
ZooD: Exploiting Model Zoo for
Out-of-Distribution Generalization

Qishi Dong 2,1∗, Awais Muhammad 3,1∗, Fengwei Zhou 1∗, Chuanlong Xie 4,1†, Tianyang Hu 1,
Yongxin Yang 1, Sung-Ho Bae 3, Zhenguo Li 1†

1 Huawei Noah’s Ark Lab,
2 Hong Kong Baptist University,

3 Kyung-Hee University,
4 Beijing Normal University

Abstract

Recent advances on large-scale pre-training have shown great potentials of lever-
aging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution
(OoD) generalization, for which the goal is to perform well on possible unseen
domains after fine-tuning on multiple training domains. However, maximally exploit-
ing a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs
is computationally prohibitive while accurate selection of PTMs requires tackling
the possible data distribution shift for OoD tasks. In this work, we propose ZooD, a
paradigm for PTMs ranking and ensemble with feature selection. Our proposed met-
ric ranks PTMs by quantifying inter-class discriminability and inter-domain stability
of the features extracted by the PTMs in a leave-one-domain-out cross-validation
manner. The top-K ranked models are then aggregated for the target OoD task. To
avoid accumulating noise induced by model ensemble, we propose an efficient vari-
ational EM algorithm to select informative features. We evaluate our paradigm on
a diverse model zoo consisting of 35 models for various OoD tasks and demonstrate:
(i) model ranking is better correlated with fine-tuning ranking than previous methods
and up to 9859x faster than brute-force fine-tuning; (ii) OoD generalization after
model ensemble with feature selection outperforms the state-of-the-art methods and
the accuracy on most challenging task DomainNet is improved from 46.5% to 50.6%.
Furthermore, we provide the fine-tuning results of 35 PTMs on 7 OoD datasets,
hoping to help the research of model zoo and OoD generalization. Code will be
available at https://gitee.com/mindspore/models/tree/master/research/cv/zood.

1 Introduction

Although data Independent and Identically Distributed (IID) is a primary assumption behind most
machine learning systems, it does not hold in many real-world scenarios due to continuous distribution
shifts [39, 88]. Machine learning models encounter serious performance degradation [9, 32, 34] in
such Out-of-Distribution (OoD) scenarios. To alleviate the accuracy degradation caused by distribution
shifts, numerous algorithms have been proposed [3, 1, 40, 44, 5, 41, 70, 31, 20, 47, 6]. Recently,
Gulrajani and Lopez-Paz [29] have argued for the systematic comparisons of OoD algorithms and
introduced a standard and rigorous test bed called DomainBed. Their experimental comparison has
raised concerns about the effectiveness of OoD algorithms since they often fail to outperform the
simple Empirical Risk Minimization (ERM).
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Figure 1: An overview of ZooD. Given a task with multiple training domains, the model ranking
component evaluates and selects the top-K models that generalize well on this task. The features from
selected models are then aggregated and denoised based on the feature selection component.

On the other hand, recent works [33, 2, 89, 64] have shown the advantages of pre-training for improving
OoD generalization, i.e., learning from multiple training domains in order to generalize to an unseen
domain. The availability of a large set of Pre-Trained Models (PTMs) provides a huge potential for
solving various OoD tasks. However, it is challenging to sufficiently exploit the power of a model zoo
(a large set of PTMs). One naive approach could be fine-tuning all possible combinations of PTMs on
the target dataset and choosing the best-performing one, which is computationally expensive especially
when the number of PTMs and the data size are large. Besides, fine-tuning may also require exhaustive
hyper-parameter search and encounter the risk of over-fitting [91].

Recently, many ranking metrics have been proposed to estimate the transferability of models under IID
assumption [8, 76, 58, 91, 90]. However, ranking a zoo of models for generalization on unseen distribu-
tion shifts is more challenging compared with the IID setting. Moreover, even if a metric can correctly
evaluate the transferability of each PTM, simply using the best model will not fully utilize rich knowl-
edge present in a zoo of models. But the problem is even more serious that the most transferable model
will include some noise, because noise and invariant features are undistinguishable in the sense that they
are all stable across domains. Previous study [87] also pointed this out and emphasized the necessity of
feature denoising. Therefore, if we leverage the model zoo by assembling relatively transferable models,
the accumulation of noise features may increase memory use and hurt the predictive performance.

