
A Appendix

In Section A.1, we highlight some limitations of our work as well as potential directions for future
work. In Section A.2, we discuss the possible negative consequences of our work and ways to
resolve them. In Section A.3,we show the computing resources and code availability. In Section
A.4, we report the training details of all experiments. In Section A.5, we introduce the metrics or
measures we use in the paper including AMI score, clustering score, synchrony score, rate score,
and Victor-Purpura metric. In Section A.7,A.8,A.9, we report the experiment details one by one. In
Section A.10, we report further qualitative results on all five datasets (results with different AMI score
are selected). The temporal structure can have diverse properties and interesting features. Lastly, in
Section A.11, we give the proof for the Proposition 1∼4.

A.1 Limitations

We highlight several limitations that could possibly be addressed in future works.

Input type. In this paper, the input image is binary and xi as a binary gating variable to SNN layer.
It is desirable to allow real-valued pixels to be the driving signal so that binding can be tested in
real-world situations. It may be solved by soft gating mechanism or other binary encoding strategies
in the future.

Performance. In this paper, we mainly illustrate the idea that properly combining ANNs and SNNs
can lead to emergence of temporal binding representation. But we do not search the hyperparameters
to optimize the binding performance and we only use minimal realization of ANNs (DAE). As a result,
we do not compare the model with other state of art ANN models on unsupervised object-centric
representations. But we believe it is possible that by combining more advancing ANNs models, the
binding performance can be improved as well.

ANN Architecture. We highlight that current DASBE is not the only way to bridge temporal
binding and ANNs. Actually, DAE is just a minimal realization. Introducing SNN coding space into
various ANNs prototypes (dynamic routing in Capsule net[1, 2], Attention slot[3], message passing
in GNN[4]) can possibly develop more possibilities of temporal binding models.

Learning while binding. In this paper, the binding process is based on pretrained DAE. In futures
works, we hope the model can learn and infer at the same time, perhaps by introducing other ANN
architectures into temporal binding model (Capsule net, Prednet, AttentionSlot) or by designing
training protocol (eg. train if synchrony score is high enough)

Biological modelling. Although the model has several bio-related features, including temporal
binding, phase precession, gamma wave, we do not make quantitative comparison with neuroscientific
data. But the future work will illustrate whether DASBE binding can be a reasonable model for
biological perception.

Evaluation of binding. In the paper, the binding evaluation (AMI score) is based on ground truth
labels. However, in principle, binding (or segregation) is fundamentally multi-stable and do not
have a “ground truth label” at all. In our experiment, we find several situations that the binding is
reasonably convincing and even creative. But the AMI score is low just because the binding differs
from the ground truth. Evaluation of binding is a hard problem and we hope future work can be based
on scores of more flexibility.

Dynamics of SNN. In this paper, we stress the role of feedback attentions on modulating the SNN
behaviors. Thus, inner-layer SNN dynamics is realized in a minimal way, only taking spike firing
and self-refraction into account, ignoring inner-layer recurrent dynamics and Hebbian learning rule
like STDP[5]. But it is interesting to compare the role of inner-layer dynamics against top-down
modulation. Besides the refraction is based on a unified timescale. It is desirable to explore the
functional role of heterogeneous refractory period in future works.

A.2 Broader impact

Combining ANNs with a spike coding space(SCS) allows to flexiblly bind symbol-like entities from
the perceptual input. It is a general architecture that can be initialized in various forms and be used
in a wide range of domains. In our paper, we only consider binding on simple artificially generated

1



images. However, in principle, it is possible to develop its variant that can bind real-world data and
learn further representations at the same time. And we found that the model can sometimes bind
objects creatively beyond the groundtruth of benchmark. After all, binding itself is an open question,
or even subjective. Thus, to assess whether the model binds or learns in unwanted ways, one can
visualize the spiking representations as we did in the paper. However, if the representaion goes deeper
within the hierarchy or the scene is not human interpretable, more work is required to develop the
general visualization or analysis method, which can serve as a step towards more transparent and
interpretable binding.

A.3 Experiment resources and code availability

All experiments have been performed on ubuntu1∼16.04.12 with device: CPU(Intel(R)Xeon(R) CPU
E5-2640 v4 @ 2.4GHz) and 4×GeForce RTX 2080 Ti. The python version is 3.6.3.

The code for results in this paper can be found on Github: https://github.com/monstersecond/DASBE

A.4 Training details

The details of training neural networks for temporal binding are as follows:

1. Multi-MNIST uses contractive-autoencoder. Hierarchical Feture Binding ueses autoencoder
with spiking hidden layer. Moving Shapes uses recurrent hidden layer which hidden layer
ht+1 at step t gain inputs from the encoder network Encoder(X) and the previous value
of hidden layer ht. The function of its recurrent hidden layer can be writen as ht+1 =
Sigmoid(Wh · ht +Wx · Encoder(x) + b).

2. Loss functions are all Binomal Cross Entropy Error (between input and reconstruction)
except Multi-MNIST which uses an additional contractive loss [6] as regularization and
Moving Shapes which uses mean-squared loss.

3. All networks are trained with stochastic gradient descent (SGD).
4. Minibatch size is show in table 1. Sepecially, for RNN used in Moving Shapes, its minibatch

size is 32 and the time step length of each sample is 10 (shorted for 32(20) in the table 1).
5. Encoder networks, decoder networks are set according to table 1 with Sigmoid output layer

and ReLU for internal activation funciton.
6. Learning rate is set according to table 1.
7. Noise is set according to table 1. The meaning of 0.6∼0.8: First, randomly choose a

probability p between 0.6 to 0.8 according to uniform distribution; Second, randomly
change 1 to 0 with probability p. For noise setting in Moving Shapes, P(remove)=0.2 means
randomly remove a frame with probability 0.2, P(1→0)=0.5 means randomly change 1 to 0
with probability 0.5, P(0→1)=0.05 means randomly change 0 to 1 with probability 0.05.

8. All datasets early stop when validation loss does not decrease for more than 40 epochs
except Moving Shapes which is 25 epochs.

9. We use Back Propagation Through Time (BPTT) to train the spiking neural networks [7].

A.5 Metric

A.5.1 AMI score

Similar to the earier work [8], we use the Adjusted mutual information (AMI)[9] score to measure the
binding performace because AMI is a score that measures the clustering similarity with invariance
to permutations of grouping labels. In this work, the AMI score compares the clustering result of
K-means against the ground truth segmentation. The K-means clusters each spiking neuron into
one of the K + 1 groups (an additional group for background) according to their spike train with
latest Nback × τdelay time steps. Each spike train is pre-processed by smoothing with an exponential
filter with τsmooth = 1 and decay factor 0.5, so that the distance measure between spike trains
can be tolerant to slight spike timing shift within timescale tausmooth. Nback = 10 in quantitative
evaluation. The dataset and ground truth are all synthetic and the code can be found in Github. Origin
code in [8] is available at https://github.com/Qwlouse/Binding

2

https://github.com/monstersecond/DASBE
https://github.com/Qwlouse/Binding


Table 1: Details of training neural networks

Dataset Encoder Decoder learning
rate noise minibatch

size

Bars FC(400, 100)
Sigmoid()

