 Further discussion and plots for simulations from Section 5

Illustrating the fairness vs. utility trade-off. In our empirical results, we use fairness metrics such
as weighted risk-difference (Section 5) and weighted selection-lift (Supplementary Material G.3)
to measure the algorithms’ achieved fairness. We do not use the parameter ϕ to measure fairness
because the output of algorithms may have lower fairness than specified by ϕ. Figures 2, 8 and 10
plot utility vs. weighted risk-difference and Figures 14(b), 15(b) and 16(b) plot utility vs. weighted
selection-lift (SL) for the simulations in Section 5. They show that NResilient better or similar
(up to standard errors) achieved fairness vs utility trade-off compared to baselines. For example, in
Figure 15(b), to achieve SL= 0.55 use Figure 15(a) to choose ϕ = 1.19 for NResilient and ϕ = 1.15
for CSV or SJ. For these values of ϕ, NResilient has 2% higher utility than CSV and SJ.

Comparison to baseline which has access to accurate protected attributes. Let Clean-Fair be
the algorithm that, given utilities and accurate protected attributes, outputs the ranking with the
maximum utility subject to satisfying equal representation constraint. Note that Clean-Fair can only
be run in the ideal scenario where one has access to accurate protected attributes. We repeated the
simulations in Section 5 and, for each of them, also measured the utility and fairness of Clean-Fair.
We observe that the rankings output by Clean-Fair have a RDclose to 1 (>0.99), this is expected
because Clean-Fair has access to the clean protected attributes. We observe that the ranking output
by NResilient (for any parameter 0 ≤ ϕ ≤ 1, specifying the fairness constraints for NResilient) has
a utility that is at most 2%, 10%, and 4% smaller than that the ranking output by Clean-Fair.

RD of Uncons. Uncons’s RDand utility does not vary with ϕ because it does not take ϕ as input.
Note that, Uncons also does not take the protected groups or P as input.

Plots with a small number of iterations. Figures 11 to 13 present results from simulations in
Section 5 with 25, 50, and 100 iterations; compared to 500 or 1000 iterations in Figures 1 to 3. We
observe that:

• the error bars for both utility and fairness (w.r.t. RD) are a larger (up to 0.025 compared to at
most 0.0125 with 500/1000 iterations).

• the mean utilities and fairness (w.r.t. RD) of all algorithms at all values of ϕ are additively within
0.05 of their corresponding values in Figures 1 to 3.

45

(a) n = 10 (b) n = 30 (c) n = 50

Figure 4: Simulation on synthetic data with different values of n. The details appear in Supplementary
Material G.2.

Moreover, the relative order of the algorithms with respect to both their fairness (w.r.t. RD) and utility
is the same as in Figures 1 to 3 for all ϕ.

Plots with different values of n. Figures 4 to 6 plot the RD and utilities (NDCG) with n ∈
{10, 30, 50} in the simulations from Section 5; compared to n = 25 in Figures 1 to 3. We observe
that the best RD attained by NResilient increases with n: Increasing n from 10 to 30, increases RD
from 0.76 to 0.85 with the synthetic data, from 0.75 to 0.84 with the real-world image data, and
from 0.61 to 0.71 with the real-world name data (see Figures 4 to 6). Further, in all simulations,
NResilient’s maximum RD is 2% to 8% higher than that of the baselines (see Figures 4 to 6). One
exception is the simulation with real-world image data and n = 10. In this simulation, NResilient’s
best RD is equal to GAK’s best RD. Both of them have > 6% higher best RD than any other
algorithm. (See Figure 5.)

(a) n = 10 (b) n = 30 (c) n = 50

Figure 5: Simulation on image data with different values of n. The details appear in Supplementary Material G.2.

(a) n = 10 (b) n = 30 (c) n = 50

Figure 6: Simulation on real-world name data with different values of n. The details appear in Supplementary
Material G.2.

Empirical results with real-world name dataset and overlapping groups. We present a variant
of the simulation in Figure 3 that considers four overlapping groups: The sets of all women players,
all male players, all non-White players, and all White players. In contrast, the simulation in Figure 3
uses four disjoint groups: The sets of non-White non-men players, White non-men players, non-White
men players, and White men players.

Setup. The same setup as the simulation in Figure 3. The only difference is in estimating P̂ : For each
i, we estimate P̂ as:

P̂ i,women = pwomen(i), P̂ i,men = 1− pwomen(i),

P̂ i,non-white = pnon-white(i), P̂ i,white = 1− pnon-white(i).

