
Visual Concepts Tokenization
Appendix

Tao Yang1∗, Yuwang Wang2†, Yan Lu2 , Nanning Zheng1

yt14212@stu.xjtu.edu.cn,
{yuwwan,yanlu}@microsoft.com,

nnzheng@mail.xjtu.edu.cn
1Xi’an Jiaotong University, 2Microsoft Research Asia

A Implementation Details & More Quantitative Results

For the setting of the baselines of disentangled representation learning, we follow DisCo [9]. For the
setting of COMET, we follow their own setting for global factors.

For the setting of the baselines of scene decomposition, we follow their own settings. Specifically,
for the setting of COMET, we follow their own setting for local factors (Clevr). As for slot attention,
we also follow their setting.

A.1 Setting for VCT

We empirically set the batch size to 32, the coefficient of disentanglement term λdis to 1, the layer
number of Concept Tokenizer LE to 6, the layer number of Concept Detokenizer LD to 4, and feature
dimension D to 256 for all the datasets. In addition, we set the number of image tokens N to 256
for an image size of 64 × 64, and the number of concept tokens M to 20 for both two tasks. In
the training of VCT, we use an Adam optimizer [5], set the learning rate to 1e− 4, and keep other
parameters as the default setting of PyTorch [8], train 80k iterations for convergence. Due to the
usage of pre-trained VQ-VAE as image tokenizer and detokenizer, VCT converges faster than random
initialized VCT. Consider that VQ-VAE is pre-trained, and Ldis is optimized only w.r.t. the Concept
Tokenizer, VCT only consumes about 10G GPU memories. Therefore, we only use one Tesla P100
16G GPU for training.

Since the feature dimension of the CLIP image encoder is 512, when we adopt it as the image
tokenizer, we use a set of N MLPs to map the CLIP feature into N image tokens, respectively.
Besides, CLIP has no decoder. We use a network that with the same architecture of VQ-VAE decoder
as the image detokenizer. The pre-trained CLIP model is from the official implementation3.

A.2 Architecture of VQ-VAE

The VQ-VAE we adopted is from the PyTorch implementation4. We follow [10] to train VQ-VAE
200 epochs for each dataset. The encoder and decoder architectures are same to [10], which is shown
in Tables A.2 and A.2. For the training hyper-parameters, we follow VQ-VAE to set.

∗Work done during internships at Microsoft Research Asia.
†Corresponding author
3https://github.com/openai/CLIP
4https://github.com/nadavbh12/VQ-VAE

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/openai/CLIP
https://github.com/nadavbh12/VQ-VAE


Conv 256, 4× 4, stride = 2, padding = 1
BatchNorm
ReLu
Conv 256, 4× 4, stride = 2, padding = 1
BatchNorm
ReLu
ResBlock(256, 256)
BatchNorm
ResBlock(256, 256)
BatchNorm

Table 1: Encoder architecture of VQ-VAE used in VCT.

ResBlock(256, 256)
BatchNorm
ResBlock(256, 256)
BatchNorm
ConvTranspose 256, 4× 4, stride = 2, padding = 1
BatchNorm
ReLu
ConvTranspose 256, 4× 4, stride = 2, padding = 1

Table 2: Decoder architecture of VQ-VAE used in VCT.

A.3 Settings for Ablation Study

For the “AE” tokenizer/deTokenizer, we adopt autoencoder with the same architecture to the VQ-
VAE and use them as image tokenizer/deTokenizer directly. In addition, we use the MSE loss for
reconstruction. For the “Patch” tokenizer/deTokenizer, we use a Conv layer with patch size set to 4
and channels set to 256. We also adopt a standard MSE loss as Lrec.

For the “CNN DeTokenier”, we adopt a CNN structure as shown in Table A.3. We first reshape the
concept tokens to B ×N × 16× 16, where B is batch size. Then we decode the image tokens by
a CNN. For the transformer detokenizer, We first append N −M learnable tokens to the encoded
concept tokens, then decode them to image tokens by four layers of self-attention blocks (self attention
with FFN and layer norm), which is the same as the self-attention block in Concept Tokenizer.