FC(100, 400)
Sigmoid() 1e-2 0.6∼0.8 1024

Shapes

FC(784, 512)
ReLU()
FC(512, 400)
Sigmoid()

FC(400, 512)
ReLU()
FC(512, 784)
Sigmoid()

1e-2 0.6∼0.8 1024

Corners FC(784, 100)
Sigmoid()

FC(100, 784)
Sigmoid() 1e-2 0.6∼0.8 1024

MNIST+Shapes FC(784, 250)
Sigmoid()

FC(250, 784)
Sigmoid() 3.1685e-2 0.6 128

Multi-MNIST FC(2304, 500)
Sigmoid()

FC(500, 2304)
Sigmoid() 1e-4 0.6 1024

Hierarchical
Feature Binding

FC(784, 600)
ReLU()
FC(600, 400)
ReLU()
FC(400, 350)
ReLU()
FC(350, 1600)
Sigmoid()

FC(1600, 350)
ReLU()
FC(350, 400)
ReLU()
FC(400, 600)
ReLU()
FC(600, 784)
Sigmoid()

1e-3 0.6 512

Moving Shapes

FC(784, 600)
ReLU()
FC(600, 300)
Sigmoid()

FC(300, 600)
ReLU()
FC(600, 784)
Sigmoid()

1e-3
P(remove) = 0.2
P(1→0) = 0.5
P(0→1) = 0.05

32 (20)

A.5.2 Silhouette score

Silhouette coefficient[10] is a score to evaluate the quality of clustering by measuring the inner-group
coherence. The score is calculated using average intra-cluster distance (a) and average nearest-luster
distance (b). The score is computed as (b− a)/max(a, b). The distance is Euclidean distance by de-
fault and can be rewritten. We use Euclidean distance to measure the "clustering score" or "K-means
score", which describe the clustering quality of K-means (eg. at the begining phase of binding, the clus-
tering quality is low and at the convergent phase, the clustering quality is higher). The document can
be found at https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html.

A.5.3 Victor-Purpura metric

Victor-Purpura metric is a kind of edit distance introduced by [11] in 1996 to evaluate temporal coding
in cortex recording. The distance between two spike trains is defined as the minimum transformation
cost from one to the other. The transformation is consist of three elementary operation:

1. Add: the cost of adding a spike at certain time point is 1.

2. Delete: the cost of removing a spike at certain time point is 1.

3. Shift: the cost of moving a spike from one time point to another time point is q ·∆t. (The q is an
important parameter and ∆t is the length of time shift.)

The minimum is computed across all possible transformation path between two spike trains. The
operation of adding and deleting ensure that there are at least one legal path. Examples can be found
in [11]. It can be proven that Victor-Purpura metric satisfy the principle of (1) positivity, (2) symmetry
and (3) triangle inequality[11]. Thus, with Victor-Purpura metric, spike train of different length
construct a metric space. Unlike Euclidean metric, the Victor-Purpura metric is non Euclidean and

3

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html


does not require a unified length of vectors. And it explicitly measures the timing difference by the
Shift operation.

It is notable that the parameter q can determine what quantity the metric measures. On one hand,
if q = 0, then shifting the spike will not cause any cost and the metric only measures the spike
count (independent of firing time). On the other hand, if q → ∞, then shifting spikes always cause
larger cost by "first adding then deleting". Thus, the metric count the number of spikes that are not
"perfectly" synchronized, a harsh measure of synchrony. Thus, q can be regarded as a time-scale
parameter, modifying the metric between pure firing rate measure and pure synchrony measure. We
realize computing this metric by dynamic programming strategy.

A.5.4 Synchrony score and rate score

To evaluate the temporal binding and analyze time coding representation, it is essential to know
the temporal structure of the spikes. In our case, it is the spiking synchrony. And the synchrony
events are not global, but related to the grouping of features. The challenge of the evaluation is the
following: (1) the spiking patterns themselves do not construct a linear space. And commonly used
metric (like Euclidean metric) can not distinguish temporal structure from others (like firing rate) (2)
The synchrony may not be perfect, but has a relatively small error range. The metric should be able
to bear with such case. (3) The synchrony is not global, but more like the cluster synchrony[12].

Motivated by the challenges above, the synchrony in the binding process is measured by Silhouette
coefficient based on Victor-Purpura metric (q large). Here, spiking synchrony is defined as the
temporal coherence level inside each cluster and such timing structure is explicitly measured by the
Victor-Purpura metric. On the contrary, the rate score is measure by Silhouette coefficient based on
Victor-Purpura metric when q is 0. We find that "q = 1/3" is good enough to measure the synchrony
level in this work (synchrony score changes little for q >> 1/3, partly because 3 is a characteristic
time scale in this work.). In sum, the K-means clustering is performed first and then synchrony score
is computed based on the grouping result.

A.6 Details for Table1

A.6.1 Dataset

The examples of five datasets we use in training and testing are demonstrated in Fig.1.

Figure 1: Examples of five datasets.(a) Bars (b) Shapes (c) Corners (d) Multi-MNIST (e)
MNIST+Shape. The upper black-white figure is input image and the bottom color figure is the
ground-truth grouping

Bars (Fig.1a), introduced by [13], are to demonstrate unsupervised learning of independent compo-
nents of an image. Here, we use the modified version from [14, 8], which place 6 horizontal and 6
vertical full-length lines in random position in the image. Since the number of object is large, this
dataset can test the binding ability of relatively larger number of objects

4



Figure 2: AMI score of DASBE, ANN baseline and SNN baseline on five datasets with 6000 samples.
Five random seeds are used. The samples are sorted according to the mean AMI score (based on five
random seeds)

Shapes (Fig.1b), taken from [14, 8], randomly place three types of shapes in an image, possibly with
different level of overlap. This dataset (with our variant version) can test binding ability of different
levels of features under static, overlap, or moving situation.

Corners (Fig.1c), introduced by [14, 8], consist of 8 corner shapes in random locations and orienta-
tions, and four of them are aligned to form a (unconnected) square. Thus, this dataset can test whether
the binding ability is dependent on connected-ness.

Multi-MNIST (Fig.1d), is also taken from [8]. Three random MNIST digits are randomly placed in
a 48× 48 image. This dataset is more challenging because each prototype (digits) can have slight
different shapes, so that features can have large amount of values.

MNIST+Shape (Fig.1e), taken from [14, 8], combine a random shape from the Shapes dataset with
a single MNIST digit. Since the two object in the image have very different (1) type, (2) size, (3)
diversity and the overlap is often present, this challenging dataset is useful to test binding in more
complex situation.

A.6.2 Experiment

We follow identical procedure on each dataset above. On each dataset, we first randomly generate
single object dateset using relevant generative factors. Secondly, a DAE is trained to reconstruct the
image disturbed by salt&pepper noise of different levels. Details can be found in the next section
A.6.3. Third, after the DAE is trained, we combine it into the DASBE to test the binding ability in
relevant multiple-object dataset. We divide the whole binding period into iterations of delay loops
(eg. T=number of iterations×τdelay). Fourthly, we use K-means to cluster the spiking patterns in
SCS (only latest spikes are considered). The number of clusters in K-means is consistent with ground
truth, which is K(number of objects)+1(background). Then we compare the clustering result with
ground truth by the AMI score on each image and average them across the dataset of 6000 samples.
Five random seeds are used to measure the error bars of the mean AMI score and we found that the
mean AMI score is so robust that deviation is extremely low.

