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Abstract

Learning disentangled representations is important for unraveling the underlying
complex interactions between latent generative factors. Disentanglement has been
formalized using a symmetry-centric notion for unstructured spaces, however,
graphs have eluded a similarly rigorous treatment. We fill this gap with a new
notion of conditional symmetry for disentanglement, and leverage tools from Lie
algebras to encode graph properties into subgroups using suitable adaptations of
generative models such as Variational Autoencoders. Unlike existing works on
disentanglement, the proposed models segregate the latent space into uncoupled
and entangled parts. Experiments on synthetic and real datasets suggest that these
models can learn effective disengaged representations, and improve performance
on downstream tasks such as few-shot classification and molecular generation.

1 Introduction

Disentanglement represents a fundamental desideratum in learning with limited supervision because
it captures information about the salient (or explanatory) factors of variation in the data, and isolates
information about each specific factor in only a few dimensions, thus unraveling the interactions
underlying complex data [2, 60]. Disentangled representations have often been deemed responsible
for providing neural models with the ability to improve performance on real-world downstream
tasks [2, 20, 36, 59, 60]. Empirically, they have been shown to enable, or facilitate, critical properties
such as sample efficiency [21] and generalization [32, 42, 70].

An interesting perspective on disentanglement has been recently proposed by Higgins et al. [20].
Specifically, they advocate viewing disentanglement as decomposition of the latent space of em-
beddings into subspaces, each of which can be transformed independently under the action of a
single subgroup specific to the subspace, without affecting others. These subgroups arise, in turn,
from the decomposition of a symmetry group. This formalism bestows several benefits, e.g., it
(a) aligns with the idea that auxiliary information can be exploited for imposing a structure on the
latent space [25, 40], and (b) leads to a rigorous theoretical framework for analyzing disentangled
models [65, 71], e.g., those based on Variational Autoencoders (VAEs) [27, 50].

While symmetry groups provide a suitable tool both for formalizing [20] and learning [58, 65, 71]
disentangled representations in unstructured domains, these techniques have not been investigated
in the context of more general and complex data such as graphs. Furthermore, most works on
disentanglement for graphs [1, 16, 31, 35, 38, 66] are not designed for generative settings, and the
existing deep generative models (DGMs) for graph disentanglement such as [10, 17, 57] do not
consider group symmetries. Note that differently from other definitions of disentanglement [2, 9, 11],
leveraging group symmetries for disentanglement may unravel fundamental connections across
several approaches based on graph neural networks (GNNs), i.e., the state-of-the-art models for
embedding graphs [3, 5, 8, 13, 15, 39, 64].
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We, therefore, pursue two main goals in this work: (a) providing a rigorous symmetry-based formalism
for disentanglement on graphs, and 2) designing novel neural architectures that are able to leverage
symmetry groups to learn disengaged representations for graphs. However, accomplishing these
objectives requires overcoming some challenges. In particular, graphs often abstract complex
interactions, so the underlying latent space may not factorize completely into only disentangled
subspaces. Thus, the symmetry-based formalism introduced in [20] does not suffice for graphs.
Therefore, we introduce a new, more flexible notion of conditional disentanglement, advocating
segregating the latent space into uncoupled and entangled parts. Translating this idea into an efficient
algorithm requires further work, and we appeal to a Lie algebra based parameterization to encode the
graph properties into subgroups.

Contributions. Our contributions can be summarized as follows:

• a novel notion of symmetry-induced conditional disentanglement (Section 3.1) that general-
izes the previous definition from [20] (which we call unconditional disentanglement);

• a parameterization centered on Lie algebra based on the intuition that each separable
generative factor can correspond to a Lie algebra coordinate element, and control a single
graph property (Section 3.2);

• two algorithms for Symmetry-Induced Disentanglement under unconditional (SIDU) and
conditional (SIDC) settings, both using a two-level variational auto-encoding mechanism,
namely, one level for the data and other for symmetry group representation (Section 4); and

• a systematic evaluation on several disentanglement metrics [7, 11, 19, 26, 44]. The results
demonstrate that the proposed models can outperform contemporary GNN baselines [38, 66];
successfully learn to decouple the entangled part of latent space from the disentangled parts
(Section 5.1); and improve performance on downstream tasks such as few-shot classification,
compression (Section 5.2) and molecular graph generation (Section 5.3).

We begin with a review of the relevant literature, and then proceed to the proposed framework.

2 Related work

Symmetry-based disentanglement (SBD). Initial works on SBD, such as Caselles-Dupré et al.
[6], Quessard et al. [48], propose to use reinforcement learning to achieve irreducible representations
of group elements through observation of action transitions. Painter et al. [44] introduce a VAE
method that does not require labelled action-transition pairs, and demonstrate its validity within the
environment from Caselles-Dupré et al. [6].

More recently, some algebraic approaches have been introduced. Zhu et al. [71] propose to decompose
a Lie group into multiple subgroups, and enforce commutativity and independence between subgroups.
Yang et al. [65] impose a cyclic group structure, encouraging the group to be isomorphic to the
ground truth. Bouchacourt et al. [4] invoke group representation theory for defining distributed latent
operators that are able to learn disentangled representations. Tonnaer et al. [58] provide a new metric
for evaluation, and a VAE-based model for learning symmetry-based disentangled representations.

Some works leverage data manifolds for SBD. For example, Fumero et al. [12] view disentanglement
as a product of low-dimensional sub-manifolds underlying the data space, such that each sub-manifold
encodes an explainable data factor. Pfau et al. [46] propose a non-parametric algorithm that aims to
discover a decomposition of the data manifold by investigating its holonomy group.

Other works explore SBD as well. For instance, Higgins et al. [22] demonstrate the importance of
symmetry transformations and disentangled representation learning in the context of neuroscience.
Wang et al. [62] design a contrastive self-supervised learning method that iteratively updates a
partition, modeled as a symmetry group, until the considered factor is invariant.