To solve the aforementioned problems, we propose ZooD, a paradigm to rank and aggregate a Zoo of
PTMs for OoD generalization. An overview of our method is shown in Figure 1 . Given a classification
task with multiple training domains, to evaluate the generalization capability of each model, we
quantify both the inter-class discriminability and inter-domain stability of the features extracted
from each PTM in a leave-one-domain-out cross-validation manner, i.e., choosing one domain as the
validation domain and each domain rotating as the validation domain, which is critical for identifying
models that can extract domain-invariant features. Each PTM in the zoo is ranked by this quantification.
ZooD then continues with model aggregation consisting of model ensemble and feature selection.
By introducing latent masks over candidate features, an efficient EM algorithm is proposed to select
informative features. To tackle the intractability of the posterior, variational approximation to the
true posterior using a factorizable distribution is derived. We further extend it to large-scale datasets
by building a local estimator under the stochastic approximation [65].

To demonstrate the efficacy of our method, we have performed extensive experiments with 35 diverse
PTMs and 7 OoD datasets. First, we show that our ranking metric is strongly correlated with the
fine-tuning performance of PTMs compared with existing IID metrics. Second, we illustrate the
outstanding performance of ZooD on OoD datasets. For instance, on Office-Home, we get 85.1%
average accuracy compared with the previous SOTA of 70.6%. Lastly, we show the speedup of our
method compared with brute-force fine-tuning. ZooD gives a maximum speedup of ≈10000× (0.27
GPU hours vs 2662.27 GPU hours), making it practical and scalable.

Finally, to speed up research and make our work more reproducible, we have devised a test bench
consisting of extracted features, fine-tuning accuracy results, and ranking scores for all 35 PTMs in
our model zoo. This testbed can help future research as the process of getting fine-tuning accuracy
results based on DomainBed [29] for a zoo of models is computationally expensive. For instance,

2



fine-tuning 35 models on all 7 OoD datasets costs approximately 35140 GPU hours (equivalent to
1464 GPU days or 4 GPU years). Concisely, our contributions are as follows:

• We propose an efficient and scalable ranking metric to gauge the generalization-ability of
PTMs for unseen domains.

• Using EM, we propose a method for selecting informative features and discarding invariant
but noisy features in an ensemble of models.

• We have established a test bed for PTMs on 7 OoD datasets, including features extracted
by 35 PTMs in our model zoo, fine-tuning accuracy results, and model ranking scores by
different methods.

2 Related Work

Pre-training for OoD generalization. To tackle the problem of distribution shifts between training and
test data, various OoD methods [3, 1, 40, 44, 22, 13, 5, 41, 70, 20, 47, 6] have been proposed with the aim
to learn invariant representations across different environments. However, a standard evaluation [29] of
many OoD algorithms shows that they do not significantly outperform simple ERM. On the other hands,
recent works have shown the effectiveness of pre-trained models for OoD generalization. Yi et al. [89]
theoretically showed that adversarially pre-trained models also perform better for OoD generalization.
Yu et al. [92] showed that the right choice of pre-trained models can achieve SOTA results. They also
showed that IID performance is not a good indicator of OoD performance and emphasized on the impor-
tance of model selection. Albuquerque et al. [2] showed the importance of feature extractor by proposing
a new OoD-based pretext task for self-supervised pre-training. CLIP [64] demonstrated that large-scale
pre-training on a dataset of image-text pairs results in much more robust models for downstream tasks
with various distribution shifts. Our work is based on these observations and we aim to facilitate utiliza-
tion of PTMs by proposing an efficient metric as well as efficient feature ensemble and selection method.

Ranking pre-trained models by metric design. Recently, a number of metrics have been introduced
to estimate transferability of source-task-learned representations for target task under IID conditions.
H-score [8] estimates the transferability by finding the relationship between extracted features and target
class labels. NCE [76] proposes to estimate transferability via measuring conditional entropy between
source and target labels. LEEP [58] simplifies NCE by using the joint distribution of source and target
labels to estimate log expected empirical prediction. LogME [91, 90] estimates the maximum value of
label evidence given features from pre-trained models. These transferability metrics focus on determin-
ing the compatibility of source-task-learned representations for the target task. We, on the other hand,
aim to compute stability of these features across domains in addition to source-target transferability.

