
Meta-Query-Net: Resolving Purity-Informativeness Dilemma in
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(Supplementary Material)

A Complete Proof of Theorem 4.1

Let zx = {z⟨1⟩x , . . . , z
⟨d⟩
x } be the d-dimensional meta-input for an example x consisting of d available

purity and informativeness scores.2 A non-negative-weighted MLP Φw can be formulated as

h[l] = σ
(
W [l] · h[l−1] + b[l]

)
, l ∈ {1, . . . , L}, (4)

where h[0] = zx, h
[L] ∈ R,W [l] ⪰ 0, and b[l] ⪰ 0; L is the number of layers and σ is a non-linear

activation function.

We prove Theorem 4.1 by mathematical induction, as follows: (1) the first layer’s output satisfies
the skyline constraint by Lemmas A.1 and A.2; and (2) the k-th layer’s output (k ≥ 2) also satisfies
the skyline constraint if the (k − 1)-th layer’s output satisfies the skyline constraint. Therefore, we
conclude that the skyline constraint holds for any non-negative-weighted MLP Φ(z;w) : Rd → R by
Theorem A.4.

Lemma A.1. Let g[1](zx)=W [1] ·zx+b[1] be a non-negative-weighted single-layer MLP with m
hidden units and an identity activation function, where W [1] ∈ Rm×d ⪰ 0 and b[1] ∈ Rm ⪰ 0.
Given the meta-input of two different examples zxi

and zxj
, the function g[1](zx) satisfies the skyline

constraint as
zxi
⪰ zxj

=⇒ g[1](zxi
) ⪰ g[1](zxj

). (5)

Proof. Let g[1](zx) be g(zx) and W [1] be W for notation simplicity. Consider each dimension’s
scalar output of g(zx), and it is denoted as g⟨p⟩(zx) where p is an index of the output dimension.
Similarly, let W ⟨p,n⟩ be a scalar element of the matrix W on the p-th row and n-th column. With
the matrix multiplication, the scalar output g⟨p⟩(zx) can be considered as the sum of multiple scalar
linear operators W ⟨p,n⟩·z⟨n⟩x . By this property, we show that g⟨p⟩(zxi)−g⟨p⟩(zxj )≥0 if zxi⪰zxj by

g⟨p⟩(zxi)− g⟨p⟩(zxj ) = W ⟨p,·⟩ · zxi −W ⟨p,·⟩ · zxj =

d∑
n=1

(
W ⟨p,n⟩ · z⟨n⟩xi

−W ⟨p,n⟩ · z⟨n⟩xj

)
=

d∑
n=1

(
W ⟨p,n⟩ · (z⟨n⟩xi

− z⟨n⟩xj
)
)
≥ 0.

(6)

Therefore, without loss of generality, g(zxi
)−g(zxj

) ⪰ 0 if zxi
⪰ zxj

. This concludes the proof.

Lemma A.2. Let h(zx)=σ(g(zx)) where σ is a non-decreasing non-linear activation function. If
the skyline constraint holds by g(·) ∈ Rd, the function h(zx) also satisfies the skyline constraint as

zxi
⪰ zxj

=⇒ h(zxi
) ⪰ h(zxj

). (7)

Proof. By the composition rule of the non-decreasing function, applying any non-decreasing function
does not change the order of its inputs. Therefore, σ(g(zxi))−σ(g(zxj )) ⪰ 0 if g(zxi) ⪰ g(zxj ).

Lemma A.3. Let h[k](zx)= σ
(
W [k] ·h[k−1](zx)+b[k]