ConvTranspose 16, 3× 3, stride = 1, padding = 1
ReLu
ConvTranspose 32, 3× 3, stride = 1, padding = 1
ReLu
ConvTranspose 64, 3× 3, stride = 1, padding = 1
ReLu
ConvTranspose 128, 3× 3, stride = 1, padding = 1
ReLu
Linear 256

Table 3: Architecture of CNN Detokenizer.

A.4 More Quantitative Results

The results of disentangled representation learning on the MIG and BetaVAE disentanglement metrics
is presented in Table 4.

2



Method Cars3D Shapes3D MPI3D

MIG BetaVAE MIG BetaVAE MIG BetaVAE

VAE-based:

FactorVAE 0.142± 0.023 1.00± 0.000 0.434± 0.143 0.892± 0.064 0.099± 0.029 0.348± 0.012
β-TCVAE 0.080± 0.023 0.999± 1.0e− 4 0.406± 0.175 0.978± 0.036 0.114± 0.042 0.339± 0.029

GAN-based:

InfoGAN-CR 0.011± 0.009 0.450± 0.022 0.297± 0.124 0.837± 0.039 0.163± 0.076 0.450± 0.022

Pre-trained GAN based:

LD 0.086± 0.029 0.999± 2.54e− 4 0.168± 0.056 0.913± 0.063 0.097± 0.057 0.535± 0.057
CF 0.083± 0.024 1.000± 0.000 0.307± 0.124 0.999± 0.001 0.183± 0.081 0.669± 0.033
GS 0.136± 0.006 1.000± 0.000 0.121± 0.048 0.944± 0.044 0.163± 0.065 0.605± 0.061
DS 0.118± 0.044 1.000± 0.000 0.356± 0.090 0.991± 0.022 0.093± 0.035 0.651± 0.043

DisCo 0.179± 0.037 0.999± 6.86e− 5 0.512± 0.068 0.987± 0.028 0.222± 0.027 0.530± 0.015

Concept-based:

COMET 0.000± 0.000 0.343± 0.006 0.0002± 0.000 0.166± 0.004 0.000± 0.0001 0.144± 0.005
VCT (Ours) 0.117± 0.045 1.00± 0.000 0.525± 0.028 0.999± 0.0004 0.227± 0.048 0.844± 0.038

Table 4: Comparisons of disentanglement on the MIG and BetaVAE disentanglement metrics (mean
± std, higher is better). VCT achieves the state of the art performance with a large margin in almost
all the cases compared to all of the baselines. Especially on the MPI3D dataset.

B More Qualitative Results

B.1 Qualitative Results on Shapes3D

Identify the meaningful tokens As shown from Figure 1, the meaningful concept tokens emerge
randomly. Intuitively, if the meaningless tokens are different from each other, VCT can recognize
them easily when optimizing Ldis. Therefore, the meaningless tokens should have a much smaller
variance than meaningful ones. In order to identify these meaningful concepts, we can calculate the
variance of the tokens across a large batch covering all variations. The concept tokens with high
variance are meaningful ones. Since the token is vector-wise, the variance is also a vector. Therefore,
we calculate ℓ2 norm of each variance vector. As shown in Figure 2, the concept tokens with the
norm of variance vector larger than 0.1 are meaningful ones. e.g., 7, 8, 14, 15, 19, 20.

Linear interpolations In order to analyze the linearity of the concept token space. We linearly
interpolate the concepts token cki and ckj by equation ck = αcki + (1 − α)ckj , where α ∈ (0, 1).
Interestingly, as shown in Figure 3, the space of concept tokens is close to linear space.