Ensemble and feature selection. Early works have shown that model ensemble can significantly
improve predictive performance [21]. In the age of deep learning, Lakshminarayanan et al. [42]
propose deep ensemble to measure predictive uncertainty. Similar works [60, 62] on uncertainty
estimation focus on the context of outlier detection and reinforcement learning. When facing a zoo
of PTMs, it’s natural to leverage the rich knowledge by assembling multiple PTMs. In prior works,
Liu et al. [49] propose using PTMs as teacher models that distill knowledge to a target model for
downstream tasks. Shu et al. [71] propose Zoo-Tuning that learns to aggregate the parameters of
multiple PTMs to a target model. However, these methods require the target model must have the
identical architecture as the PTMs, thus sacrificing flexibility.

Our proposed paradigm involves selecting informative features from assembled feature extractors.
In the framework of Bayesian variable selection, it is common practice to identify promising features
by estimating the posterior probabilities over all potential feature subsets. Here we mainly focus
on Stochastic Search Variable Selection (SSVS) [59] that involves specifying priors over regression
coefficients such that higher posterior probabilities will be allocated to coefficients substantially
different from zero. Then the features whose coefficients have higher posterior probabilities will be
selected. George and McCulloch [25] first propose SSVS for the linear model and conduct the posterior
inference using Gibbs sampling [57]. Li and Zhang [45] consider SSVS for regression modeling in
high-dimensional spaces incorporating structural information. Ročková and George [66] propose
EMVS for efficient SSVS in high-dimentional cases with sparse estimations of posterior probabilities.
Note that all aforementioned feature selection methods have inherent assumptions that observed
datasets must be IID, which makes these methods difficult to use in our scenarios.
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3 ZooD for OoD Generalization

3.1 Model Ranking

Figure 2: A directed graphical model that
represents the model assumptions in (1).
Here α and β are hyper-parameters. The
goal is to inference the conditional distri-
bution of y′j given ϕ(x′j), yi, and ϕ(xi).

Assume that we have a domain distribution D from which
we observe m domains:

{
D1,D2,··· ,Dm

}
. Each domain

Di is a set of label and datum pairs, i.e. Di=
{
(yij ,xij),1≤

j≤ni
}
.Meanwhile, we have a zoo of pre-trained feature

extractors: M = {ϕ1, ϕ2, ··· , ϕk, ··· }. Our objective is
to select a feature extractor from M (e.g., ϕk), such that
when we train a predictor f on top of it, the composed
model f ◦ϕk can have the best performance on both them
observed domains and unseen domains from D.

In this section, we propose a method that facilitates model
selection without carrying out the fine-tuning step. For
every model in M, our method produces an associated
score, by which we can rank the models, such that the
higher-ranked ones have a better chance to deliver stronger
results after fine-tuning.

The proposed method is a combination of 1) a model
transferability metric and 2) a leave-one-domain-out cross-
validation scheme. More specifically, we evaluate each
feature extractorm times, and each time we treat the data
from the held-out domain as validation data {(y′j ,x′j)}n

′

j=1,
while aggregating all remaining (m−1) domains’ data as the training data {(yi,xi)}ni=1. In the end,
we average them values of the model transferability metric. Finally, we rank all feature extractors in
descending order of the average.

To simplify the notation, we denote the aggregated domain’s label and feature as y=(y1,...,yn)
⊤∈Rn

and Φ=
(
ϕ(x1),...,ϕ(xn)

)⊤∈Rn×d, respectively. We use y′∈Rn′
and Φ′∈Rn′×d for the held-out

domain. The main idea of the designed metric is to evaluate whether the classifier fitted on (y,Φ) also
performs well on (y′,Φ′). Hence, we formulate the problem as estimating the likelihood function of
(y′,Φ′) given (y,Φ):

p(y′,Φ′∣∣y,Φ)=p(y′|Φ′,y,Φ)p(Φ′|Φ),

where p(y′|Φ′,y,Φ) measures inter-class discriminability between features Φ′ and labels y′, given the
aggregated training data. Meanwhile, p(Φ′|Φ) measures covariate shift between features Φ and Φ′,
which quantify the inter-domain stability.

Given a hypothetical spaceF of classifiers, we can write p(y|Φ)=
∫
f∈Fp(y|Φ,f)p(f)df . We consider

a linear classifier 3, i.e. f ◦ϕ(x)=w⊤ϕ(x) with a Gaussian prior of w:

w∼N (0,α−1Id), y
∣∣Φ,w∼N (Φw,β−1In), (1)

where α and β are two positive parameters. Figure 2 summarizes the model assumptions in (1) with a
directed graphical model. We estimate α̂ and β̂ by maximizing the model evidence

p(y|Φ;α,β)=
∫
w∈Rd

p(y|Φ,w;β)p(w;α)dw

according to Algorithm 3 in You et al. [90] and compute the likelihood of y′ as follows:

p(y′|Φ′,y,Φ;α̂,β̂)=
p(y′,y|Φ′,Φ;α̂,β̂)

p(y|Φ;α̂,β̂)
.