Disentangled GNNs. To our knowledge, Ma et al. [38] provide the first graph disentanglement
approach, which involves a routing mechanism aimed at separating the underlying factors. More
recently, Yang et al. [66] exploit an attention mechanism for GNNs, and provide two evaluation
metrics for disentanglement on graphs. Liu et al. [35] achieve disentanglement by encouraging
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independence in the latent space, while Bae and Jeon [1] propose a method for disentangling multi-
relational graphs motivated by an application on pedestrian trajectory prediction. Li et al. [31]
provides a contrastive framework for disentangling the latent factors in GNNs.

Differently from these methods, we provide a formal definition of disentanglement for graphs, and
leverage symmetry groups in a generative model setting.

Graph DGMs. Wu et al. [63], Yu et al. [69] propose VAE-based Information Bottleneck methods
for improving the performance of GNNs on classification tasks, by learning minimal sufficient
representations. The work by Simonovsky and Komodakis [56] aims to generate molecular graphs
using graph VAEs. Liu et al. [34] adapt VAEs for conditioning molecule generation on specific
properties. You et al. [68] propose a deep autoregressive model that learns to generate graphs by
training on a representative set of graphs and decomposes the graph generation process into a sequence
of node and edge formations. Du et al. [10] propose a DGM for spatio-temporal graphs, and Guo
et al. [18] investigate DGMs with spatial networks. Finally, Guo et al. [17] and Stoehr et al. [57]
investigate disentangled representations with graph VAEs.

3 Proposed framework

In Section 3.1 we review the unconditional symmetry-induced disentanglement, and propose a new
definition of conditional disentanglement. In Section 3.2 we extend these notions to graphs. Finally,
in Section 3.3, we describe additional loss terms to encourage disentanglement.

3.1 Symmetry-based disentanglement

Definition 1 (Unconditional symmetry-based disentanglement [20]). Consider a generative process
b = W → O mapping the world states W into observations (i.e. data) O, and an inference
process h = O → Z mapping the data into a latent vector space. By composing b and h, we
obtain f = h ◦ b such that f : W → Z. Given group actions on W , i.e., ·W : G × W → W
and on Z, i.e., ·Z : G × Z → Z, the function f is said to be equivariant between the actions
on W and Z if the actions commute with f . We can express this equivariance mathematically
as g ·Z f(w) = f(g ·W w),∀g ∈ G,∀w ∈ W. Assuming that the symmetry group G can be
decomposed into subgroups G1 × . . .×Gn, a vector representation Z is disentangled with respect to
this decomposition if all of the following conditions hold:

• there is an action defined on the representation set ·Z : G× Z → Z,

• the map f : W → Z is equivariant between the actions on W and Z, and

• there is a decomposition Z = Z1 × Z2 . . .× Zn such that each Zi is affected only by Gi

and is invariant to (i.e., does not change due to) Gj for all j ̸= i.

Definition 1 does not allow any part of the latent vector space to be entangled, which is likely to be
restrictive for complex applications. Therefore, we propose conditional disentanglement.

Definition 2 (Conditional symmetry-based equivariance). Consider a generative process b = W ×
E → O mapping the disentangle-able world states W and non-disentangled states E into observations
(i.e. data) O, and an inference process h = O → Z mapping the data into a latent vector space.
By composing b and h, we obtain f = b ◦ h, which maps W × E to Z. Given group actions on
W , namely, ·W : G ×W → W and on Z, namely, ·Z : G × Z → Z, the function f is said to be
conditionally equivariant between the actions on W and Z given E if the actions commute with f .
That is, g ·Z f(w, e) = f(g ·W w, e),∀g ∈ G,∀w ∈ W, ∀e ∈ E.

This definition of conditional equivariance naturally leads to a new notion of conditional disentangle-
ment using a characterization similar to the three conditions for the unconditional case. Specifically,
we need to impose the condition that f is conditionally equivariant between the actions of W and Z
given E (instead of simply being equivariant between the actions of W and Z).

Note that while this definition results in a generalized framework for disentanglement, it does not
directly translate into a learning algorithm. Toward that goal, we invoke tools from Lie algebra as
described in the next section.
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3.2 Disentanglement on graphs

Here, we aim to instantiate Definition 1 and 2 in the context of models that encode graph-structured
data. Drawing inspiration from the previous work on Lie groups and algebras for symmetry-induced
disentangled VAEs by Zhu et al. [71], we develop a formalism for disentanglement on graphs induced
by Lie groups.

Lie groups and Lie algebras. A Lie group G is a group of continuous symmetries [52], and
associated with a Lie algebra g, which is the tangent space to the identity element of G. We can
thus parameterize a Lie algebra with a basis {Ai}ki=1, where every element in g can be written as
A = A1t1 + . . .+ Aktk using coordinates ti. Elements of the Lie algebra can be mapped back into
the Lie group with a matrix exponential map exp : g → G.

We now provide some intuition into how we can connect the notion of a Lie group G with the
definition of disentanglement in a graph network, by associating each Lie algebra coordinate ti with
a generative factor. A latent representation Ẑ, obtained, e.g., from a graph encoder, is disentangled
with respect to a Lie group G, if a change in the coordinate ti is associated with a change in only
the ith component of Ẑ, i.e., only ẑi. In other words, disentanglement entails that the semantics
(t1, t2, . . . , tk) are equivariant with respect to the properties (ẑ1, ẑ2, . . . , ẑk) that are being predicted.

Next, we provide the formal definitions for unconditional and conditional graph disentanglement.
The former expresses Ẑ as a function of T without accounting for Z, whereas the latter expresses Ẑ
based on T after fixing an encoding Z.

Definition 3 (Lie-algebra based unconditional graph disentanglement). The graph embedding Ẑ

obtained by f(Ẑ|T ) is unconditionally disentangled with respect to the Lie group coordinates
T = {tj}kj=1 if the following hold: (a) there is a group action ·Ẑ : G× Ẑ → Ẑ on Ẑ, (b) the map
f = exp(A(T )) : T → Ẑ is equivariant between actions on T and Ẑ, and (c) there is a decomposition
Ẑ = ẑ1 × ẑ2 . . .× ẑk, where each coordinate ti affects only the corresponding component ẑi.