The distribution of AMI scores across all 6000 samples in the dataset is shown in Fig.2. The samples
are sorted and reordered based on the AMI-score. It can bee seen in either table1 in the main text or
Fig.2 that DASBE achieve high AMI score fastly in Bars dataset, which contain 12 bars in each image.
As shown in 17, the DASBE indeed is able to bind objects with flexibly in temporal dimension. Such
flexibility is rare in complex-value based models due to limited range of phase value.

Comparing with Bars/Shapes, MNIST is a more challenging object because it has a distribution of
patterns due to different hand-written styles as explained in A.6.1.

The lower performance on MNIST-related dataset may be caused by several aspects. First, the DAE
in this paper is implemented as a MLP. We find that the denoising reconstruction performance for
DAE differs among the five datasets (Bars/Shapes>Corners>Multi-MNIST>MNIST-Shape). Such
difference influences the binding process. Second, the objects in these datasets are more likely to
overlap. The overlap in MNIST has a larger impact since it may make one digit like another digit (8/6
to 0; 7 to 1), and even cause a “shape” to disappear, which is also challenging for a human observer.
The DASBE seems to have the “multi-stability” property. However, such valuable “intelligence” is
not considered in our current evaluation (AMI score) because the AMI compares the grouping with a

5



Table 2: hyperparameters in the experiment

Dataset Bars Shapes Corners Multi-MNIST MNIST+Shapes
T 1080 840 640 870 1450
Iteration step 20 30 50 30 50
τdelay 54 28 32 29 29
τrfr 6 8 9 12 9
τw 3 3 3 3 3
p 0.5 0.5 0.5 0.5 0.5
Vth 1 1 1 1 1
back 10 10 10 10 10
τsmooth 1 1 1 1 1

Figure 3: Comparison among DASBE and the baseline models.(a) DASBE composed by SCS and
folded DAE (b) feedforward DAE (c) reduced ANN model: folded DAE, using its reconstructed
output to modulate the input (d) reduced SNN model: PCNN, using fixed connection to feedback the
output for modulation. ⊙ refers to element-wise product

ground truth (pre-defined) and therefore lead to a pretty low score. Despite of this, combining the
AMI score with qualitative results in A.10 (binding in five datasets), it can be seen that binding is still
achieved in these dataset.

The hyper-parameters used in binding process are shown in the Table 2. T=iteration step×τdelay,
which are hyper-parameters for the simulation setting only. τdelay, τrfr, τw,, Vth are the hyper-
parameters for the model. p and Vth is the decay rate used in the coincidence detector. The "back"
and "smooth" are hyper-parameters for k-means evaluations only. back is the number of last iteration
considered and smooth is the timescale to smooth the spike train with an exponential kernel (decay
rate is also 0.5).

A.6.3 Training details

See Section A.4

A.6.4 Baseline

Folded DAE

Different from the feedforward DAE (Fig.3b),the folded DAE are defined as using its reconstructed
output to modulate its input at following time steps (Fig.3c). More formally,

x̃(t) = (x(t)⊙ γ(t))

γ(t) = fDAE(x̃(t− τdelay))

In the experiment, the folded-DAE is kept the same architecture as the DAE used in DASBE, all
relevant parameter are also inherited. The clustering result is based on x̃(t).

As shown in Fig.3, folded DAE can be taken as a reduced ANN model. By the bootstrap effect of
reconstructive feedback, the folded DAE can often capture one single object in the image. However,
without spiking dynamics including spike generation and self-refraction as temporal competition
mechanism, the folded-DAE is unable to switch between different objects Fig.4. Thus, all multi-object

6



Figure 4: an example of binfing result of forlded DAE. upper panel (from left to right): network
structure, input image, clustering result(based on the pattern in the bottom panel), ground truth.
middle panel: temporal evolution of x̃(t) = x ⊙ γ(t) ("non-spiking membrane potential") in the
initial phase of binding. bottom panel: same as middle panel, in convergent phase of binding. The
time step is arranged from left to right, from top to bottom.

datasets are challenging for it. However, by perfectly reconstructing one object, the AMI score can be
much higher than random guess. But on dataset like Bars (much larger amount objects), they reach
much lower AMI scores ( around 0.093 ).

Pulse coupled neural network

Pulse-coupled neural network (PCNN) was first introduced by [15, 16] and later developed for
temporal binding through spiking behavior. In this paper, we inherit the model architecture in [17, 18].
Similar to DASBE, PCNN also use the two-compartment neuron model (Fig.5b), receiving driving
input and modulatory input respectively (but they use alternative terms like feeding and linking).
The two types of input also interact multiplicatively but the linking part is biased so as to be always
larger than 1. The global inhibitory input is used to introduce the spatiotemporal competition among
neurons. All connections in the PCNN are pre-defined, fixed weights with spatially exponential
decay. As shown in Fig.3d, PCNN can be taken as a single-layer SNN that replaces the modulatory
connections parameterized by the trainable DAE (in our DASBE) into a fixed, pre-designed spatial
linking connections. Since it is a general framework of binding models in neuroscience and has close
relation with our hybrid model, we choose this model as a reduced SNN baseline.

More formally, the PCNN we use can be described as the following equations.

Fij(t) = xkl

Lij(t) =

N∑
kl=1

[wL
kl · skl(t)] ∗ I(V L

kl , τ
L
j , t).

I(V, τ, t) =

{
V · exp(−t/τ), t ≥ 0

0, otherwise

wL
ijkl =

{
exp(−

√
(i− k)2 + (j − l)2), if |i− k| ≤ 4, |j − l| ≤ 4, |i− k|+ |j − l| ≠ 0

0, otherwise.

7



Figure 5: The pulse coupled neural network model (PCNN).(a) circuit diagram of PCNN. Three types
of connection are identified: dashed line–inhibitory connection; dash-point line–linking connection;
vertical-up black arrow–feeding connection. Three types of synapses are also identified. (b) single
neuron model in PCNN. Each neuron has a 2-dimensional index (i,j) refering its location in a 2-
dimensional lattice.

Table 3: hyperparameters in the PCNN experiment. "back" is the number of time-steps of latest
recorded spikes being used for clustering evaluation. "τsmooth" is the number of time-steps being
integrated by an exponential filter before clustering evaluation. Other parameters are for the PCNN
model.

Dataset Bars Shapes Corners Multi-MNIST MNIST+Shapes
T 500 500 500 500 500
β 3 3 3 3 3
V L 1 1 1 1 1
τL 2 2 2 2 2
VΘ 10 6 10 10 10
VΘ

0 2 2 2 2 2
back 100 100 100 100 100
τsmooth 2 2 2 2 2

Uij(t) = Fij(t) · (1 + β · Lij(t)) + I(t), I(t) ≤ 0

Sij(t) = S(Uij(t)−Θij(t)),

with

S(x) =

{
1, ifx ≥ 0

0, otherwise.