3According to the Laplace approximation [51], if p(y|Φ, f) is unimodal at µ, we can take Taylor ex-
pansion of the log-likelihood at the mode log p(y|Φ, f) ≈ log p(µ|Φ, f) − 1

2
(y − µ)⊤Λ(y − µ), where

Λ = −∇y⊤∇y logp(y|Φ, f)
∣∣
y=µ

. The quadratic term implies that p(y|Φ, f) can be approximated with a
Gaussian distribution.
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For measuring covariate shift, we approximate the distribution of ϕ(x) with a Gaussian distribution
N (µ̂ϕ,Σ̂ϕ), where µ̂ϕ and Σ̂ϕ are estimated from the training data Φ. Then we compute the density
p(Φ′|Φ)=p(Φ′|µ̂ϕ,Σ̂ϕ) to quantify the covariate shift.

Finally, we compute the density at the logarithmic scale and this defines the proposed metric

log p(y′|Φ′,y,Φ)+log p(Φ′|Φ). (2)

Please refer to Appendix B.3 and B.4 for more details.

One distinctive aspect of our selection process is the cross-domain validation, embodied in the first
term of (2). Across different domains, there are domain-invariant and domain-specific features,
where overfitting to the latter can severely harm the OoD generalization. By evaluating on held-out
domains, we are able to filter out models that fixate on domain-specific features. To provide theoretical
justification, an explicit analysis in the linear regression setting is conducted, where we show that
the model with the optimal metric is the one that selects all domain-invariant features. Despite the
over-simplification, it does reflect the essence of our approach. Due to page limit, the technical details
are presented in Appendix B.5.

3.2 Model Ensemble with Feature Selection

The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further
aggregate different PTMs, we consider assembling the top-ranked feature extractors and rewrite
Φ=

[
Φ(1),...,Φ(k)

]
,where Φ(i) is the feature matrix from the i-th ranked feature extractor.

As we show in experiments, in most cases, aggregating features from multiple models can outperform
any single model. However, simply concatenating features inevitably introduces more noise. As found
in [87], non-informative but invariant features from training domains may only bring some noise that
is irrelevant to the classification problem, and the accumulation of noise hurts the learnability of the
OoD generalization task while increasing the memory and computation cost. Therefore, we propose a
feature selection method under the Bayesian linear model framework in Section 3.1.

First, we impose a binary mask z = (z1,z2, ... ,zd)⊤ for the weight vector w = (w1,w2, ... ,wd)
⊤,

where zi =1 indicates that wi is an active weight in the top linear model, i.e., wi ̸=0, meaning the
corresponding feature is informative, while wi≈0 if zi=0, indicating a noisy feature that should be
screened. Therefore the Bayesian feature selection is formulated by estimating the probability πi of zi
with πi :=p(zi=1) and π={π1,π2,...,πd}.
To facilitate the utility of the mask, we assume that the weights {wi} are independent of each other and
each weight wi is drawn from either a slab prior or a spike prior [37] with the mean of zero:

p(wi|zi,αi,1,αi,2)=

{
N (0,α−1

i,1 ) if zi=1;

N (0,α−1
i,2 ) if zi=0.

We make the Bayesian treatment to the linear model in Section 3.1 by introducing gamma priors for all
inverse variance terms:

αi,1∼Gamma(νi,1,νi,2), αi,2∼Gamma(νi,3,νi,4), β∼Gamma(ν0,1,ν0,2),

and denote all hyper-parameters as ν = {νi,j}. In addition, we denote all latent variables as ξ ={
β,{wi,zi,αi,1,αi,2}di=1

}
. Under certain conditions, maximizing marginal likelihood provably leads

to consistent selection and obeys Occam’s razor phenomenon [27, 85], and thus screens non-informative
features. To estimate πi, the maximum marginal likelihood estimator of (π,ν) is given by

π̂,ν̂=argmax
π,ν

log p(y|Φ;π,ν)=argmax
π,ν

log

∫
ξ

p(y,ξ|Φ;π,ν)dξ. (3)

However, the direct maximization of (3) is intractable due to the integration over ξ. One possible
solution is to use EM algorithm [66]. In the E-step, we compute the conditional expectation:

Eξ

[
log p(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]
.