Where pwomen(i) and pnon-white(i) are values output by Genderize API and EthniColr Library that
estimate the probability that player i is labeled as a women and non-white respectively. (CSV and
GAK require protected groups to be disjoint and, hence, are not applicable to this simulation.)

46

(a) Weighted risk-difference vs. ϕ (b) Utility vs. ϕ (c) Weighted risk-difference vs. ϕ

Figure 7: Simulation with the real-world name data and overlapping groups. The details appear in Supplemen-
tary Material G.2.

Observations. Figure 7 plots RD and utilities (NDCG) averaged over 200 iterations. The results are
similar to the corresponding simulation on the same data with disjoint groups. In particular, compared
to other baselines, NResilient achieves the highest RD. The maximum RD of NResilient in this
simulation is 0.64 compared to 0.67 in Figure 3. SJ achieves the next highest RD followed by MC as
in Figure 3.

0.70 0.75 0.80
Weighted Risk Difference

0.90

0.92

0.94

0.96

0.98

1.00

Ut
ili

ty

Synthetic data

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted risk-difference———(more fair)(less fair)

Figure 8: Synthetic Data: Nonuniform Error
Rate. This simulation considers synthetic data
where imputed socially-salient attributes have a
higher false-discovery rate for one group com-
pared to the other. We vary the fairness con-
straint from ϕ from 2 (less fair) to 1 (more
fair) and observe the weighted risk-difference
(weighted risk-difference) of different algo-
rithms. The y-axis plots utility and x-axis shows
weighted risk-difference (Note that the values
decrease toward the right). Error-bars denote
the error of the mean.

1.01.21.41.61.82.0
0.55

0.60

0.65

0.70

0.75

0.80

W
eig

ht
ed

 R
isk

-D
iff

er
en

ce UPDATED -- Image data (DCG Utility)

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

Figure 9: Real-world image data. This simu-
lation considers images-search results which are
known to overrepresent the stereotypical gen-
der [38]. Given relevant non-gender labeled im-
ages and their utilities, our goal is to generate a
high-utility gender-balanced ranking. We estimate
P using an off-the-shelf ML-classifier and vary ϕ
from p = 2 (less fair) to 1 (more fair). In the first
subfigure, the y-axis plots weighted risk-difference
and x-axis shows ϕ (Note that the values decrease
toward the right). Error bars show the error of the
mean.

G.3 Additional empirical results

G.3.1 Empirical results with weighted selection-lift

In this section, we present empirical results with the weighted selection-lift fairness metric (Figures 14
to 16). Weighted selection-lift is a position-weighted version of the standard selection-difference
metric. Like weighted risk-difference, it also measures the extent to which a ranking violates equal
representation. The weighted selection-lift of a ranking R is:

1

Z

∑
k=5,10,...

1

log k
min

ℓ,q∈[p]

∣∣∣∣∣
∑

i∈Gℓ, j∈[k],Rij∑
i∈Gq, j∈[k],Rij

∣∣∣∣∣ ,
Where G denotes the ground-truth protected groups and Z is a constant so that RD has range [0, 1].
Here, a value of 1 is most fair and 0 is least fair.

47

0.3 0.4 0.5 0.6 0.7
Weighted Risk-Difference

0.85

0.90

0.95

1.00
Ut

ili
ty

UPDATED -- Name data (DCG Utility) + Intersectional attributes

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted risk-difference———(more fair)(less fair)

Figure 10: Real-World Name Data: Intersec-
tional Attributes. This simulation considers
two socially-salient attributes, gender and race,
and our goal is to ensure equal representation
across the four intersectional socially-salient
groups (non-White non-men, White non-men,
non-White men, and White men). We esti-
mate P from the full names using public APIs
and libraries. We vary ϕ from p = 4 (less
fair) to 1 (more fair) and observe weighted
risk-difference of all algorithms. The y-axis
plots utility and x-axis shows weighted risk-
difference (Note that the values decrease to-
ward the right). Error bars represent the error
of the mean.

(a) 25 iterations (b) 50 iterations (c) 100 iterations

Figure 11: Simulations on synthetic data from Section 5 with 25, 50, and 100 iterations. The details appear in
Supplementary Material G.2.

(a) 25 iterations (b) 50 iterations (c) 100 iterations

Figure 12: Simulations on image data from Section 5 with 25, 50, and 100 iterations. The details appear in
Supplementary Material G.2.

(a) 25 iterations (b) 50 iterations (c) 100 iterations

Figure 13: Simulations on real-world name data from Section 5 with 25, 50, and 100 iterations. The details
appear in Supplementary Material G.2.

G.3.2 Empirical results with varying amount of noise

In this section, we present a simulation which uses the randomized response mechanism to generate
noisy protected attributes and compares the performance of algorithms at varying noise levels.