I(t) = −wI ·
∑
ij

Sij(t− 1)

Θ(t) = V Θ · y(t) + exp(−1/τTheta) ·Θ(t− 1)

∗ is the convolution. β, V L, τL, V Θ, wI are hyperparameters to tune, which are shown in the Table3
.The original PCNN has quite large amount of hyper-parameters to tune (more than 10!)[15, 16] and
the binding result can highly dependent on the configurations of these parameters. We reduce the
number of parameters based on [17, 18]. The V Θ is initialized as V Θ

0 , and feeding input are mixed
with salt&pepper noise of probability 0.2 at each time step. The whole binding period is T .

8



Figure 6: an example of binding result of PCNN. upper panel (from left to right): network structure,
input image, clustering result(based on the pattern in the bottom panel), ground truth. middle panel:
temporal evolution of spiking patterns in the initial phase of binding. bottom panel: same as middle
panel, in convergent phase of binding. The time step is arranged from left to right, from top to bottom.

Note that, in principle, all the parameters of PCNN need to be tuned case-by-case on each "image"
(in original paper), because the total excitatory strength (number of non-zero pixels) can possibly
affect the dynamical behavior of the system. Only properly chosen configurations can result in the
successful binding. Such a large amount of parameters are very time consuming to be tuned in
practise for complex dataset like those we use. In DASBE, however, these modulatory connections
can be learned automatically. Besides, the PCNN binds objects based on connectivity only. Thus, the
dataset Bars (contain a large amount of interconnected objects), Corners (contain objects composed
of unconnected parts) and Shapes, Multi-MNIST, MNIST+Shapes (contain frequent situations where
objects can overlap badly) all challenge such traditional SNN method. As shown in Fig 6, for properly
tuned PCNN model, the isolated object is separated but the connected objects are bound as a whole.

A.7 Details for Fig2 & Fig3

The network and parameters are consistent with A.6. Total binding period T = Ndelay × τdelay.
More details is shown in Fig.7

Synchrony score. The synchrony score, rate score and silhouette coefficient (See Section A.5) are
measured for each iteration step of length τdelay during the binding process. The length of latest
spike train being considered is also τdelay (in other words, Nback = 1)

Notably, the comparison between synchrony score with rate score (Fig.7a, Fig.8, Fig.9) shows that in
each group acquired by K-means, the temporal coherence is positively correlated with the silhouette
score along the binding period. This means that neurons in the same cluster has more synchronous
firing pattern. The interesting point is that K-means compare each spiking pattern against an averaged
firing density (firing rate) for grouping and does not explicitly take temporal structure into account.
However, the comparison between synchrony score and clustering score confirms that the clustering
result (eg. AMI score and visualization) reflects the timing structure of the representation. On the
contrary, the rate score remains near zero and do not have salient correlation with the clustering score.
Thus, the firing rate of spike trains in different clusters does not have visible distinctions. In other
words, the grouping information is independent of firing rate. The firing rate just reflects the existence
of feature that is being grouped.

9



Figure 7: More analysis details for the example shown in Fig2 in the main text. (a) synchrony/rate
score compared to clustering score, measured step-wise during the binding process. It can be seen
that synchrony is consistent with clustering score, while rate score remains around zero. (b) averaged
auto-correlation function in each group of neurons in Fig2 d in the main text. It can be seen that
oscillatory behavior emerges at time scale around 10 time steps. (c) correlation matrix of neurons
based on respective spike train in the bound phase. Three clear blocks can be observed.

Figure 8: synchrony score vs clustering score. copied from Fig.2b in the main text

10



Figure 9: rate score vs clustering score. copied from Fig.2b in the main text. Note the different ticks
on y axis

To show whether the coding scheme and synchrony behavior is consistent in other dataset, we
compute synchrony score, rate score and silhouette score for 100 randomly selected samples from
the other datasets (Fig.10,Fig.11). The general result holds but in the more challenging dataset like
Multi-MNIST and MNIST+Shapes, the convergence and temporal coherence is less clear. As can
be seen in the following section. Even in these cases, the temporal structure is still present, but the
precision of the temporal structure is lower. For example, firing of different groups still alternate
in time but with some overlap. Since the Victor-Purpura metric is sensitive to synchrony, such
"non-perfect" temporal structure may cause a relatively underestimated synchrony score.

Coloring. We give color to each neuron in the SCS according to the spiking firing times. However,
the challenge is that each neuron can fire multiple times instead of one. Thus, we assign the color
according to an periodic mapping function, whose period is τrfr. We choose this period because
we find a gamma-like rhythm in the population activity and this mapping can roughly reflect the
temporal structure of spikes relative to such a reference frame. The color is based on latest spikes of
length τdelay

Spiking pattern and spike recording. Both are qualitative visualization of spiking representation in
SCS. The former preserve the spatial structure of spikes within an 2-dimensional image while the
latter concentrates on temporal structure.

Correlation matrix and auto-correlation function. Correlation matrix (Fig.7c) is derived by
computing pair-wise Euclidean distance among neurons in SCS. The latest spike train of length
10× τdelay are considered. The spike train is smoothed by an one-step exponential filter of decay
0.5. Averaged auto-correlation function (Fig.7b) of population activity (summed spikes) inside each
group of neurons is computed to measure the temporal correlation. The latest spike train of length
10× τdelay are considered.

11



Figure 10: synchrony score and clustering score. copied from Fig.3.a in the main text.

Figure 11: rate score and clustering score. copied from Fig.3.b in the main text.

12



Figure 12: Hierarchical binding process. copied from Fig.4 in the main text

A.8 Details for Figure 4

General experimental setting

In Figure4 in the main text, we study the hierarchical binding ability of DASBE. Low-level features
is represented in SCS and high-level features is represented in the latent layer of DAE. Hierarchical
binding requires four key elements: (1) DASBE has a spiking representation for higher level features,
so that spike timing structure can be exploited to provide grouping information. (2) the latent
representation should be disentangled and distributed, so that there are neurons invariantly respond to
certain features (feature neurons). (3) We should be able to identify and track these feature neurons
(4) The neurons can be bound in time alternatively according to which object they belong to.