Notice that evaluating the expectation involves the posterior distribution of ξ.However in our case,
it is not straightforward to obtain an analytical form of the true posterior distribution. We instead
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Algorithm 1 Pseudocode of Variational EM Algorithm for Bayesian Feature Selection

Step 1: Initialization:
∏d

i=1Q
0(wi) and

∏d
i=1Q

0(αi,1)Q
0(αi,2);

Step 2 (E-Step): Approximate the posterior of ξk for each ξk∈ξ at iteration twith:

Qt(ξk)=exp
[
EQt−1(ξ−k)log p(y,ξ|Φ;π

t−1,νt−1)
]
;

Step 3 (M-Step): Update (π,ν) at iteration t by maximizing (5):

πt,νt=argmax
π,ν

Eξ∼Qt(ξ)

[
log p(y,ξ|Φ;π,ν)

]
;

Step 4: Repeat Step 2 and Step 3 until the convergence criterion is met.

approximate it using variational inference [12] by introducing a tractable distributionQ. Considering
the following objective function:

L(Q)=

∫
ξ

Q(ξ;π,ν)log
p(y,ξ|Φ;π,ν)
Q(ξ;π,ν)

dξ,

which is a lower bound of log p(y|Φ;π,ν). It has been shown the maximizer of L(Q) is the optimal
approximator of p(ξ|y,Φ;π,ν) under the KL divergence. To obtain an explicit solution, we consider
the classical mean-field family [12], where variational distributionQ can be factorized into:

Q(ξ)=Q(β)

d∏
i=1

[
Q(zi)Q(wi)Q(αi,1)Q(αi,2)

]
. (4)

After all variational parameters in (4) are updated by running one-step coordinate gradient descent [12],
in the M-step, we update πnew and νnew by maximizing:

Eξ∼Q(ξ;πold,νold)

[
log p(y,ξ|Φ;π,ν)

]
. (5)

By repeating the E- and M-step, the estimator (πnew, νnew) converges to an optimal solution. We then
screen those variables with converged prior πi smaller than the predefined threshold τ . The pseudocode
is provided in Algorithm 1 to illustrate the main idea of the proposed method, where ξk denotes the
k-th variable in the set ξ and ξ−k is the subset of all other variables except ξk. In the E-step, the optimal
approximatorQ(ξ) under the mean-field family takes the tractable form of the expectation of the joint
distribution and the optimization of (5) in M-step is equivalent to substituting with corresponding
variational parameters ofQ(ξ) from E-step. Our derivations for variational approximations and prior
hyper-parameters optimization are listed in Appendix C.3.

However, the proposed algorithm still suffers from heavy computational cost: each iteration costs
O(nd2). To address this problem, we propose an efficient version based on stochastic variational
inference [35]. A local estimator Qs(ξ) is established under stochastic approximation that enjoys
less computational complexity and guarantees convergence to global optimum [65]. We successfully
reduce the computation cost to O(nsd2) with ns≪n. Readers can refer to Appendix C.4 for more
detailed discussions and the complete algorithm for feature selection.

4 Experiments

In this section, we demonstrate the effectiveness of ZooD. First, we evaluate the ability of our ranking
metric to estimate OoD performance and compare it with the ground-truth performance and several
existing IID ranking methods. Second, we show that our aggregation method achieves significant
improvements and SOTA results on several OoD datasets. Finally, we demonstrate that ZooD requires
significantly less computation, and, therefore, is practically scalable compared with naive fine-tuning.

Setup Details. We use 35 PTMs with diverse architectures, pre-training methods, and pre-training
datasets. We divide the PTMs into three groups. Group 1 consists of models with different architectures,
Group 2 consists of models pre-trained with different training methods, and Group 3 consists of
models pre-trained on large-scale datasets. We conduct experiments on six OoD datasets: PACS [43],
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Figure 3: Comparison of ZooD ranking scores with three features-based ranking methods. The
plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis), and Kendall’s
coefficient τ for 35 PTMs on seven datasets.