Data. We use the Occupation images data [15]. We refer the reader to Section 5 for a discussion of
the data.

Setup. We fix equal representation constraints (ϕ = 1) and consider the same protected groups as
the simulation with the same data in Section 5. We vary the noise level 0 ≤ η ≤ 1

2 . For each η,
we construct noisy attributes by mislabeling true protected attribute with probability η. Here, P is
specified by η as explained in Remark A.1. Specifically, if N1 and N2 be the noisy versions of true

48

1.01.21.41.61.82.0
0.50

0.55

0.60

0.65

0.70

W
eig

ht
ed

 S
ele

cti
on

 L
ift

Synthetic data

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

(a)

0.50 0.55 0.60 0.65 0.70
Weighted Selection Lift

0.90

0.92

0.94

0.96

0.98

1.00

Ut
ili

ty

Synthetic data

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted Selection Lift ———(more fair)(less fair)

(b)

Figure 14: Synthetic Data (Weighted Selection Lift): Nonuniform Error Rate. This simulation considers
synthetic data where imputed socially-salient attributes have a higher false-discovery rate for one group compared
to the other. We vary the fairness constraint from ϕ from 2 (less fair) to 1 (more fair) and observe the weighted
risk-difference (weighted risk-difference) of different algorithms. In the first sub-figure, the y-axis plots weighted
selection-lift and x-axis shows ϕ. In the second sub-figure, the y-axis plots utility and x-axis shows weighted
selection-lift. Error bars represent the error of the mean.

1.01.21.41.61.82.0

0.40

0.45

0.50

0.55

0.60

0.65

W
eig

ht
ed

 S
ele

cti
on

-L
ift

UPDATED -- Image data (DCG Utility)

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

(a)

0.40 0.45 0.50 0.55 0.60 0.65
Weighted Selection-Lift

0.85

0.90

0.95

1.00
Ut

ili
ty

UPDATED -- Image data (DCG Utility)

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted Selection Lift ———(more fair)(less fair)

(b)

Figure 15: Real-world image data. This simulation considers images-search results which are known to
overrepresent the stereotypical gender [38]. Given relevant non-gender labeled images and their utilities, our
goal is to generate a high-utility gender-balanced ranking. We estimate P using an off-the-shelf ML-classifier
and vary ϕ from p = 2 (less fair) to 1 (more fair). In the first sub-figure, the y-axis plots weighted selection-lift
and x-axis shows ϕ. In the second sub-figure, the y-axis plots utility and x-axis shows weighted selection-lift.
Error bars represent the error of the mean.

1.01.52.02.53.03.54.0
0.000

0.025

0.050

0.075

0.100

0.125

W
eig

ht
ed

 S
ele

cti
on

-L
ift

UPDATED -- Name data (DCG Utility) + Intersectional attributes

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

(a)

0.000 0.025 0.050 0.075 0.100 0.125
Weighted Selection-Lift

0.85

0.90

0.95

1.00

Ut
ili

ty

UPDATED -- Name data (DCG Utility) + Intersectional attributes

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted Selection Lift ———(more fair)(less fair)

(b)

Figure 16: Real-World Name Data: Intersectional Attributes. This simulation considers two socially-salient
attributes, gender and race, and our goal is to ensure equal representation across the four intersectional socially-
salient groups (non-White non-men, White non-men, non-White men, and White men). We estimate P from the
full names using public APIs and libraries. We vary ϕ from p = 4 (less fair) to 1 (more fair) and observe RD of
all algorithms. In the first sub-figure, the y-axis plots weighted selection-lift and x-axis shows ϕ. In the second
sub-figure, the y-axis plots utility and x-axis shows weighted selection-lift. Error bars represent the error of the
mean.

49

0.0 0.1 0.2 0.3 0.4
(Less noise) Noise level () (More noise)

0.6

0.7

0.8

0.9
W

eig
ht

ed
 R

isk
 D

iff
er

en
ce

UPDATED -- Image data (DCG Utility) Vary noise
(m, n, g) = (500,25,2),ITER=500,occ_lists=[NA,NA].