Definition 4 (Lie-algebra based conditional graph disentanglement). The graph embedding Ẑ

obtained by f(Ẑ|T,Z) is conditionally disentangled with respect to the Lie group coordinates
T = {tj}kj=1 given Z if (a) there is a group action ·Ẑ : G × Ẑ → Ẑ on Ẑ, (b) the map f :

expA(T )×Z → Ẑ is equivariant between actions on T and Ẑ for any fixed Z, and (c) expA(T )×Z

factorizes into the product
∏k

i=1 exp(tiAi)×Z such that each component exp(tiAi) is affected only
by the corresponding coordinate ti for i ∈ {1, 2, . . . , k} for any fixed Z.

3.3 Disentanglement constraints

It is known [65, 71] that a symmetry group parameterization is usually not sufficient for a group to be
decomposed into subgroups that are parameterized independently by a single coordinate. Therefore,
following Zhu et al. [71], we add two additional constraints for enforcing disentanglement. These
constraints can be relaxed, and included in the loss function as regularization terms.

Commutative penalty. We would like to enforce a coordinate ti to be identified by single group
exp(tiAi), and thus represent a single property variation in the data ẑi. Mathematically, one can state
this desideratum as an equivalence between the exponential map of the sum, and the product over
exponential maps. [71] proved this to be achieved under commutativity over the Lie algebra basis.
Namely, if AiAj = AjAi then exp

(∑k
i=1 tiAi

)
=

∏k
i=1 exp(tiAi).

Hessian penalty Furthermore, disentanglement can be encouraged using a Hessian penalty [45]
based on the fact the Hessian matrix with respect to a disentangled representation is always zero
(owing to the independence between different dimensions). Zhu et al. [71] adapt this penalty in a Lie
algebra parameterization setup, as Hij =

δ2g(T )
δtiδtj

where g(T ) = exp
(∑k

i=1 tiAi

)
, and show that if

AiAj = 0 ∀i, j then Hij = 0.
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Figure 1: Left (architecture): SID is composed of 4 blocks, i.e., 2 layers each for the auto-encoding
modules for graph data and group structure. Middle (Egroup): the Lie algebra coordinates ti are
obtained by applying k graph convolutional networks (GCNs) to the graph embedding Z. Right
(Dgroup): the coordinates ti are combined with basis elements A to reconstruct the graph latent code.
In the conditional case (red nodes) we further condition on Z, by taking the mean (µ) of Z and Ẑ,
and passing µ through an activation function σ (ReLu for our experiments).

4 Method

We propose Symmetry-Induced Disentanglement (SID), a VAE framework for graphs [28, 56] which
encourages disentangled representations using a Lie group parameterization and two regularization
losses (commutative and hessian penalties). The architecture is depicted in Figure 1.

4.1 Probabilistic formulation

We use the following notation for model variables: latent graph embeddings Z (and Ẑ), graph features
X , symmetry Lie group structure T , and the graph adjacency matrix A. We next derive lower bounds
on log-likelihood for both the unconditional and conditional settings (see Appendix for details).
Proposition 1 (Unconditional lower bound). Given two latent variables Z and T , we instantiate
the unconditional disentanglement from Definition 3 with a probabilistic model that maximizes the
log-likelihood of the graph data G = (X,A) by optimizing the following lower bound:

Lu = Eq(Z|G)q(T |Z,A) log p(Z|T )p(G|Z)− Eq(Z|G)KL(q(T |Z,A)||p(T ))− Eq(Z|G) log q(Z|G) .
(1)

Proposition 2 (Conditional lower bound). We extend Proposition 1 to account for conditional
disentanglement as defined in Definition 4. We obtain the following lower bound

Lc = Eq(Z|G)q(T |Z,A) log p(Ẑ|T,Z)p(G|Ẑ)− Eq(Z|G)KL(q(T |Z,A)||p(Z, T ))− Eq(Z|G) log q(Z|G) .
(2)

Architecture. Propositions 1 and (2) are derived respectively in Appendix B and C. The respective
losses (1 and 2) are implemented with four neural network modules as follows. Two stochastic
encoders (Egraph and Egroup) embed respectively the graph data G into a latent variable Z via q(Z|G),
and Z into the Lie group coordinates T via q(T |Z). Two deterministic decoders (Dgroup and Dgraph)
reconstruct, respectively, the graph embedding Ẑ from T via p(Ẑ|T ) for the unconditional case, and
the graph G from Ẑ via p(G|Ẑ). The decoder network Dgroup also plays a role in implementing the
conditional lower bound, via p(Ẑ|Z, T ), which computes Ẑ conditioned on Z and T .

4.2 Encoders

Graph encoder. We first encode the graph features X and the adjacency matrix A in the latent
space Z, using an inference network Egraph q(Z|X,A). Similarly to Kipf and Welling [28], we use a
single 2-layer network, where the first layer leverages a graph convolutional network (GCN) to reduce
the dimension of the graph features to the symmetry group size: X = GCN(X,A). The second layer
computes the mean and variance vectors (µ = GCNµ(X,A), log σ = GCNσ(X,A)), which are
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then used to sample the latent variable Z from a Gaussian distribution with the reparameterization
trick: q(Z|X,A) = N (Z|µ, diag(σ2)).