For the first element, we minimally extend the DAE with an additional Bernoulli sampling process
T to transform the continuous encoding into spike encoding in the latent space (Fig.12c). For the
second element, we use an additional contrastive loss, which is an unsupervised method to encourage
a more factorized representation. For the third element, we estimate the receptive field of each spiking
neuron in the latent space. Imagine that we are neuroscientists faced with a super-complex system
like the brain. How can we known something about the responsive properties of the millions of
neurons? We provides stimuli of all kinds of features and if there are neurons respond to one feature
(like shape/position), a feature neuron can be identified (shape neuron/place cell). Note that feature
neuron is identified within the experimental "stimuli set": they may also respond to other stimuli as
well. And note that we do not need to find out all feature neurons, most of the time we only find some
of them. So in our experiment, we inherit the idea in neuroscience. For example, to find out "triangle
neuron", we provide all images (stimuli) with a triangle at random places to the DAE, and then count
the firing activity of each neuron (Fig.12a upper). If there are neurons keep an consistent high firing
rate across all "random-single-triangle" images, we identify these neurons as "triangle neurons" (eg.
the neurons being circled in Fig.12a), because they have the receptive field of shape triangle and
invariant to the changes in the opponent feature (position). The same process applies to the other
shape neurons. For position neurons, we generate a large number of images with different shapes
(mixed with salt&pepper noise) on certain position and also count the firing rate of each neurons.
In the experiment, we find that neurons are not all perfectly disentangled into certain generative
factor, but an intermediate state between pure-disentangle and pure-distribute ( especially for position
neurons (Fig.12a bottom) partly because the disentangled encoding of position is more challenging in
our unsupervised training). However, like neuroscientists, we can still find the feature neurons we
want and get to know something about the super-complex representation within the latent space, even
though these neurons may have other responsive properties and we do not capture all of them. For
the fourth elements, with these feature neurons in hand, we compare the firing activity in the latent
space during the binding process with all these candidates (Fig.12b. eg. the circled neurons). And we
find out that the feature neurons we identified synchronize as expected (Fig.12d). We also decode the
synchronized neurons (shape+position) in the latent space with the decoder of the DASBE and find
that the reconstructed object is consistent with the input image (Fig.12e).

To be more specific, the network for Hierarchy Feature Binding is trained using a supervised
contrastive learning method [19] to bias the disentanglement in the latent representation. In this
section, we firstly introduce the extra loss function added to the reconstruction error and secondly
show how to find the shape and the position feature neuron index sets.

Contrastive loss Taking dataset Shape as an example, a minibatch of training dataset is divided into
three different sub-datasets Di (i = 0, 1, 2) each has a different shape (i.e., square, triangle facing up,
triangle facing down). The three different sub-datasets Di have equal size. The similarity sij of two

13



sub-datasets Di = {dk} and Dj = {dl} is difined as:

sij =
∑

dk∈Di
dl∈Dj

f(dk)
⊤f(dj)

∥f(dk)⊤f(dj)∥

where f(x) means the encoder network. The loss of contrastive learning we used is divided into two
parts. The first part of loss is:

losspos =
1

|{0, 1, 2}|

2∑
i=0

sii

The second part of loss is:

lossneg =
1

|{(i, j)|(i ̸= j) ∧ (i, j ∈ {0, 1, 2})}|
∑
i̸=j

i,j∈{0,1,2}

sij

The overall contrastive learning loss is defined as

Lcontrastive = losspos + lossneg

The learning loss of the contrastive autoencoder is the weighted sum of the contrastive learning loss
and the reconstruction error Lreconstruct of the autoencoder:

L = w1 · Lcontrastive + w2 · Lreconstruct

where Lreconstruct refers to the reconstruct loss of the autoencoder, w1 and w2 are constant weight
coefficients. In our experiments, Lreconstruct refers to the binary cross entropy loss, w1 and w2 are
set to 2, 1 respectively.

Finding the disentangled feature neuron After training the constrastive autoencoder, we choose the
shape feature neuron set Ishape and position feature neuron set Ipos of the hidden layer according
to the following steps. First we generate sets of samples (20000 ∼ 60000) either fixing the shape
type or the position of the single object (termed as Dshape or Dposition). Second, we count the total
firings of latent-layer neurons given Dshape or Dposition. Second, the firing rates of hidden neurons
are sorted and neuron index set Ishape with top k firing rate are selected. k is determined by the
maximum value such that γ · fk > fk+1, where fk is the firing rate of the kth largest neuron, γ is an
empirical constant usually set to 0.9 for finding shape feature neurons and 0.6 for finding position
feature neurons. Third, following the similar method, we calculate the candidate position feature
neuron index set Ĩpos. Forth, in the binding process, we compare the firing of hidden neurons I

against the candidate feature neurons. So, the set of final feature neurons are: Ishape = Ĩshape ∩ I

and Ipos = Ĩpos ∩ I .

Note that DASBE provides a network architecture different from classical feed-forward network of
hierarchical feature representation[20]. Here, different levels of features communicate with each
other to determine a final stable representation.

To compare with the temporal binding results of the constrastive learning autoencoder, we remove
the constractive loss Lcontrastive. The results are shown in Fig.13 and Fig.14.

On the one hand, disentanglement is much more visible in contrastive training cases(Fig.13 upper
panel). Without contrastive loss or any other constraints, latent layer is not likely to learn a disentan-
gled representation but a rarely complex representation(Fig.14 upper panel). On the other hand, either
with or without contrastive loss, the model is able to bind the features at lower and higher levels,
though in the later case, the representation is less explainable (but still can synchronize). It can also
be seen that the synchrony is more salient with contrastive loss. The reason might be two-fold: 1.
learning a compact latent representation is more challenging for spiking neurons due to binary coding.
2. contrastive loss biases the latent representation to be disentangled, which mitigate the challenge.
Therefore, disentanglement in the higher-level representation seems to benefit temporal binding.
Notably, though such disentanglement is introduced by a supervised contrastive loss in this model,
many other unsupervised method[21, 22] is reported to also able to create such disentanglement.

14



Figure 13: Results with contrastive loss. upper panel: statistical response to "shape" features of the
latent layer neurons. Copied from the Fig4 in the main text. Middle panel: spiking plot for low-level
features neurons(left) and high-level feature neurons(right).The neurons are arranged and colored
based on which feature it encodes. Bottom panel: spiking pattern in initial phase (row1 row3) and
convergent phase (row4 row6)

Figure 14: Results without contrastive loss.upper panel: statistical response to "shape" features of
the latent layer neurons. Each sub-figure is the average firing rate of latent neurons given inputs
of same shape but varied positions. The latent vector is reshaped to be a square for visualization.
Middle panel: spiking plot for low-level features neurons(left) and high-level feature neurons(right).
Since the features are not disentangled and there is no ground truth, we coloring the neurons based
on k-means clustering of spiking patterns and no separation of features is provided. Bottom panel:
spiking pattern in initial phase (row13) and convergent phase (row4 row6)

15



Figure 15: Binding moving objects. copied from Fig.5 in the main text. The demonstrated images
are snapshot of input data and spiking representation being taken every τdelay time steps. The black
images are the generated data and the color image is visualization of temporal binding by clustering
the latest spikes in the past τdelay time steps. Time from left to right and from up to bottom.

A.9 Details for Figure 5

Different from static situation, moving situation is more challenging for a temporal binding model.
(1) Features are being constantly shifted in the changing world (eg. the object identity, position of the
object, etc.), so that the internal representation need to be able to dynamically change at the same
time. If features compete with each other in time dimension, then, this competition is required to
influence next step, which may have a different firing structure. (2) Timescale. Temporal binding use
time to provide grouping information, which means the grouping is entangled with time. This is fine
in static situation because time is not a generative factor. However, in the moving situation, object
MOVES. So here, time is used for two things: one for representation and one for describing the
world. At each time step, to avoid superposition catastrophe, time is needed to group the object. But
object also changes with time and their features is ever-changing. Now, how can temporal binding
work? These are the motivations behind this experiment. In a word, moving situation challenges the
temporal binding model by revealing the implicit entanglement between grouping and time.