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

Noise Level (η) (more noise)(less noise)

(a)

0.0 0.1 0.2 0.3 0.4
(Less noise) Noise level () (More noise)

0.85

0.90

0.95

1.00

Ut
ili

ty

UPDATED -- Image data (DCG Utility) Vary noise

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

Noise Level (η) (more noise)(less noise)

(b)
Figure 17: Simulation varying the amount of noise. In this simulation, we use the Occupation’s images data
[15] and generate noisy protected attributes using the randomized response mechanism, with parameter η. We
vary the amount of noise added from η = 0 (no noise) to η = 0.4 (large noise) and compare the performance of
different algorithms. The y-axis plots RD and x-axis plots η. We present the key observations in the paragraph
above the figure. Error-bars denote the error of the mean.

protected groups G1 and G2 (corresponding to the “flipped” protected attributes), then we set: For
each item i ∈ N1,

P̂ i1 = (1− η) · |G1|
|N1|

and P̂ i2 = 1− P̂ i1.

For items in N2, replace P̂ i1, P̂ i2, G1, and N1 with P̂ i2, P̂ i1, G2, and N2. We do not have
access to G1 (and, hence, |G1|), and in the above expression we estimate |G1| by α1 := (1−η)·

1−2η ·
((1− η) |N1| − η |N2|). This is because α1 can be shown to be concentrated around |G1|.
Like the simulations in Section 5, CSV, GAK, and SJ are given the noisy attributes (as they require)
and NResilient and MC are given P̂ (computed above).

Observations. See Figure 17 for RD and utilities (NDCG) averaged over 100 iterations. We observe
that for each η ≥ 0.1, NResilient’s RD is >6.8% better than any baseline (Figure 17(a)) and its
utility is <3% smaller than the baseline (CSV) with best RD (Figure 17(b)). At η = 0, NResilient
3.3% lower RD than CSV, GAK, and SJ and the same utility as them.

Note that in Figures 17(a) and 17(b) the plots of CSV, GAK, and SJ overlap. This is consistent with
the other simulations where CSV, GAK, and SJ have the same RD and utility at ϕ = 1.

G.3.3 Empirical results with proportional representation constraints

In this section, we present variants of the simulations in Figures 1 to 3 that use proportional represen-
tation fairness constraints. To measure the deviation of a ranking from proportional representation,
we consider an adaptation of weighted risk-difference metric, Prop-RD. Prop-RD of a ranking R is

1− 1
Z

∑
k=5,10,...

1
log k maxℓ,q∈[p]

∣∣∣ n
|Gℓ| ·

∑
i∈Gℓ,j∈[k],Rij − n

|Gq| ·
∑

i∈Gq,j∈[k],Rij

∣∣∣ . (77)

Where G denotes the ground-truth protected groups and Z is a constant so that RD has range [0, 1].
Here, Prop-RD= 1 is most fair and Prop-RD= 0 is least fair.

Setup. The setup of the simulations is identical to the simulations in Figures 1 to 3 except that,
given ϕ ≥ 1, the upper bounds are set to Ukℓ := ϕ · |Gℓ|

n · k for each k ∈ [n] and ℓ ∈ [p].

Observations. Figure 18 presents the values of Prop-RD averaged over 50 iterations. We observe
that, relative to the baselines, NResilient’s performance is similar to Figures 1 to 3. In particular,
in all simulations, NResilient achieves a higher value of the fairness metric than any baselines, as
in Figures 1 to 3. Further, in the simulation with the real-world image data, NResilient has a better

50

fairness-utility trade-off than all baselines, as in Figure 2. One difference is that, with the synthetic
data, the value of the fairness metric achieved by NResilient can be non-monotonous in ϕ, whereas it
is increasing in ϕ in Figure 1 (see Figure 18).

(a) Synthetic data (b) Image data (c) Name data

Figure 18: Simulations with proportional representation constraints and variant of RD for proportional
representation constraints. The details appear in Supplementary Material G.3.3.

G.3.4 Empirical results with varying false-discovery rates

In this section, we present a variant of the simulation in Figure 1. This simulation varies the difference
in false-discovery rates (FDRs) of the attributes inferred from P̂ for the groups.

Synthetic data. We generate utilities w1, w2, . . . , wm by drawing wi is independently from the
uniform distribution over [0, 1] for each 1 ≤ i ≤ m. Fix µ1 := 1− 1

20 , µ2 := 1
2 −

1
20 , σ1 := 1

50 , and
σ2 := 1

10 . Given a parameter 0 ≤ τ ≤ 1, controlling the FDRs of the two groups, we construct P as
follows: For each i, with probability 0.6, Pi1 is drawn from

N ((1− τ) · µ1 + τ, (1− τ) · σ1)

and otherwise Pi1 is drawn

N ((1− τ) · µ2 + τ · 0, (1− τ) · σ2) .