3



Source

Target

CT 1 / None

CT 2 / None

CT 3 / None

CT 4 / None

CT 5 / None

CT 6 / None

CT 7 / FL color

CT 8 / BG color

CT 9 / None

CT 10 / None

CT 11 / None

CT 12 / None

CT 13 / None

CT 14 / Obj size

CT 15 / Azimuth

CT 16 / None

CT 17 / None

CT 18 / None

CT 19 / Obj shape

CT 20 / Obj color

Swapping concept token on Shapes3D

Figure 1: Visualization of swapping concepts on Shapes3D. The images in the first row provide
source concepts, and the second provides target concepts. The rest of the images are swapped ones
(“CT i” represent that the row is corresponding to i-th concept token swapped image. “None” denotes
meaningless concept; “Obj” denotes Object; “FL” denotes floor; “BG” denotes background).

4



The norm of variance vector

N
or

m

CT number

Figure 2: Variance vector norm of concept tokens. We calculate the variance of concept tokens across
a batch of instances and obtain a variance vector for each concept. Then, we calculate ℓ2 norm of the
variance vector.

Ci

Cj

α = 0.0

α = 0.1

α = 0.2

α = 0.3

α = 0.4

α = 0.5

α = 0.6

α = 0.7

α = 0.8

α = 0.9

α = 1.0

Linear interpolation on Shapes3D

Figure 3: Visualization of linear interpolation of concept tokens on Shapes3D. The images in the first
row provide source concepts, and the second provides the target concept. The rest of the images are
interpolated ones (each column represents a single concept interpolation).

5



B.2 Qualitative Results on MPI3D

Source

Target

CT 1 / None

CT 2 / None

CT 3 / None

CT 4 / Obj color

CT 5 / None

CT 6 / None

CT 7 / Position

CT 8 / None

CT 9 / None

CT 10 / None

CT 11 / None

CT 12 / None

CT 13 / Azimuth

CT 14 / None

CT 15 / None

CT 16 / None

CT 17 / BG color

CT 18 / None

CT 19 / None

CT 20 / None

Swapping concept token on MPI3D
Figure 4: Visualization of swapping concepts on MPI3D. The images in the first row provide source
concepts, and the second provides the target concept. The rest of the images are swapped ones (“CT
i” represents that the i-th concept token of the source image is replaced with the one of target image.
“None” denotes meaningless concept; “Obj” denotes Object; “BG” denotes background).

6



B.3 Qualitative Results on Car3D

Source

Target

CT 1 / Car color

CT 2 / None
CT 3 / Vertical

view
CT 4 / None

CT 5 / None

CT 6 / None

CT 7 / None

CT 8 / None

CT 9 / None

CT 10 / None

CT 11 / None

CT 12 / Car shape

CT 13 / None

CT 14 / Horizontal
view

CT 15 / None

CT 16 / None

CT 17 / None

CT 18 / None

CT 19 / None

CT 20 / None

Swapping concept token on Car3D

Figure 5: Visualization of swapping concepts on Car3D. The images in the first row provide source
concepts, and the second provides the target concept. The rest of the images are swapped ones (“CT
i” represent that the row is corresponding to i-th concept token swapped image. “None” denotes
meaningless concept).

7



B.4 Qualitative Results on CeleBA

Source

Target

CT 1 / Concept 1

CT 2 / Right Collar

CT 3 / Cheeks

CT 4 / Left Collar

CT 5 / Bangs

CT 6 / None

CT 7 / None

CT 8 / None

CT 9 / None

CT 10 / None

CT 11 / None

CT 12 / None

CT 13 / None

CT 14 / None

CT 15 / None

CT 16 / None

CT 17 / None

CT 18 / None

CT 19 / Mouth

CT 20 / Eyes & Nose

Swapping concept token on CeleBA

Figure 6: Visualization of swapping concepts on CeleBA. The images in the first row provide source
concepts, and the second provides the target concept. The rest of the images are swapped ones (“CT
i” represent that the row is corresponding to i-th concept token swapped image. “None” denotes
meaningless concept).