Group encoder. We employ Egroup to map the latent vector Z into a vector T of k Lie algebra
coordinates, where k is the subspace size (e.g., the number of disentangled elements). In our settings,
each lie algebra coordinate {ti}ki=1 is the output of a GCN with two layers. The first one computes
a graph embedding Z = GCN(Z,A), and the second one produces the vectors µ = GCNµ(Z,A),
log σ = GCNσ(Z,A), which in turn yield produce {ti}ki=1 with the reparameterization trick. Finally,
{ti}ki=1 are combined into a single tensor T using a multilayer perceptron (MLP):

q(T |Z,A) = MLP(q(ti|Z,A)) with q(ti|Z,A) = N (ti|µi, diag(σ2
i )) for i = 1 . . . , k (3)

4.3 Decoders

Group decoder. The module Dgroup reconstructs the latent variable Ẑ using a Lie group G and a
Lie algebra g. Specifically, we first learn a Lie algebra basis element {Ai}ki=1 ∈ g for each coordinate
ti. We then aggregate the coordinates ti and basis elements Ai with an exponential map, to obtain a
group representation as

p(Ẑ|T ) = g(T ) = exp(A(T )) where A(T ) =
∑k

i=1
tiAi for g ∈ G, A ∈ g . (4)

The conditional version of Dgroup is obtained with a slight modification of Eq. 4: Ẑ is computed by
feeding the mean between Z (e.g. the graph embeddings obtained from Egraph), and exp(A(T )) into
a non-linear activation function σ such as ReLU:

p(Ẑ|T,Z) = σ(mean[exp(A(T )), Z]), where Z = {zj}kj=1 . (5)

Graph decoder. The network Dgraph reconstructs the graph data Ĝ from the latents Ẑ. This is
achieved by first passing the latent feature to a GCN layer that maps Z into a vector of the same
dimension as the original feature vectors, and subsequently into a sigmoid activation function:

p(A, X|Ẑ) = p(A, X|σ(GCN(Ẑ))) (6)

4.4 Training

The proposed unconditional and conditional models are trained by optimizing the loss given by
βL + λh + γc, where L is the lower bound from Eq. 1 (unconditional) or Eq. 2 (conditional),
and h and c are respectively the hessian and commutative penalties, obtained as regularization terms
adapting the implementation from Zhu et al. [71]. We provide insights into the effect of parameters
on the models and their performance with an ablation study in Section 5.1. For neural architecture,
we set each encoder and decoder to consist of 3 layers, where each layer takes as input the graph
features from the previous layer.

5 Experiments

We conducted extensive experiments that we decribe now. Section 5.1 evaluates the disentanglement
capabilities of the models, Section 5.2 provides a compression and few-shots classification experiment,
and Section 5.3 assesses the generation capabilities on molecular datasets.

5.1 Disentanglement evaluation

We evaluate disentanglement with a) an ablation study for assessing our models components, b) quali-
tative investigations, and c) quantitative metrics. For metrics, we follow the evaluation protocols from
Locatello et al. [36], which involve being able to randomly combine a number of generative factors
to sample a new data. In our case, we provide the necessary generative factors to generate two types
of synthetic random graphs (e.g. Erdos-Renyi and Watts-Strogatz). More details about our dataset
construction procedure are provided in Appendix A. We compute 5 metrics, including β-VAE [19]
(Beta), FactorVAE (FVM) [26], Mutual Information Gap (MIG) [7], DCI Disentanglement [11], and
Factor Leakage (FL) [44].
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Figure 2: Impact of single model components on disentanglement metrics.

Ablation study. We start by evaluating the impact of our model components on the disentanglement
metrics, by maintaining all parameters fixed, except from one that varies. We probe the effect from
different group sizes, hessian penalties, commutative penalties, and subspace sizes. In Figure 2 we
report the mean over 10 runs for our unconditional model on the synthetic Watts-Strogatz dataset. We
observe that when the group size is increased, there is an improvement in disentanglement across all
metrics, and this can be explained by the idea that with a larger group size, the subgroups, represented
by the Lie algebra coordinate ti can control different data variations. The hessian penalty results to
be effectively enhancing disentangled representations, while the commutative penalty is less effective,
and we can explain this result because the former requires the Lie algebra basis elements to have
mutual products of zeros while subgroup decomposition only requires their commutators to be zeros,
which also confirms the results obtained for image datasets [71].

Correlation analysis. Following previous work [66, 38], we report the correlation matrix of the
hidden graph features, the goal of which is to show whether the features capture mutually exclusive
information, which is achieved when the there is a block-wise correlation pattern. In our models we
use a group-size of 32 (to match with hidden features size of the other methods), a hessian penalty of
40 and commutative penalty of 5. In Figure 3 we note that both our SIDU and SIDC models achieve
a block-wise correlation pattern, however the conditional version has also some other highlighted
regions, because in this model involves fixing a latent vector Z to condition the reconstruction. As a
result, the conditioning may be responsible for the visualized correlation on the hidden features.

Figure 3: Correlation analysis

Learned graph variations. In this experiment, we train the SIDC model on Watts-Strogatz (WS)
random graphs, which have 3 generative factors, n for number of nodes, p for connectivity (the
probability of rewiring each edge), and k for neighborhood (k nearest neighbors in a ring topology).
We adapt our model to the visualization implementations provided by Stoehr et al. [57], which report
adjacency matrices (black) and graph (white) information, where variations in node attribute values
are indicated in blue. In Figure 4 we report the results for the SIDC model by projecting pairs of
latent variable traversals to see how the factors vary, and we observe the following. 1) The variable z0
controls the node attribute value. For example, in adj01 we see the color changing from blue to white
along the horizontal axis. 2) The variable z1 controls connectivity, for example in graph01, in the z1
axis (top to bottom) we see that the number of edges decrease, while in graph12, along the z1 axis
(left to right), the number of edges increase. 3) The variable z2 controls the number of nodes, and we
see that in graph12 and graph02 the number of nodes decreases along the z2 axis (bottom to top).

Disentanglement metrics. We perform 10 random seed runs, by training for 200 epochs on the
proposed synthetic datasets and measure the quantitative metrics on 1000 data points. In terms of
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Figure 4: Graph traversals (attributes and node values) for the combinations of 3 latent variables.

Table 1: Disentanglement results.