We set Pi2 := 1− Pi1 for each i. This ensures that, with high probability,

|G1| = 0.6n± on(1) and |G2| = 0.4n± on(1)

Let FDR1(τ) and FDR2(τ) be the false-positive rates of attributes inferred from P on groups G1 and
G2 for a given τ . Let ∆(τ) := FDR2(τ)− FDR2(τ). We have ∆(0) = 0.4, ∆ decreases with τ , and
∆(1) = 0.

Setup. The setup is identical the simulation in Figure 1 except that we use the above synthetic
data. We consider three values τ1, τ2, and τ3 of τ such that ∆(τ1) = 20%, ∆(τ2) = 20%, and
∆(τ3) = 20%. (For comparison, the FDRs of the two groups differ by 30% for the simulation in
Figure 1.)

Observations. See Figure 19 for RD averaged over 50 iterations. We observe that the difference
between the best RD of NResilient those of SJ and CSV decreases with ∆: At ∆ = 20%, 10%, 5%,
NResilient’s RD is 12%, 4%, and 0% higher than SJ’s and CSV’s RD respectively.

(a) Minority group’s FDR is 5%
smaller than the majority’s FDR

(b) Minority group’s FDR is 10%
smaller than the majority’s FDR

(c) Minority group’s FDR is 20%
smaller than the majority’s FDR

Figure 19: Simulation on synthetic data where the minority group’s FDR is ∆ = 5%, 10%, 20% smaller than
the majority’s FDR. The details appear in Supplementary Material G.3.4.

51

G.3.5 Empirical results with a large number of groups

In this section, we present simulations on synthetic datasets with 4, 6, 8, and 10 protected groups.

For simplicity, all groups have equal sizes. In particular, we construct variants of the synthetic dataset
in Section 5 so that the false-discovery rates of the attributes inferred from the matrix P̂ on the groups
are spread at equal intervals in the interval [10%, 40%]. For instance, for p = 4, the FDRs of the four
groups are 10%, 20%, 30%, and 40% respectively.

Synthetic data. We generate utilities w1, w2, . . . , wm by drawing wi is independently from the
uniform distribution over [0, 1] for each 1 ≤ i ≤ m. Fix µ1 := 1− 1

20 , µ2 := 1
2 + 1

20 , σ1 := 1
50 , and

σ2 := 1
10 . For each group Gℓ, there is a parameter 0 ≤ τℓ ≤ 1, that controls the corresponding FDR.

We construct P as follows: For each ℓ and i ∈ Gℓ,

• Pi1 is iid from N ((1− τ) · µ1 + τ · µ2, (1− τ) · σ1 + τ · σ2) .
• Piz := 1− Pi1 where z is drawn uniformly at random from [p]\ {ℓ}
• Pij = 0 for each j ∈ [p]\ {ℓ, z}.

Let ∆(τ) be the FDR of Gℓ when τℓ = τ . (By construction, this function is independent of ℓ.)

Setup. The setup is identical the simulation in Figure 1 except that we use the above synthetic
data to generate w and P . We vary p ∈ {4, 6, 8, 10}. For each p, we fix τℓ such that ∆(τℓ) :=
10% + ℓ−1

p−1 · 30% (for each ℓ ∈ [p]).

Observation. Figure 20 plots RD averaged over 50 iterations. We observe that NResilient has a
better or similar (within 1%) utility and RD compared to the best performing baseline at all values of
ϕ.

(a) Simulation with 4 groups (b) Simulation with 6 groups

(c) Simulation with 8 groups (d) Simulation with 10 groups

Figure 20: Simulation on synthetic data with four, six, eight, and ten groups. The details appear in Supplemen-
tary Material G.3.5.

52

	Introduction
	Related work
	Model of fair ranking with noisy attributes
	Challenges in solving prob:2

	Theoretical results
	Empirical results
	Simulation on synthetic data
	Simulation on real-world image data
	Simulation on real-world name data

	Proof of thm:ub
	Limitations and conclusion
	Further discussion on applicability of the noise model
	Other related work on fair decision making with inaccuracies in attributes
	Existing fair-ranking algorithms with rounding is insufficient
	Proof of example:mlr
	Proof of example:ir

	Proofs of thm:lb,thm:algo
	Proof of thm:lb
	Proof of thm:algo

	Proofs of additional theoretical results
	Proof of lem:epsdependsonk
	Proof of lem:concbound:mainbody
	Improved dependence of thm:ub on on
	NP-hardness result
	Proof of lem:constareopt
	Proof of lem:expconstonlysuff
	Proof of lem:relaxationnonconvex
	Proof of thm:nphardnessofexactconst

	Extension of theoretical results to position-weighted constraints
	Implementation details and additional empirical results
	Implementation details
	Further discussion and plots for simulations from sec:empiricalresults
	Additional empirical results