Thus, in the experiment, there are two time-scales. The first is the macroscopic (or behavioral)
timescale τM to describe the movement of the object. The second is the microscopic (or representa-
tional) timescale τm to bind object based on time code. τM >> τm. It is also the case in the brain.
The timescale for temporal coding is around 10ms (or even less) and the behavioral timescale is
around 500ms (0.5 second). Thus, a moving object is moving w.r.t τM but may be quasi-static with
w.r.t. τm. The object appears suddenly and moves fast w.r.t τM . In this experiment τM = τdelay
and τm = 1. In this situation we study whether the DASBE can successfully bind multiple-moving
objects in the time dimension.

More specifically, we extend DASBE to moving dataset in this section. Different from the static
dataset, the objects in moving dataset appear one by one at regular intervals. Once an object appears in
the image, it moves according to a randomly chosen constant direction and constant speed. Whenever
the object reaches one of the image edges, it reverses its direction immediately (black images in
Fig.15 are the input data). To deal with the moving situation, we modify the feed-forward DAE to
have a recurrent latent layer. The network architecture is described in Section A.3. The recurrent
DAE is trained to directly predict the next step of the single object given the current input image xt,
so that the DAE can learn a kind of predictive inference ability.

Using the recurrent DAE, we extend DASBE to the moving dataset (Algorithm 1). In each iteration
step, the recurrent DAE gains a new image from moving dataset. Different from static dataset, in each
time step, latent is calculated according to the hidden state of both current step t and the previous
step t− 1. Thus, differently, the hidden state should be stored as hiddenpre initialized as zero vector.
And at each step, hiddenpre is set to be the current hidden state hidden. At the end, attn[t] stores
the predictive results of the next τdelay position of each detected shape.

To track the binding representation along the whole period, at each iteration step (length of τdelay),
we use K-means to cluster the neurons in SCS based on the latest τdelay spiking pattern (Fig.15

16



Algorithm 1 Extend temporal binding process in DASBE to moving dataset. The input xt is a
binary vector of dimension Dimage at time step t. The attention map (attn) is a real-valued vector
of dimension (T + τdelay) × Dimage. T is the length of binding process. We initialize attn [t],
t ∈ [−τdelay, 0] as independent positive samples (attn > 0) from standard Gaussian distribution
N (0, I). Refractory variable rfr is initialized as 0. τdelay, τw, τrfr are time-scale parameters. In
our experiments, we set τdelay ∈ [20, 60], τw = 3, τrfr ∈ [0, 15], T ≈ 1000.

1: Input: xt ∈ {0, 1}Dimage , attn [−τdelay : 0] ∼ |N (0, I)| ∈ Rτdelay×Dimage

2: Layer params: Norm; CD; Ber, Softmax; MLPf , MLPg: encoder and decoder of DAE; T: Bernuli
sampling operation for binary latent space or identity map for real-valued latent space.

3: attn [−τdelay : 0] = Norm(attn [−τdelay : 0]); # normalization of initial attention map
4: hiddenpre = 0;
5: for t = 0 . . . T

6: context = attn [t− τdelay];
7: firing_rate = xt ⊙ context⊙ (rfr == 0); # ⊙: element_wise product
8: spike [t] ∼ Ber(firing_rate); # Ber: sampling according to Bernoulli distribution
9: rfr+ = spike [t] · τrfr; # set spiking neuron into refractory period

10: rfr = max(rfr− 1, 0); # update refractory variable
11: input2dae = CD(spike [t− τw : t]); # CD: coincidence detector
12: hidden = MLPf (input2dae) +Wh · hiddenpre + b;
13: encoder = Sigmoid(hidden);
14: hiddenpre = hidden;
15: latent = T(encode); # latent space can be real-valued or binary
16: attn [t] = Softmax(MLPg(latent));
17: return spike

color image). The clustering results shows that DASBE can quickly detect pop-up objects and track
multiple moving objects.

17



A.10 Visualization of results in other datasets

In this Section, we provide further temporal binding results on all dataset. According to the sorting
of mean AMI score (Fig.2), we show the qualitative result of different AMI scores. We can see that
some super low AMI score may due to the ill-generated ground-truth (Fig.18). And some super high
AMI score may not guarantee perfect synchrony (Fig.32).

Interestingly, it can be seen in Bars dataset (Fig.16,Fig.17) that the temporal structure can be very
complicated, not restricted to the homogeneous oscillatory activity. Some neurons may burst and then
go to silence. Some neurons can fire more frequently than another neuron. The temporal structure
is not predefined or supervised, but self-organized in an unsupervised manner. Despite of their
complexity, it is clear that spiking representation still use temporal correlation to provide grouping
information. Similar result can also be found in Corners dataset (Fig.22, Fig.23, Fig.24).

Besides, in Fig.26, we can see that the DASBE can bind objects creatively in unexpected ways. In
this case, the 0 and the 4 overlap so that it looks like the 8. Then the DASBE flexibley bind them into
a 8 and a 6. Of course it is evaluated as a unsuccessful binding based the ground truth (AMI=43.3).
But actually such binding makes good sense and beneficial for remaining a self-consistent state (by
continuous self-evidence process). It is the feature of both DASBE and the human perception. We
constantly found those interesting cases during our experiment.

In figures on MNIST+Shape dataset (Fig.30,Fig.31,Fig.32), we find that the temporal structure of
the spiking representation has a kind of "precession" (in a reversed direction): if we assume the
delayed feedback provide a temporal coordinate in SCS (like periodic topdown modulation can
induce oscillatory activity in neural circuit) the firing time shift in this temporal coordinate every
feedback cycle. Similar neural behavior is observed in Hippocampus and believed to be essential for
memory formation and recall[23].

It is notable that the synchrony is not absolute and the grouping information is continuous in time.
Such property can be clear especially in samples that do not achieve a super high AMI score
(Fig.19,Fig.32)

18



Figure 16: Visualization of temporal binding in Bars (i) AMI=84.5. Same settings as Fig2 in the
main text. From the top to bottom: synchrony score and rate score; evolution of temporal structure
indicated by color (left most–input; right most–ground truth middle–evolution of temporal structure
from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike recording
in convergent phase.

19



Figure 17: Visualization of temporal binding in Bars (ii) AMI=97.7. Same settings as Fig2 in the
main text. From the top to bottom: synchrony score and rate score; evolution of temporal structure
indicated by color (left most–input; right most–ground truth middle–evolution of temporal structure
from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike recording
in convergent phase.

20



Figure 18: Visualization of temporal binding in Shapes (i) AMI=0. Same settings as Fig2 in the
main text. From the top to bottom: synchrony score and rate score; evolution of temporal structure
indicated by color (left most–input; right most–ground truth middle–evolution of temporal structure
from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike recording
in convergent phase.

21



Figure 19: Visualization of temporal binding in Shapes (ii) AMI=81.6. Same settings as Fig2 in the
main text. From the top to bottom: synchrony score and rate score; evolution of temporal structure
indicated by color (left most–input; right most–ground truth middle–evolution of temporal structure
from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike recording
in convergent phase.