Watts-Strogatz Erdos-Renyi
Model FVM Beta MIG DCI FL FVM Beta MIG DCI FL

GCN 69.6±0.8 66.5±0.7 23.2±2.5 43.8±1.6 84.1±0.5 57.0±4.5 61.0±1.4 22.5±3.3 54.1±2.1 71.7±2.6

GAT 72.6±1.3 66.2±3.4 17.4±1.0 53.2±2.7 79.0±1.1 56.0±3.2 66.3±2.5 31.4±1.9 54.0±2.9 70.2±2.1

FAC 74.2±1.3 65.7±2.6 26.4±2.0 53.4±4.0 80.3±0.9 67.2±1.7 66.3±3.3 35.1±2.4 53.8±1.5 78.1±3.0

DIS 73.0±3.5 69.3±2.1 27.1±1.7 52.2±3.9 85.2±2.0 68.1±1.8 64.1±0.5 41.3±1.4 53.5±2.3 72.4±2.3

SIDU 80.5±1.5 71.6±4.5 28.5±2.8 55.4±2.0 91.0±2.3 83.0±2.9 71.8±3.2 53.2±0.8 58.6±1.9 87.1±4.0

SIDC 81.9±1.2 74.5±3.2 49.1±3.1 59.7±1.2 92.3±0.9 83.3±0.7 74.1±1.2 52.4±3.1 60.5±1.2 89.8±2.3

baselines, we consider graph VAEs with GAT [61] and GCN [29] encoders, as well as disentangled
encoders such as FAC [66] and DIS [38]. We set our models to have a group size of 81, a hessian
penalty of 40, and a commutative penalty of 5.

In Table 1 we observe that our models are able to improve on previous baselines on all metrics
on the evaluated datasets, and the conditional version achieves the best performance in most cases.
We notice that the FL metric shows a significant performance increase, justified by its ability to
capture the disentanglement on each generative factor, which, in our models is controlled by the
group size, while in previous approaches is not considered. In terms of the other previously proposed
disentangled approaches, DIS and FAC demonstrate higher disentanglement in most cases, when
compared to GCN and GAT, however they are outperformed by our methods.

5.2 Compression and few-shots classification

Following the setup from Ge et al. [14], we consider the task of learning a compressed model
via multiple pooling operations, and test on few-shots classification capabilities on datasets with
multiple classes, including FRANKENSTEIN [43] (2 classes), COLORS-3 [30] (11 classes), Mu-
tagenicity [51] (2 classes), NCI1 [54] (2 c). The baselines include MIA [14], which propose an
attention-based pooling for compression, as well as GCN [29], and GAT [61] based autoencoders,
equipped with the same pooling layer. All models are set to have a pooling rate of 0.8, and a depth of
3 layers. Our models are set with a group size of 81, hessian penalty of 20 and commutative penalty
of 5. The task consists in training first without labels to learn the representation, and then using
the compressed model as input for training a GCN classifier a labelled subset of the dataset, which
involves 100 samples for training and 100 for testing.

In Table 2 we report the mean and variance across 10 runs for MSE, the classification accuracy, and
the size of the trained model. The results show that SIDC and SIDU outperform the considered
baselines in terms of few-shots classification accuracy on all datasets, while achieving a smaller
compressed size. We hypothesize that the superior accuracy performance of our models is due to a
more efficient learning provided by disentangled representations, which have previously demonstrated
the ability to enhance the accuracy of predictions in the context of generalization tasks [41, 70, 32].
In terms of MSE, our models show an improvement compared to GCN- and GAT-based autoencoders,
but they are outperformed by MIA in most cases.

8



Table 2: Compression and few shot classification results.

FRANKENSTEIN COLORS-3 Mutagenicity NCI1
Model MSE Size Acc. MSE Size Acc. MSE Size Acc. MSE Size Acc.

MIA 1.6±0.5 4.9M 65±1 1.8±0.2 729K 33±2 4.1±0.8 753K 78±2 3.2±0.5 777K 61±1

GCN 12.6±2.5 4.2M 39±3 11.2±1.1 657K 33±2 16.5±2.1 673K 72±1 7.4±1.2 697K 53±4

GAT 9.0±1.2 4.2M 26±2 10.1±3.1 665K 30±1 11.3±2.8 681K 79±4 8.1±0.3 705K 50±2

SIDU 4.3±1.1 4.1M 68±2 5.1±1.5 625K 39±1 4.2±0.3 633K 81±3 3.5±0.3 657K 63±2

SIDC 2.8±0.5 4.1M 69±2 1.9±0.4 625K 38±3 3.2±1.1 633K 84±2 3.9±0.9 657K 66±2

Table 3: Random graph generation.

ZINC QM9 MOSES
Model Val WR Uni Nov Val WR Uni Nov Val WR Uni Nov

JT-VAE 100 n/a 100 100 n/a n/a n/a n/a 100 n/a 99.96 91.43
GCPN 100 20 99.97 100 n/a n/a n/a n/a n/a n/a n/a n/a
GraphAF 100 68 99.1 100 100 67 94.15 88.83 100 71 99.99 100
GraphDF 100 89.03 99.16 100 100 82.67 97.62 98.1 100 87.58 99.55 100

SIDU 100 78.21 99.12 100 100 75.43 95.22 90.33 100 81.62 99.62 100
SIDC 100 86.02 99.14 100 100 82.92 96.43 92.28 100 84.29 99.79 100

5.3 Molecular graph generation

Molecular generation involves three tasks, random generation, property optimization and constrained
optimization, and a suitable setup can be obtained following the approaches implemented via Torch-
Drug2 and DIG [33]. The generation process involves 1) learning the distribution of the molecular
data and 2) fine-tuning the pre-trained model on one of the tasks. We employ our models during
the training phase, using a group size of 81, a hessian penalty of 40 and commutative penalty of 5,
and then we follow the reinforcement learning fine-tuning method from GCPN [67]. Similar setups
are used from previous molecule generation methods, which we include as baselines: JT-VAE [24],
GraphAF [55], GraphDF [37], GCPN [67].