B.5 Results on Real-world Datasets

In this section, we demonstrate that VCT is also effective (i.e., generalizes well) on real-world images.
We train VCT on two challenging real-world datasets MSCOCO (resolution: 224 × 224, concept
tokens number: 20) [6] and KITTI (resolution: 64× 64, concept tokens number: 20) [3], and conduct
qualitative evaluations. To the best of our knowledge, we are the first to conduct unsupervised
disentangled representation learning on MSCOCO and KITTI.

VCT can be flexibly combined with different architectures. For MSCOCO, we take the encoder and
decoder of BEiT [1] as the image tokenizer/detokenizer for VCT to leverage a large pretraind vision
model. As for KITTI, we still utilize pretrained VQ-VAE as the pretrained vision model.

8



As shown in Figure 7, the results on MSCOCO and KITTI demonstrate that VCT is able to learn
the concepts of the sky, ground, photos, and chairs. This is quite similar to what VCT can learn
on the synthesized dataset Objects-Room. As the real-world dataset is more diverse, we observe
several failure cases shown in Figure 8. We suppose those failure cases are due to VCT, trained
with reconstruction loss, is not good at synthesizing counterfactual samples which are far from the
data distribution. We also show the results on KITTI in Figure 9. The results show that VCT can
extract visual concepts such as shadow, sky, car, house, ground, etc. Due to the time and computation
limitation, we test VCT on a low resolution.

In summary, the results on MSCOCO and KITTI demonstrate that VCT is also effective in real-
world scenarios. Meanwhile, the quality is not as good as in the synthesized datasets. Note that
disentanglement in the real world is still quite challenging. Compared to synthesized data, the
real-world data contains more diverse and unlimited scene variations, the total number of concepts is
large and unknown, and the number of concepts is image specific. Compared to the street dataset
KITTI, MSCOCO has more diverse visual contents and image variations, and it is harder to learn
visual concepts.

Source

Target

Swapped

Recon

Swapping concept token of Sky Swapping concept token of Photo

Source

Target

Swapped

Recon

Swapping concept token of Ground Swapping concept token of Chair

Figure 7: Visualization of swapping the meaningful concepts on MSCOCO. The images in the first
row provide source concepts, and the second provides the target concept. The rest of the images are
swapped and reconstructed ones(“Recon” represents that the row corresponds to the reconstructed
image).

9



Source

Target

Swapped

Recon

Swapping concept token of Sky Swapping concept token of Photo

Source

Target

Swapped

Recon

Swapping concept token of Ground Swapping concept token of Chair

Figure 8: Visualization of the failed cases of swapping concepts on MSCOCO. The images in the
first row provide source concepts, and the second provides the target concept. The rest of the images
are swapped and reconstructed ones (“Recon” represent that the row corresponds to the reconstructed
image).

10



Source

Target

CT 1 / Shadow

CT 2 / Sky

CT 3 / Car

CT 4 / Center H

CT 5 / Left H

CT 6 / Right H

CT 7 / Ground

Swapping concept token on KITTI
Figure 9: Visualization of swapping the meaningful concepts on KITTI. The images in the first row
provide source concepts, and the second provides the target concept. The rest of the images are
swapped ones (“CT i” represent that the row is corresponding to i-th concept token swapped image,
we use “H” to represent “house” in short).

11



Image
Detokenizer

Concept
Detokenizer

Image
Tokenizer

Concept
Tokenizer

2

2

2

1

1

1

1

2

1

1

1

1

2

1

Detokenizing & Tokenizing
a

a

a

b

b

b

−
Concepts

Disentangling
Loss 

substituted concept token

(a) Orginal VCT concept disentangling loss

Pretrained GAN
Generator

Image
Tokenizer

Concept
Tokenizer

a
a
a

b
b
b

−
Concepts

Disentangling
Loss 

original and shifted latent 
codes of the pretrained 

GAN

Latent Space

Navigator

(b) VCT-based image editing

Figure 10: Difference between proposed VCT for editing and original VCT. We abnegate the
reconstruction loss and use latent code shift to substitute token swapping. We add a navigator to
provide learnable directions. The figure of the navigator is taken from DisCO [9]. Similar to DisCo,
we adopt a CNN encoder as the Image Tokenizer.