VLCS [24], Office-Home [77], TerraIncognita [10], DomainNet [63], and NICO (NICO-Animals
& NICO-Vehicles) [31]. Each of the datasets has multiple domains. The standard way to conduct
the experiment is to choose one domain as test (unseen) domain and use the remaining domains as
training domains, which is named leave-one-domain-out protocol. The top linear classifier is trained
on the training domains only and tested on the test domain. Each domain rotates as the test domain
and the average accuracy is reported for each dataset. To get ground-truth performance, we follow
DomainBed [29] to fine-tune top linear classifiers for the PTMs on these OoD datasets. We adopt the
leave-one-domain-out cross-validation setup in DomainBed with 10 experiments for hyper-parameter
selection and run 3 trials. We triple the number of iterations for DomainNet (5000 to 15000) as it
is a large-scale dataset requiring more iterations [17] and decrease the number of experiments for
hyper-parameter selection from 10 to 5. More details on the experimental setup are in Appendix A.1.

4.1 Comparison with IID Ranking Metrics

IID ranking methods. We divide existing ranking methods into two groups. One group consists of
methods that employ PTM’s classification layer for ranking. These methods include NCE [76] and
LEEP [58]. The other group consists of approaches that only use PTM’s extracted features. These
methods include H-Score [8] and LogME [91]. Additionally, we also use kNN with k=200 [81] as a
baseline.

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-
domain-out validation protocol [43]. For ZooD and kNN, we further adopt leave-one-domain-out
validation for training domains and take average results as the performance prediction for the held-out
test domain. To compute the correlation between ranking scores and ground-truth performance, we
use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ
Kendall’s coefficient τ [38]. Unlike Pearson’s correlation, τ measures correlation based on the order of
two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of
transferability metric for top-model selection, we utilize weighted Kendall’s coefficient τw [78]. The
τw gives more weight to the ranking of top-performing models compared with the rest of the models.
Therefore, it is a better comparative criterion for top model selection.

Results. First, we compare our method with feature-based scoring methods: kNN, H-Score, and
LogME. These methods, similar to our method, rank models based on the penultimate layer. We
compare ZooD with these methods for the full set of 35 PTMs. We plot ranking scores and ground-truth
accuracies in Figure 3. For quantitative comparison, we also provide τ values. It can be seen that ZooD
is better correlated with fine-tuning accuracy than other ranking methods on most of the datasets. For
example, our method has a τ of 0.85 compared with LogME’s τ of 0.77 on Office-Home and a τ of
0.40 compared with LogME’s τ of 0.04 on TerraIncognita.
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Figure 4: Comparison of ZooD ranking scores with two classification-layer-based ranking methods.
The plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis), and
Kendall’s coefficient τ for 25 PTMs that have classification layers on seven datasets.

Table 1: Comparisons: (a) τw between ZooD and feature-based transferability estimation methods
using all of our PTMs. (b) τw between ZooD and classification-based transferability estimation
methods. For this comparison, we consider 25 models that have classification heads. (c) Our method
v.s. brute-force fine-tuning in terms of computing cost. For this comparison, we consider all 35 models.

(a) τw for feature based

kNN H-Score LogME ZooD

PACS 0.76 0.57 0.88 0.91
VLCS 0.49 0.45 0.79 0.80
Office-Home 0.78 0.68 0.86 0.86
TerraIncognita 0.40 -0.20 0.02 0.46
DomainNet 0.89 0.62 0.65 0.76
NICO-Animals 0.73 0.72 0.89 0.90
NICO-Vehicles 0.82 0.75 0.90 0.92

(b) τw for Classification based

LEEP NCE ZooD

PACS 0.76 0.81 0.89
VLCS 0.57 0.32 0.88
Office-Home 0.76 0.94 0.86
TerraIncognita 0.02 -0.44 0.59
DomainNet 0.77 0.87 0.72
NICO-Animals 0.58 0.92 0.94
NICO-Vehicles 0.69 0.92 0.95

(c) Speed-up over brute-force

GPU Hours ZooD Fine-tuning Speed Up

PACS 0.27 2662.27 9859×
VLCS 0.29 2706.67 9332×
Office-Home 0.39 3089.87 7922×
TerraIncognita 0.49 3920.27 8000×
DomainNet 11.24 17055.33 1516×
NICO-Animals 0.32 2914.40 9107×
NICO-Vehicles 0.30 2794.13 9313×

Furthermore, our metric is more stable and consistent. Precisely, τ of ZooD varies between 0.40 ∼
0.85 compared with 0.04 ∼ 0.80 for LogME, -0.08 ∼ 0.67 for H-Score, and 0.16 ∼ 0.86 for kNN.
The consistency of transferability metric across different datasets is critical since the purpose of a
transferability metric is to estimate performance on a new dataset without having access to ground-truth
accuracy. Whenever an estimation metric is inherently unstable, it is hard to determine its reliability for
a new dataset.