Random generation. This task evaluates the quality of randomly generated samples on 4 standard
metrics in percentage, including: valid molecules with resampling (Val), valid molecules without
resampling (WR), unique molecules (Uni), novel molecules that not appear in the training data (Nov).
We train our models for 10 epochs, with a batch size of 32 and the learning rate of 0.001, and compute
the metrics over 10K generated molecules. In Table 3 we report results on ZINC [23], QM9 [49], and
MOSES [47]. We observe that both SIDU and SIDC are able to improve the performance of GraphAF
and GCPN on most metrics, while achieving comparable performance with GraphDF, furthermore
the SIDC model achieves the highest score of validity without resampling on the QM9 dataset. Since
our model is not optimized for molecule generation, the positive results of our models indicate that
disentangled representations may represent a flexible tool for generating more realistic graphs, and
that encouraging the separation of semantic factors into different latent codes, may be beneficial for
improving the quality of the samples.

Property optimization The goal of the task is to generate novel molecules with high property scores
for the penalized logP property, and the quantitative estimation of drug-likeness property (QED). The
setup involves pretraining our models for 300 epochs on ZINC random generation, applying the RL
fine-tuning procedure from GCPN, and measuring the scores from the top 3 generated molecules. In
Table 4 we observe that our models are able to outperform GCPN and GraphAF for both penalized
logP and QED, and achieve comparable performance to the more advanced GraphDF model. In
Figure 5 we show the molecules generated using SIDC. While our model does not outperform
GraphDF, our results are relevant because they demonstrate that the disentangled representations
learned from our models can be leveraged to improve the performance of the downstream task of
property optimization.

2https://torchdrug.ai/ (Apache license)
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Table 4: Property optimization performance.

Penalized logP QED
1st 2nd 3rd 1st 2nd 3rd

ZINC 4.52 4.3 4.23 0.948 0.948 0.948

JT-VAE 5.3 4.93 4.49 0.925 0.911 0.910
GCPN 7.98 7.85 7.80 0.948 0.947 0.946
GraphAF 12.23 11.29 11.05 0.948 0.948 0.947
GraphDF 13.7 13.18 13.17 0.948 0.948 0.948

SIDU 12.56 12.46 12.03 0.947 0.948 0.947
SIDC 12.89 12.82 12.27 0.948 0.948 0.948 Figure 5: Molecules from SIDC

Table 5: Constrained optimization performance on 800 molecules used in GraphAF.

δ GraphAF GraphDF SIDC
Imp Sim Suc Imp Sim Suc Imp Sim Suc

0.0 13.13±6.89 0.29±0.15 100 14.15±6.86 0.29±0.13 100 13.26±3.24 0.28±0.21 100
0.2 11.90±6.86 0.33±0.12 100 12.77±6.59 0.32±0.11 100 12.35±5.62 0.32±0.13 100
0.4 8.21±6.51 0.49±0.09 99.8 9.19±6.43 0.48±0.08 99.6 8.25±4.93 0.50±0.18 98.4
0.6 4.98±6.49 0.66±0.05 96.8 4.51±5.80 0.65±0.05 92.1 4.67±5.39 0.66±0.03 93.2

Constrained Optimization. This task aims to modify the input molecular graph for improving its
penalized logP score while keeping the similarity between the input and modified molecules higher
than the threshold δ. We follow the setup of GraphAF and GraphDF, which select 800 molecules
from ZINC with low penalized logP scores as the input molecules to be optimized. We pretrain our
model on the random generation task for 300 epochs, and then fine-tune with the RL procedure from
GraphAF. We report the mean and standard deviation of the largest property improvement (Imp),
and similarities (Sim) between them and their corresponding input molecules, as well as the success
rate (Suc). In Table 5 we compare the results for our SIDC model with GraphAF and GraphDF. We
observe that SIDC is able to outperform GraphAF 3 out of 4 times for improvement values, and
achieves comparable results with GraphDF, which we motivate by the fact that GraphDF provides
further fine-tuning in order to improve the baseline. In terms of similarity and success rate, our model
has comparable results with the baselines for all δ setups.

6 Discussion

Limitations. For quantitative evaluation, we rely on synthetic data, since current metrics are based
on the ability to sample the factors and combine them into observations Kim and Mnih [26]. Future
work should investigate how to provide metrics that can evaluate disentanglement on real-world
datasets. A recent line of work from Khemakhem et al. [25] shows that disentanglement is closely
related to model identifiability, i.e., a representation is disentangled when a set of learned parameters
is uniquely identified with the parameters in the true distribution. Our approach has not considered or
provided proofs for, identifiability, and we leave this as future work.

Conclusion. We formalize the notion of conditional disentanglement on graphs and propose a
novel framework for graph disentanglement by leveraging tools from Lie algebras. Based on the new
definition of disentanglement, we design a graph VAE based on a Lie group parameterization, and
provide a novel ELBO criteria for optimizing conditional disentanglement. Our method achieves
superior performance on quantitative disentanglement benchmarks when compared to contemporary
disentangled GNNs and other convolutional layers. Finally, we demonstrate strong capabilities on
few-shots classification and molecular generation experiments.
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A Synthetic datasets

We construct two datasets with the PyTorch Geometric library3 and the NetworkX library4, based
respectively on Watts-Strogatz, and Erdos-Renyi random graphs. The datasets consist in a list of
graphs, where we control the generative factors necessary for synthesizing node feature and adjacency
matrices in each graph. This allows us to create labels and latent codes for each graph, similarly to
the canonical dataset for disentanglement such as Dsprites5.

Node feature factors The node feature matrix is computed for both datasets as a random tensor
of dimension Nnodes ×Nfeatures. The number of node is fixed to 20, while the features are 64. The
elements of the feature matrix are sampled from a normal distribution with a given mean and variance,
which are two of the generative factors that we control.