Furthermore, inspired by DisCO [9], we present a new architecture by combining the tokenizer of
VCT with a pretrained GAN for image editing. As shown in Figure 10, this new architecture takes a
pretrained GAN as the concept and image detokenizer and uses a navigator for discovering semantic
directions which correspond to these concepts. As we adopt a pretrained GAN and keep it fixed,
the reconstruction loss can be discarded. For concept disentangling loss, we use latent code shift to
substitute token swapping operation. In order to verify the effectiveness of this new architecture, we
train this architecture on several real-world datasets. For Cats/Church/FFHQ (resolution: 256× 256,
concept tokens number: 32), the pretrained GAN is StyleGAN2 [4]. For ImageNet (resolution:
256× 256, concept tokens number: 32), the pretrained GAN is BigGAN [2]. The results are shown
in Figure 11(Cats), Figure 12 (Church),Figure 14 (FFHQ),Figure 13 (ImageNet). Generally, VCT can
discover many disentangled concepts via discovering the directions in the latent space of pretrained
GANs. In this way, VCT can be used for image editing.

12



CT 1 / Illumination

CT 2 / Fur shades

CT 3 / Fatness

CT 4 / BG light

CT 5 / Fur color

CT 6 / Light dire

CT 7 / Pattern

CT 8 / Blur

CT 9 / BG color

Shifted images on LSUN cat

Figure 11: Visualization of (VCT for image editing) shifting latent code along the meaningful
directions of corresponding concept token on LSUN cat. The 6-th image in each row is the source
image, and the rest of the images are shifted ones (“CT i” represent that the row is corresponding to
latent code shifted images of corresponding concept token, we use “BG” to represent the background
and “dire” to represent the direction in short).

13



CT 1 / Sky color

CT 2 / Cloudy

CT 3 / H color

CT 4 / Grass

CT 5 / Vitality

CT 6 / Season

CT 7 / Sky blue

CT 8 / fur shades

CT 9 / Lake

CT 10 / Rainy

CT 11 / H size

CT 12 / H material

CT 13 / Spire

CT 14 / H shades

CT 15 / Sharpness

Shifted images on LSUN church

Figure 12: Visualization of (VCT for image editing) shifting latent code along the meaningful
directions of corresponding concept token on LSUN church. The 6-th image in each row is the source
image, and the rest of the images are shifted ones (“CT i” represent that the row is corresponding to
latent code shifted images of corresponding concept token, we use “BG” to represent background in
short).

14



CT 1 / Standing

CT 2 / Azimuth

CT 3 / Zoom in

CT 4 / Dog size

CT 5 / White

CT 6 / FL color

CT 7 / FL size

CT 8 / BG

Shifted images on ImageNet dog
Figure 13: Visualization of (VCT for image editing) shifting latent code along the meaningful
directions of corresponding concept token on ImageNet dog class. The 6-th image in each row
is the source image, and the rest of the images are shifted ones (“CT i” represent that the row is
corresponding to latent code shifted images of corresponding concept token, we use “BG” to represent
background and “FL” to represent floor in short).

15



CT 1 / Hair color

CT 2 / color

CT 3 / Smile

CT 4 / Skin color

CT 5 / Make up

CT 6 / Bald head

CT 7 / Gender

CT 8 / white hair

CT 9 / Eyes

CT 10 / Bangs

Shifted images on FFHQ

Figure 14: Visualization of (VCT for image editing) shifting latent code along the meaningful
directions of corresponding concept token on FFHQ. The 6-th image in each row is the source image,
and the rest of the images are shifted ones (“CT i” represents that the row is corresponding to latent
code shifted images of corresponding concept token).

16



Table 5: Sensitivity of VCT on batchsize and token numbers.