Note that our method uses a linear model with Gaussian error to approximate the top classifier. This
helps us achieve efficient model assessment, especially on small and medium-sized datasets in which the
bias caused by model approximation is negligible compared with the estimation error due to insufficient
data. However, on DomainNet, things may be different. The bias caused by model approximation
dominants the evaluation performance on large datasets. Therefore, our method does not outperform
kNN on DomainNet.

Second, we compare our method with classification-layer based methods: NCE and LEEP. For this
comparison, we select a subset of our PTMs that have classification layers. The results are illustrated in
Figure 4. It can be seen that ZooD is also more stable and consistent than NCE and LEEP. Moreover,
Our method achieves superior performance on the difficult real-world TerraIncognita dataset. This
dataset consists of obscure and blurry images captured by WildCams installed in different territories.
NCE has a negative correlation for this dataset. On the other hand, our method, although not perfect,
captures the relation in a better way. For this challenging dataset, our method has a τ of 0.45 compared
with 0.12 and -0.32 for LEEP and NCE, respectively.

Third, we compare the weighted Kendall’s coefficient of our method with other ranking methods.
The weighted Kendall’s coefficient is a better metric to gauge the performance of a metric for top
model selection. We also divide these results into two groups: comparison with feature-based scoring
methods in Table 1a and comparison with classification-based scoring methods in Table 1b. Our method
outperforms feature-based scoring methods on 6 out of 7 datasets. Similarly, it also outperforms both
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Table 2: Comparison of out-of-domain accuracies between ZooD and SOTA OoD methods. The results
of MixStyle [93] and SWAD [17] are from SWAD, and other results are from Gulrajani and Lopez-Paz
[29] (denoted with †). Our results are average of three trials.

Method PACS VLCS Office-Home TerraInc. DomainNet Avg
ERM† 85.5 77.5 66.5 46.1 40.9 63.3
IRM† 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO† 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† 84.6 77.4 68.1 47.9 39.2 63.4
MLDG† 84.9 77.2 66.8 47.8 41.2 63.6
MMD† 84.7 77.5 66.4 42.2 23.4 58.8
DANN† 83.7 78.6 65.9 46.7 38.3 62.6
CDANN† 82.6 77.5 65.7 45.8 38.3 62.0
MTL† 84.6 77.2 66.4 45.6 40.6 62.9
SagNet† 86.3 77.8 68.1 48.6 40.3 64.2
ARM† 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 85.2 77.1 65.5 46.6 38.9 62.7
MixStyle 85.2 77.9 60.4 44.0 34.0 60.3
SWAD 88.1 79.1 70.6 50.0 46.5 66.9

ZooD
Single 96.0 79.5 84.6 37.3 48.2 69.1
Ensemble 95.5 80.1 85.0 38.2 50.5 69.9
F. Selection 96.3 80.6 85.1 42.3 50.6 71.0
F. Ratio (% ) 24.3 24.5 62.5 76.8 99.8

LEEP and NCE on 5 out of 7 datasets. Moreover, our ranking method is more stable as it performs
better on challenging datasets. For example, it has τw of 0.46 ∼ 0.92 compared with LogME’s τw of
0.02 ∼ 0.90 and H-Score’s τw of -0.20 ∼ 0.75.

In summary, transferability estimation of ZooD correlates better with ground-truth accuracy on most of
the OoD datasets compared with previous ranking methods. It also outperforms most feature-based
metrics for model selection in terms of τw. Additionally, it is more stable and consistent across datasets,
making it a better choice for pre-trained model selection.

4.2 SOTA Results with Our Selection Method

We also compare ZooD (model ranking and feature selection) with several recent SOTA OoD methods
and demonstrate that it achieves substantial performance improvements. We compare previous OoD
methods with three versions of our method: 1) Single: fine-tune the top-1 model by transferability
metric; 2) Ensemble: fine-tune an ensemble of the top-K models; 3) F. Selection: fine-tune an ensemble
of the top-K models with feature selection, which is the expected result using ZooD. By fine-tuning,
we mean using ERM with DomainBed settings to fine-tune a top linear classifier for the PTMs. Their
predictive performance and F. Ratio (the percentage of features used in F. Selection) are listed in the
last four lines of Table 2.