Adjacency matrix factors The adjacency matrices are computed via the NetworkX library, where
we are able to control the factors responsible for generating the graph.

For Watts-Strogatz graphs we have (1) a factor k, which represents the k nearest neighbors in a ring
topology, and (2) factor p, which is the probability of rewiring each edge. For Erdos-Renyi graphs,
we control only one factor p, that represents the probability for edge creation.

Combination Watts-Strogatz data has 2 adjacency factors, while Erdos-Renyi has only one, thus,
in order to achieve the same number of graphs in both datasets, we fix the variance to 2 on Watts-
Strogatz, while we provide 20 values in Erdos-Renyi. The final Watts-Strogatz and Erdos-Renyi
datasets have 40× 40× 20 = 32.000 graphs. The combinations for the factors: mean, variance, k,
and p are provided in Table 6. Note that number of nodes is not considered a factor.

Table 6: Graph datasets for disentanglement.

NODE FEATURE ADJACENCY MATRIX
Dataset Num nodes Mean Variance k p Num graphs

Watts-Strogatz 20 40 1 20 40 32K
Erdos-Renyi 20 40 20 n/a 40 32K

B Unconditional Disentanglement

The unconditional ELBO (Proposition 1), states that given two latent variables Z and T modeling the
log-likelihood of the graph data G is bounded by the following Lu ELBO:

Lu = Eq(Z|G)q(T |Z) log p(G|Z)p(Z|T )− Eq(Z|G)KL(q(T |Z)||p(T ))− Eq(Z|G) log q(Z|G) (7)

Proof. Using Jensen inequality, we have:

log p(G) = log

∫
Z

∫
T

p(G, Z, T )

= log

∫
Z

∫
T

p(G, Z, T )q(T |G, Z)q(Z|G)
q(T |G, Z)q(Z|G)

≥
∫
Z

q(Z|G) log
∫
T

p(G, Z, T ) q(T |G, Z)

q(T |G, Z)q(Z|G)

=

∫
Z

q(Z|G) log
∫
T

p(G, Z, T )q(T |G, Z)

q(T |G, Z)
− Eq(Z|G) log q(Z|G)

3https://github.com/pyg-team/pytorch_geometric
4https://networkx.org/
5https://github.com/deepmind/dsprites-dataset
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By applying Jensen inequality again, we obtain:

log p(G) ≥
∫
Z

q(Z|G)
∫
T

q(T |G, Z) log
p(G, Z, T )
q(T |G, Z)

− Eq(Z|G) log q(Z|G)

=

∫
Z

q(Z|G)
∫
T

q(T |G, Z) log
p(G, Z|T )p(T )

q(T |G, Z)
− Eq(Z|G) log q(Z|G)

= Eq(Z|G)Eq(T |G,Z) log p(G, Z|T )− Eq(Z|G)

∫
T

q(T |G, Z) log
q(T |G, Z)

p(T )
− Eq(Z|G) log q(Z|G)

= Eq(Z|G)Eq(T |G,Z) log p(G, Z|T )− Eq(Z|G)KL(q(T |G, Z)||p(T ))− Eq(Z|G) log q(Z|G)

The results follows assuming p(G|Z, T ) = p(G|Z), and noting that for computing T , we only use the
adjacency information A from G.

C Conditional Disentanglement

Using Jensen’s inequality, we note that for any fixed Ẑ

log p(G, Ẑ) = log

∫
Z

∫
T

p(G, Z, T, Ẑ)

= log

∫
Z

∫
T

p(G, Z, T, Ẑ)
q(Z, T |G)
q(Z, T |G)

= log

∫
Z

∫
T

p(G, Z, T, Ẑ)
q(T |G, Z)q(Z|G)
q(T |G, Z)q(Z|G)

≥
∫
Z

q(Z|G) log
∫
T

p(G, Z, T, Ẑ)
q(T |G, Z)

q(T |G, Z)q(Z|G)

=

∫
Z

q(Z|G) log
∫
T

p(G, Z, T, Ẑ)
q(T |G, Z)

q(T |G, Z)
− Eq(Z|G) log q(Z|G)

Since we use only A from G for computing T , we can write q(T |G, Z) = q(T |Z,A), and applying
Jensen’s inequality again, we get

log p(G, Ẑ) ≥
∫
Z

q(Z|G) log
∫
T

p(G, Z, T, Ẑ)
q(T |Z,A)

q(T |Z,A)
− Eq(Z|G) log q(Z|G)

≥
∫
Z

q(Z|G)
∫
T

q(T |Z,A) log
p(G, Z, T, Ẑ)

q(T |Z,A)
− Eq(Z|G) log q(Z|G)

= Eq(Z|G)Eq(T |Z,A) log
p(G, Z, T, Ẑ)

q(T |Z,A)
− Eq(Z|G) log q(Z|G)

= Eq(Z|G)Eq(T |Z,A) log
p(Z, T )p(Ẑ|Z, T )p(G|Ẑ, T, Z)

q(T |Z,A)
− Eq(Z|G) log q(Z|G)

= Eq(Z|G)Eq(T |Z,A) log
(
p(Ẑ|Z, T )p(G|Ẑ, T, Z)

)
− Eq(Z|G) KL(q(T |Z,A)||p(T,Z))

− Eq(Z|G) log q(Z|G) .

Assuming G is independent of Z and T given Ẑ, we immediately get

log p(G, Ẑ) ≥ Eq(Z|G)Eq(T |Z,A) log
(
p(Ẑ|Z, T )p(G|Ẑ)

)
− Eq(Z|G) KL(q(T |Z,A)||p(T,Z))

− Eq(Z|G) log q(Z|G) .
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D Scalability experiment

We perform a graph classification task on large scale datasets, and report their dimensions in Table 7.
In Table 8 we report the results for our SIDC model on social network datasets including IMDB binary
IMDB-multi, COLLAB, as well as macro molecules such as PROTEINS and MUTAG. The baselines
for this experiment include FactorGCN [66] and DGCL [31]. For our model we set group-size to 81,
hessian penalty to 40 and commutative penalty to 5. We follow the classification setup from Yang
et al. [66], with a ten-fold cross-validation procedure, and report accuracy and standard deviation.
The results show that both SIDU and SIDC are able to improve the performance of the baselines. In
particular, SIDC achieves the highest accuracy on all the datasets.