Setting MIG DCI

batchsize = 3 0.418 0.790
batchsize = 16 0.497 0.862
batchsize = 32 0.525 0.884
batchsize = 64 0.535 0.900

tokens number = 3 0.450 0.599
tokens number = 10 0.533 0.867
tokens number = 20 0.525 0.884
tokens number = 30 0.493 0.885

B.6 Are the sensitivity results (batch sizes, token numbers) dependent on the datasets?

For a dataset of more complex scenarios (i.e., with more GT concepts), a larger token number M is
needed in VCT. Specifically, M should be no smaller than the number of GT concepts. Since we
apply the disentangling loss inside each batch, to ensure the diversity inside a batch, the batch size
should also be no smaller than the number of GT concepts. As the number of GT concepts is usually
relatively small in the synthesized data, e.g., 6 for Shape3D, the setting of M and batch size are often
satisfied. Furthermore, in order to verify this, we add an experiment on Shapes3D with the token
number M and batch size set to 3, which are smaller than the number of the GT factors/concepts
number 6. As the table shows below, the performance significantly drops. However, if the concept
tokens number is already ≥ GT factors/concepts number, the performance is robust to the concept
tokens number (See Table 5). Therefore, under the condition that token number/ batch size ≥ GT
factors/concepts number.

17



C Supplement on Scene decompsoition & Language-aligned Disentanglement

C.1 Decoder for Explicit Mask

For the image detokenizer, we add an extra channel in output to predict the explicit mask for each
concept. We follow slot attention [7] to decode objects once a time and combine them with explicit
masks. Specifically, since we use cross-attention in the Concept Detokenizer, the number of decoded
image tokens with a single concept token as input is the same as the ones with all concept tokens as
input. Therefore, We decode a single concept token into image tokens and decode image tokens to the
image and mask using the image detokenizer. In this way, we can decode these concept tokens {Cj

i }
into images xij and masks mij (after softmax across masks), then combine them with the following
equation

xi =

M∑
j

xijmij (1)

C.2 Decomposition and Recombination

In this section, we provide the details of using VCT to achieve scene decomposition and recombina-
tion.

Given a scene image, VCT represents a single object inside the scene with a single concept token
for scene decomposition. Therefore, we can spatially decompose the scene image into objects. We
first identify the “background token" inside the dataset. Here, we swap tokens between images and
locate the “background token" as the token that results in nearly no difference on the decoded image.
We find that the “background token" is not image-specific. Given a scene image to decompose, we
get its concept tokens via VCT, then we only keep one object token and replace other tokens with
“background token", then decode them to an image. In this way, we can get an image only with this
object. Similarly, we can get a set of images, and each image contains a single object. Besides, we
can also replace object tokens one by one to add an object once a time, as shown in Figure 4 and 5 (c)
in the main paper.

With such decomposition ability, we can recombine different objects in different scenes. Given two
images: image A and image B, by replacing tokens of image A with object tokens in image B, we can
add the objects of image B to image A (no overlapping in spatial). As shown in Figure 5 in the main
paper. If there is overlap between the two objects, the replacing operation will result in replacing
them.

C.3 Language-aligned Disentanglement

In this section, we demonstrate that VCT can achieve language-aligned disentanglement by combining
with pretrained CLIP encoders, which can be applied for text-guided image editing or text-to-image
generation. As for the architecture, we connect a pretrained CLIP image encoder with VCT via an
MLP, which maps the output of the CLIP encoder to a set of tokens. After training VCT, we replace
the pretrained CLIP image encoder with pretrained CLIP text encoder. Thus the model can take
text as input and achieve text-guided image editing (replacing concept tokens of image and text and
decoding) or text to image generation (decoding the concept tokens of text). The image editing results
are shown in Figure 15(a) and text to image generation results are shown in Figure 15(b). Note that,
only trained on images, VCT can successfully extract the visual concepts, which are also aligned
with text concepts, so that we can control the generation process.