22



Figure 20: Visualization of temporal binding in Shapes (iii) AMI=89.0. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

23



Figure 21: Visualization of temporal binding in Shapes (iii) AMI=98.9. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

24



Figure 22: Visualization of temporal binding in Corners (i) AMI=43.2. Same settings as Fig2 in the
main text. From the top to bottom: synchrony score and rate score; evolution of temporal structure
indicated by color (left most–input; right most–ground truth middle–evolution of temporal structure
from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike recording
in convergent phase.

25



Figure 23: Visualization of temporal binding in Corners (ii) AMI=73.2. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

26



Figure 24: Visualization of temporal binding in Corners (vi) AMI=85.3. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

27



Figure 25: Visualization of temporal binding in Multi-MNIST (failure) (i). Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

28



Figure 26: Visualization of temporal binding in Multi-MNIST AMI=43.3. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

29



Figure 27: Visualization of temporal binding in Multi-MNIST (failure) (ii) AMI=67.9. Same settings
as Fig2 in the main text. From the top to bottom: synchrony score and rate score; evolution of
temporal structure indicated by color (left most–input; right most–ground truth middle–evolution of
temporal structure from left to right); spiking pattern in initial phase; spiking pattern in convergent
phase; spike recording in convergent phase.

30



Figure 28: Visualization of temporal binding in Multi-MNIST (iii) AMI=94.4. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

31



Figure 29: Visualization of temporal binding in MNIST+Shape (failure) (i). Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

32



Figure 30: Visualization of temporal binding in MNIST+Shape. AMI=76.4. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

33



Figure 31: Visualization of temporal binding in MNIST+Shape. AMI=88.7. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

34



Figure 32: Visualization of temporal binding in MNIST+Shape. AMI=100. Same settings as Fig2
in the main text. From the top to bottom: synchrony score and rate score; evolution of temporal
structure indicated by color (left most–input; right most–ground truth middle–evolution of temporal
structure from left to right); spiking pattern in initial phase; spiking pattern in convergent phase; spike
recording in convergent phase.

35



Figure 33: proof2

A.11 Proof

This section contains assumptions and detailed derivations of the properties demonstrated in the
Model Section. Here, we first clarify several assumptions:

1. The single object representation xn is binary, the disturbance variable ϵ is also binary. And the
disturbance is restricted to random removal of bits of xn instead of adding bits (consistent with the
training in the experiment)

2. By "perfectly", we assume the fDAE not only (a) learns a perfect denoising map fDAE : ∀ϵ ∈
{0, 1}, s.t.∥ϵ∥ < δ, and ∀xn ∈ {xn}, then, xn = fDAE(xn − ϵ); but also (b) learns to represent
the stimulus {xn} in the most efficient way, with its latent layer learns a perfect disentangled
representation of the generative factors.

3. We assume all the "+","−" on xn are all constraint in binary space, which means: 1+1 = 1+0 =
0 + 1 = 1, 0 + 0 = 0, 1− 1 = 0 = 0− 1 = 0− 0 = 0, 1− 0 = 1.

The proof of Proposition1 is straightforward and hold by definition of DAE.

Proposition1

proof. (1) Assume the maximum salt & pepper noise strength is set to be δ in the training process.
Then ∀ϵ ∈ {0, 1}, s.t.∥ϵ∥ < δ, ∀xn ∈ {xn}, we have, xn = fDAE(xn − ϵ)

proof. (2) Given α < 1, ∥fDAE(xn − ϵ)− xn∥ = ∥xn − xn∥ = 0 < αϵ = α∥xn − ϵ− xn∥

The proof of the second Proposition is based on the fact that a perfect DAE can suffer from the
binding problem, so that it can not reconstruct a superposed input. More formally:

Proposition2

proof. By assuming learning a perfect disentangled latent representation, we have two interchangeable
paths in the diagram in Fig.33 We first describe each part in the diagram.

(a)let fDAE = g ◦ f , the f and g are the mapping realized by the encoder and decoder respectively. θ
is the latent representation in the DAE.

(b) {α}, {β} are the set of values of different types of generative factors of the objects (eg. {α}={up-
triangle,down-triangle,square}; {β} = {(x, y)|x ∈ [0, 28], y ∈ [0, 28]} in Shapes dataset, here we
only consider two types of features for simplicity). Given set X, 2X is the power set of X. 2{α}×{β}

contains all possible combinations of features to generate a scene with single or multiple objects.

(c) We assume there is an implicit single object generation process formulated by

G : {α} × {β} → {x}.
Further, the generation of superposed object x’ is induced by G,

G̃ : 2{α}×{β} → x′

and G̃ has the property:

∀A,B ∈ 2{α}×{β}, G̃(A ∪B) = G̃(A) + G̃(B)

36



∀(α, β) ∈ {α} × {β}, G̃(α, β) = G(α, β)

(d) To describe disentangled representation, we assume there is an imaginary alternative mapping P ,

P : {α} ∪ {β} → Rdθ

where dθ is the dimension of latent space. P has the property,

∀a, b ∈ {α} ∪ {β}, a ̸= b ⇒ ⟨P (a), P (b)⟩ = 0

P̃ is induced by P ,
P̃ : 2{α}×{β} → Rdθ

P̃ has the property,
∀A,B ∈ 2{α}×{β}, P̃ (A ∪B) = P̃ (A) + P̃ (B)

∀(α, β) ∈ {α} × {β}, P̃ (α, β) = P (α) + P (β)

(e) Since DAE can perfectly reconstruct the input x(α, β), we have ∀(α, β) ∈ {α} × {β}, θ(α, β) =
f(x(α, β)) and g(θ(α, β)) = x(α, β)

OK, all elements in the diagram have been defined.

Perfect disentanglement of objects tells us that the representation of features contained in a scene is
independent of the specific object that instantiates the feature. The former is the lower path: from
generative factor, to object by generation process and finally to latent representation by encoding.
The latter is imaginary upper path: directly from the set of feature combinations to the representa-
tion, described by P and P̃ . Thus, disentanglement claim that the upper path and lower path are
interchangeable. Start from this, we can generally construct at least one example x’ that satisfy the
Proposition2: ∥fDAE(x

′)− x′∥ > 0. This is the direct outcome of the binding problem.

In this spirit, consider two objects pairs: (x(α1, β1), x(α2, β2)) and (x(α1, β2), x(α2, β1))

then superposition catastrophe will prevent the accurate reconstruction of both superposed cases.

From the diagram we have,

g ◦ f(x(α1, β1) + x(α2, β2)) = g ◦ [P (α1) + P (β1) + P (α2) + P (β2)]

g ◦ f(x(α1, β2) + x(α2, β1)) = g ◦ [P (α1) + P (β2) + P (α2) + P (β1)]

if
g ◦ f(x(α1, β1) + x(α2, β2)) = x(α1, β1) + x(α2, β2)

and
g ◦ f(x(α1, β2) + x(α2, β1)) = x(α1, β2) + x(α1, β2)

hold at the same time. Then,

x(α1, β1) + x(α2, β2)

= g ◦ f(x(α1, β1) + x(α2, β2))

= g ◦ [P (α1) + P (β1) + P (α2) + P (β2)]

= g ◦ [P (α1) + P (β2) + P (α2) + P (β1)]

= g ◦ f(x(α1, β2) + x(α2, β1))

= x(α1, β2) + x(α1, β2)

(1)

However,
x(α1, β1) + x(α2, β2) ̸= x(α1, β2) + x(α1, β2)

Contradiction arises and we find at least one x’ in the proposition2

The proof of Proposition3 and Proposition4 is straightforward by construction.