Table 7: Dimensions of datasets

IMDB-B IMDB-M COLLAB PROTEINS MUTAG

Graphs 1000 500 5000 1113 188
Classes 2 3 3 2 2

Avg. Nodes 19.77 13.00 74.49 39.06 17.93
Avg. Edges 96.53 65.94 2457.78 72.82 19.79

Table 8: Scalability

IMDB-B IMDB-M COLLAB PROTEINS MUTAG

FactorGCN 75.3 ± 2.7 - 81.2 ± 1.4 - 89.9 ± 6.5
DGCL 75.9 ± 0.7 51.9 ± 0.4 81.2 ± 0.3 76.4 ± 0.5 92.1 ± 0.8

SIDU 76.1 ± 0.2 51.2 ± 0.9 81.9 ± 0.8 76.5 ± 1.5 91.4 ± 1.2
SIDC 76.5 ± 0.3 52.5 ± 0.2 82.5±0.2 76.9 ± 0.1 92.5 ± 0.5

E Molecular experiment

In order to have a fair comparison with Flow models, such as GraphAF [55] and GraphDF [37],
we incorporate our parameterization into the training process of a Flow model. Both GraphAF
and GraphDF are designed using relational GCN [53] (RGCN) as building block to compute an
embedding of a graph using a layer R-GCN: HL

i = R-GCN(Gi), h̃i = sum(HL
i ) where sum

denotes the sum-pooling operation, and HL
i,j ∈ Rk denotes the embedding of the j-th node in the

embeddings HL
i .

We incorporate some parts of our models after the RGCN encoding, as follows. From the embedding
H , we compute the lie algebra coordinates, with an encoder q(T |H), following our Egroup network
from Section 4. We then apply the lie algebra exponential mapping to reconstruct the embedding H
as p(H|T ), following the Dgroup network from Section 4. Furthermore, we incorporate the hessian
penalty as a regularization. In all the three tasks, we follow the experimental setup from GraphAF,
we set the model with group-size of 81, and a hessian penalty of 40.

We first perform the random graph generation task, which involves quantifying 4 metrics in percentage,
including: valid molecules with resampling (Val), valid molecules without resampling (Res), unique
molecules (Uni), and novel molecules not appearing in the training data (Nov). In Table 9 we report
results for GCPN, GraphAF, GraphDF and our models. The results indicate that with the inclusion
of a lie algebra reparameterization and the hessian penalty, the performance on random generation
is enhanced, and the Flow + SIDC model achieves the best performance on all metrics a part from
uniqueness, where it achieves comparable results.

Secondly, we report the results for the property optimization task in Table 10, which show the scores
from the top 3 generated molecules for two selected properties (penalized logp and QED). The
baselines are the same ones as in the random generation task. We observe that our Flow + SIDC
model is the top performing method on penalized logP for the top 3 scores, and it achieves the top
results, together with the other methods, for QED.
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Table 9: Random graph generation.

ZINC QM9 MOSES
Model Val Res Uni Nov Val Res Uni Nov Val Res Uni Nov

GCPN 100 20 99.97 100 n/a n/a n/a n/a n/a n/a n/a n/a
GraphAF 100 68 99.1 100 100 67 94.15 88.83 100 71 99.99 100
GraphDF 100 89.03 99.16 100 100 82.67 97.62 98.1 100 87.58 99.55 100

SIDU 100 78.21 99.12 100 100 75.43 95.22 90.33 100 81.62 99.62 100
SIDC 100 86.02 99.14 100 100 82.92 96.43 92.28 100 84.29 99.79 100

Flow + SIDC 100 90.12 99.53 100 100 83.45 97.46 98.62 100 88.42 99.79 100

Table 10: Property optimization performance.

Penalized logP QED
1st 2nd 3rd 1st 2nd 3rd

ZINC 4.52 4.3 4.23 0.948 0.948 0.948

GCPN 7.98 7.85 7.80 0.948 0.947 0.946
GraphAF 12.23 11.29 11.05 0.948 0.948 0.947
GraphDF 13.7 13.18 13.17 0.948 0.948 0.948

SIDU 12.56 12.46 12.03 0.947 0.948 0.947
SIDC 12.89 12.82 12.27 0.948 0.948 0.948
Flow + SIDC 13.97 13.35 13.39 0.948 0.948 0.948

Finally, we show in Table 11 the results for the constrained optimization task. We report only GraphDF
as baseline, which is the top performing model among the baselines. The evaluation involves reporting
the mean and standard deviation of metrics including: the largest property improvement (Imp), and
similarities (Sim) between them and their corresponding input molecules, as well as the success rate
(Suc).

We observe that by combining the disentangled principles developed in our models into a Flow-based
model, we are able to further improve the results, and achieve the top performance.

Table 11: Constrained optimization performance on 800 molecules used in GraphAF.

δ Flow + SIDC GraphDF SIDC
Imp Sim Suc Imp Sim Suc Imp Sim Suc

0.0 14.28±5.24 0.29±0.10 100 14.15±6.86 0.29±0.13 100 13.26±3.24 0.28±0.21 100
0.2 12.89±4.33 0.34±0.09 99.93 12.77±6.59 0.32±0.11 100 12.35±5.62 0.32±0.13 100
0.4 9.32±5.45 0.50±0.03 99.3 9.19±6.43 0.48±0.08 99.6 8.25±4.93 0.50±0.18 98.4
0.6 4.98±6.21 0.67±0.04 97.3 4.51±5.80 0.65±0.05 92.1 4.67±5.39 0.66±0.03 93.2
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