C.4 COMET Results on Objects-Room

We use the default setting of Clevr in COMET and train it using the official implementation5. As
figure 16 shows, none of the concepts can generate the background or the floor alone. In addition, we
do not observe such global factors learned in COMET, as shown in Figure 18. there is no such energy
function that has a high response on the background or floor.

5https://github.com/yilundu/comet

18

https://github.com/yilundu/comet


(a) CLIP-based text editing results (b) CLIP-based text decoding

Figure 15: (a) The images can be controlled by replacing the concept tokens of the corresponding text.
Left: “ The object color is {red/purple/green}”. ({red/purple/green} for the {1st/2nd/3rd} column of
the images, respectively) Middle: “ The floor color is {red/purple/green}”. Right: “The background
color is {red/purple/green}. (b) The decoded images when we take the corresponding text as input.
First row text: “The background color is {purple/blue/purple}, and the object is a small blue/red/red
ball, and the floor color is {red/green/orange}.” Second-row text: “The background color is purple,
and the object is a small blue {ball/cube/cylinder}, and the floor color is cyan”. Third-row text: “The
background color is purple, and the object is a {small/[empty]/large} blue cylinder, and the floor
color is yellow”.

Reconstruction

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj 7

Obj 8

Obj 9

Obj 10

Single concept generation on Objects-Room

Figure 16: Visualization of single concept generation on Objects-Room. The images in the first row
are the reconstructed images, and the following rows provide the image generation results of a single
concept.

19



Source

Target

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj 7

Obj 8

Obj 9

Obj 10

Swapping concept token of COMET on Object-Room
Figure 17: Visualization of swapping concept token of COMET on Object-Room. The images in the
first row provide source concepts, and the second provides the target concept. The rest of the images
are swapped ones

Figure 18: Visualization of the gradient of the energy function for each concept in Objects Room.
The last column represents the data for computing gradient, and each column provides the gradient of
the energy function of each concept.

20



C.5 More Qualitative Results

Source

Target

FL color

Obj 1

Azimuth

Obj 2

Obj 3

BG color

Swapping concept token on Objects-Room
Figure 19: Visualization of swapping concepts results on Objects-Room. The images in the first
row provide source concepts, and the second provides the target concept. The rest of the images are
swapped ones (“Obj” denotes Object; “FL” denotes floor; “BG” denotes background).

Source

Target

Obj 1

Obj 2

Obj 3

Obj 4

Swapping concept token on Clevr
Figure 20: Visualization of swapping concepts results on Clevr. The images in the first row provide
source concepts, and the second provides the target concept. The rest of the images are swapped ones
(“Obj” denotes Object).

Source

Target

Obj 1

Obj 2

Obj 3

Swapping concept token on Teris
Figure 21: Visualization of swapping concepts on Teris. The images in the first row provide source
concepts, and the second provides target concept. The rest of the images are swapped ones (“Obj”
denotes Object).

References
[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. In

ICLR, 2021.

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. In International Conference on Learning Representations, 2018.

21



[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In CVPR, 2012.

[4] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In CVPR, 2020.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[7] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. Advances in
Neural Information Processing Systems, 33:11525–11538, 2020.

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. NIPS, 2017.

[9] Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Learning disentangled representation by
exploiting pretrained generative models: A contrastive learning view. In International Conference on
Learning Representations, 2021.

[10] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

22


	Implementation Details & More Quantitative Results
	Setting for VCT
	Architecture of VQ-VAE
	Settings for Ablation Study
	More Quantitative Results

	More Qualitative Results
	Qualitative Results on Shapes3D
	Qualitative Results on MPI3D
	Qualitative Results on Car3D
	Qualitative Results on CeleBA
	Results on Real-world Datasets
	Are the sensitivity results (batch sizes, token numbers) dependent on the datasets?

	Supplement on Scene decompsoition & Language-aligned Disentanglement
	Decoder for Explicit Mask
	Decomposition and Recombination
	Language-aligned Disentanglement
	COMET Results on Objects-Room
	More Qualitative Results