In all experiment results, except TerraIncognita (discussed in the next paragraph), our method achieves
remarkable improvement against ERM and recent SOTA. For Single, we list the improvements over
the previous SOTA as follows: +14% on Office-Home, +7.9% on PACS, +1.7% on DomainNet, and
+0.4% on VLCS. This result also shows that even without aggregation, using proper pre-trained model
can improve OoD generalization by a large margin. Notice that our method can be regarded as a
complement to other OoD algorithms. After selecting the top-ranked models, different OoD algorithms
can be adapted to fine-tune the models.

The performance of Single does not outperform the previous SOTA on TerraIncognita. This is because
previous methods fine-tune the whole network. In contrast, we only train a classifier on top of a fixed
feature extractor. TerraIncognita is a much more challenging dataset compared with other OoD datasets,
as the majority of its images are obscured by the background. Therefore it requires fully fine-tuning. To
show the effectiveness of ZooD with fully fine-tuning, we select the top-1 ranked model and fine-tune
the whole model. Our resulted model achieves a +2.6% improvement compared with the previous
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SOTA. One limitation of ZooD when aggregating multiple models is that fine-tuning the whole models
is difficult due to the limitation of GPU memory. However, for OoD tasks, fine-tuning the whole
model may not perform better than fine-tuning the top classifier. For example, the results of fine-tuning
the full top-ranked models on PACS, VLCS and Office-Home are 90.6, 79.1 and 83.4, respectively.
Empirically, we find if a PTM is suitable for a given OoD task, fine-tuning the top classifier has better
OoD generalization than fine-tuning the full model.

As shown in Table 2, a simple model ensemble (Ensemble) provides fairly minimal improvement
because it may introduce invariant but noisy features. To efficiently utilize multiple models, we propose
to select informative features in Section 3.2. Here, we compare the performance improvement by F.
Selection with Single and Ensemble. ZooD significantly outperforms both candidates while only using
a small portion of aggregated features from top-K models. Even on the most sophisticated DomainNet,
ZooD can improve predictive performance by +2.4% compared with Single and +0.1% compared with
Ensemble.

Figure 5: Comparison of selected-feature ensem-
ble vs. all-feature ensemble for varying number
of top models in the ensemble.

To find the appropriate number K for the model
ensemble, we performed an ablation study. We
varied the number of K, e.g. K ∈ {3,5,7}. The
performance changes are plotted in Figure 5. We
found the performance by aggregating top-3 mod-
els strikes the right balance between performance
and computational complexity. Hence, K=3 is set
to the default value.

In summary, our ranking metric in ZooD is good
enough to select a model that can outperform the
previous SOTA methods without adding any bells
and whistles. Furthermore, feature selection in
ZooD can efficiently utilize informative features from top-K models to further improve OoD generaliza-
tion. In this work, we do not control for the impact of better PTMs. Given a zoo of PTMs, our method
aims to exploit the power of the zoo for OoD generalization. We can further increase the power of the
model zoo by adding more PTMs. Based on extensive experimental results on various OoD datasets,
we conclude ZooD makes it easy and efficient to exploit a large set of PTMs for OoD generalization.

4.3 Computational Efficiency of ZooD

We illustrate the precision and computational efficiency of ZooD by comparing it with brute-force
fine-tuning in terms of GPU hours. The results are shown in Table 1c. ZooD provides a minimum of
1516× speed-up for DomainNet and a maximum of 9859× speed-up for PACS. Cumulatively, our
method took a total of 13 GPU hours to evaluate all the PTMs on all the datasets compared with 35140
GPU hours (equivalent to 4 GPU years) for brute-force fine-tuning. Therefore, ZooD is a scalable and
practical method for OoD generalization.

5 Conclusion

Machine learning models rely on IID assumption, which is often violated due to constant distribution
shifts in real-world applications. In this work, we argue for leveraging a large set of PTMs to improve
OoD generalization and propose ZooD, a paradigm for efficient PTMs ranking and aggregation. Our
paradigm avoids the computationally-prohibitive fine-tuning by ranking PTMs based on quantifying
their inter-class discriminability and inter-domain stability, and selecting the most informative features
from top-ranked PTMs ensemble. Extensive experiments show ZooD is superior in ranking correlation
with the ground-truth performance and achieves SOTA results on various OoD benchmarks.
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