Proposition3

37



Figure 34: The experimental evidence of proposition1. left: input image with single objects; right:
output of DAE trained on single object dataset. It can be seen that output is almost identical to input
for superposed input.

Figure 35: The experimental evidence of proposition2. left: input image with multiple objects; right:
output of DAE trained on single object dataset. It can be seen that output is not identical to input for
superposed input.

38



proof. Since τdelay ∈ N in our case.

if x(0) = x(1) = x(2) = ... = x(τdelay) = xn,

then, ∀t = n · τdelay +m, (m < τdelay)

x(t+ 1) = x(n · τdelay +m+ 1)

= fDAE(x(m+ 1))

= xm+1 = xn

(2)

Thus, x(t) ≡ xn is a possible solution of the dynamics.

Since f(xn − ϵ) = f(xn) = xn, the trajectory is attractive:

let x̃(t) = (x(t), x(t+ 1), ..., x(t+ τdelay)), and x̃n = (xn, xn, ..., xn), if x̃(t) = x̃n

then under small disturbance, the fixed point will be arrived after τdelay:

x̃(t+ τdelay) = fDAE(x̃(t)− ϵ) = xn

Proposition4

proof. (1) If x(t) = x(t + 1) = xn, then due to refraction, x(t + τdelay), x(t + τdelay + 1) can
not be xn at the same time. Because, if x(t + τdelay) = 0, then rfr = 0 at t + τdelay + 1,
thus,x(t+ τdelay + 1) = fDAE(0) ̸= xn. Thus, x(t) ≡ xn does not hold in this case.

(2) Given the number of superposed objects is K. Due to time dimension is continuous (in practice,
it is discrete but of high resolution), assume K << τdelay

Then, consider the following solution. w = [τdelay/K] > 0

x(m · τdelay + i · w) = xni
,m ∈ N, 0 < i < K (3)

Otherwise, x(t) = 0. Since ∀t1, t2, 0 < t2 − t1 < τrfr ⇒ x(t1) = x(t2) = 0 or x(t1) ̸= x(t2), no
interference among x(t) by rfr. Thus obviously, x(t) satisfy the equation in proposition 4.

In this way, we construct a periodic solution of x(t) that represent K object alternatively. Similar to
the proof of proposition 3, the solution is attractive.

We are aware that the proof above depend on very strong assumptions (like perfect DAE) and
extremely idealized situation. Thus, reality may deviate from the proved result. However, we find
experimentally that these results are generally hold in reality.

For proposition 1 3, we can see from experiments that single objects can indeed be a convergent
state, eg. Fig.34 for proposition 1 and Fig.4 for proposition 3

For proposition 2, in general, the mapping that can reconstruct the superposed input can certainly
exist without further assumptions (eg. identity map). However, in practise, it is highly possible that
the superposed input will not be reconstructed, simply because the decoder has a strong prior of
single objects so that the range of g is constraint in single-object related patterns Fig.35. Besides, the
denoising auto-encoder can avoid learning an identity map.

For proposition 4, we can see from experiments (Section A.10) that alternative states is indeed
emerged.

References
[1] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.

Advances in neural information processing systems, 30, 2017.

[2] Geoffrey Hinton. How to represent part-whole hierarchies in a neural network. arXiv preprint
arXiv:2102.12627, 2021.

39



[3] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention. Advances in Neural Information Processing Systems, 33:11525–11538, 2020.

[4] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

[5] Sen Song and Larry F Abbott. Cortical development and remapping through spike timing-
dependent plasticity. Neuron, 32(2):339–350, 2001.

[6] Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin,
and Xavier Glorot. Higher order contractive auto-encoder. In Joint European conference on
machine learning and knowledge discovery in databases, pages 645–660. Springer, 2011.

[7] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

[8] Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Binding via reconstruction
clustering. arXiv preprint arXiv:1511.06418, 2015.

[9] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization and correction for chance. The Journal of
Machine Learning Research, 11:2837–2854, 2010.

[10] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[11] Jonathan D Victor and Keith P Purpura. Nature and precision of temporal coding in visual
cortex: a metric-space analysis. Journal of neurophysiology, 76(2):1310–1326, 1996.

[12] Per Sebastian Skardal, Edward Ott, and Juan G Restrepo. Cluster synchrony in systems of
coupled phase oscillators with higher-order coupling. Physical Review E, 84(3):036208, 2011.

[13] Peter Földiak. Forming sparse representations by local anti-hebbian learning. Biological
cybernetics, 64(2):165–170, 1990.

[14] David P Reichert and Thomas Serre. Neuronal synchrony in complex-valued deep networks.
arXiv preprint arXiv:1312.6115, 2013.

[15] Reinhard Eckhorn, Roman Bauer, Wolfgang Jordan, Michael Brosch, Wolfgang Kruse, Matthias
Munk, and HJ Reitboeck. Coherent oscillations: A mechanism of feature linking in the visual
cortex? Biological cybernetics, 60(2):121–130, 1988.

[16] Reinhard Eckhorn, Herbert J Reitboeck, MT Arndt, and P Dicke. Feature linking via synchro-
nization among distributed assemblies: Simulations of results from cat visual cortex. Neural
computation, 2(3):293–307, 1990.

[17] Michael Stoecker, Herbert J Reitboeck, and Reinhard Eckhorn. A neural network for scene
segmentation by temporal coding. Neurocomputing, 11(2-4):123–134, 1996.

[18] Herbert J Reitboeck, Michael Stoecker, and Christoph Hahn. Object separation in dynamic
neural networks. In IEEE International Conference on Neural Networks, pages 638–641. IEEE,
1993.

[19] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. ArXiv, abs/2004.11362,
2020.

[20] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[21] Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts
with a constrained variational framework. In ICLR, 2017.

40



[22] Christopher P. Burgess, Irina Higgins, Arka Pal, Loïc Matthey, Nicholas Watters, Guillaume
Desjardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv: Machine
Learning, 2018.

[23] Wilten Nicola and Claudia Clopath. A diversity of interneurons and hebbian plasticity facilitate
rapid compressible learning in the hippocampus. Nature Neuroscience, 22(7):1168–1181, 2019.

41


	Appendix
	Limitations
	Broader impact
	Experiment resources and code availability
	Training details
	Metric
	AMI score
	Silhouette score
	Victor-Purpura metric
	Synchrony score and rate score

	Details for Table1
	Dataset
	Experiment
	Training details
	Baseline

	Details for Fig2 & Fig3
	Details for Figure 4
	Details for Figure 5
	Visualization of results in other datasets
	Proof