)
be the k-th layer of a non-negative-weighted

MLP (k ≥ 2), where W [k] ∈ Rm′×m ⪰ 0 and b[k] ∈ Rm′ ⪰ 0. If h[k−1](·) ∈ Rm satisfies the
skyline constraint, the function h[k](zx) also holds the skyline constraint as

zxi ⪰ zxj =⇒ h[k](zxi) ⪰ h[k](zxj ). (8)
2We use only two scores (d = 2) in MQ-Net, one for purity and another for informativeness.
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Proof. Let W [k] be W , h[k](zx) be h(zx), and h[k−1](zx) be hinput(zx) for notation simplicity.
Since an intermediate layer uses hinput(zx) as its input rather than z, Eq. (6) changes to

g⟨p⟩(zxi
)− g⟨p⟩(zxj

) =

d∑
n=1

(
W ⟨p,n⟩ ·

(
h
⟨n⟩
input(zxi

)− h
⟨n⟩
input(zxj

)
))
≥ 0, (9)

where g⟨p⟩(zxi
) is the p-th dimension’s output before applying non-linear activation σ. Since hinput(·)

satisfies the skyline constraint, h⟨n⟩
input(zxi

) > h
⟨n⟩
input(zxj

) when zxi
⪰ zxj

, g⟨p⟩(zxi
) > g⟨p⟩(zxj

)

for all p ∈ {1, . . . ,m′}. By Lemma A.2, h⟨p⟩(zxi
)− h⟨p⟩(zxj

) = σ(g⟨p⟩(zxi
))− σ(g⟨p⟩(zxj

)) ≥ 0

for all p. Therefore, zxi
⪰ zxj

=⇒ h[k](zxi
) ⪰ h[k](zxj

).

Theorem A.4. For any non-negative-weighted MLP Φ(z;w) : Rd → R where w ⪰ 0, the skyline
constraint holds such that zxi

⪰ zxj
=⇒ Φ(zxi

) ≥ Φ(zxj
) ∀zxi

, zxj
∈ Rd ⪰ 0.

Proof. By mathematical induction, where Lemmas A.1 and A.2 constitute the base step, and
Lemma A.3 is the inductive step, any non-negative-weighted MLP satisfies the skyline constraint.

B Detailed Procedure of MQ-Net

Mini-batch Optimization. Mini-batch examples are sampled from the labeled query set SQ which
contains both IN and OOD examples. Since the meta-objective in Eq. (3) is a ranking loss, a
mini-batchM is a set of meta-input pairs such thatM = {(zxi

, zxj
)| xi, xj ∈ SQ} where zx =

⟨P(x), I(x)⟩. To construct a paired mini-batchM of size M , we randomly sample 2M examples
from SQ and pair the i-th example with the (M+i)-th one for all i ∈ {1, . . .,M}. Then, the loss for
mini-batch optimization of MQ-Net is defined as

Lmeta(M)=
∑

(i,j)∈M

max
(
0,−Sign

(
ℓmce(xi), ℓmce(xj)

)
·
(
Φ(zxi

;w)−Φ(zxj
;w)+η

))
:w ⪰ 0. (10)

Algorithm Pseudocode. Algorithm 1 describes the overall active learning procedure with MQ-Net,
which is self-explanatory. For each AL round, a target model Θ is trained via stochastic gradient
descent (SGD) using IN examples in the labeled set SL (Lines 3–5). This trained target model is
saved as the final target model at the current round. Next, the querying phase is performed according

Algorithm 1 AL Procedure with MQ-Net
INPUT: SL: labeled set, U : unlabeled set, r: number of rounds, b: labeling budget, C: cost function,

Θ: parameters of the target model, w: parameters of MQ-Net
OUTPUT: Final target model Θ∗

1: w← Initialize the meta-model parameters;
2: for r = 1 to r do
3: /* Training the target model parameterized by Θ*/
4: Θ← Initialize the target model parameters;
5: Θ← TrainingClassifier(SL,Θ);
6: /* Querying for the budget b */
7: SQ ← ∅;
8: while C(SQ) ≤ b do
9: if r = 1 do

10: SQ ← SQ ∪ argmaxx∈U (P(x) + I(x));
11: else do
12: SQ ← SQ ∪ argmaxx∈U (Φ(x;w));
13: SL ← SL ∪ SQ; U ← U \SQ

14: /* Training MQ-Net Φ parameterized by w */
15: for t = 1 to meta-train-steps do
16: Draw a mini-batchM and from SQ;
17: w← w− α∇w

(
Lmeta(M)

)
;

18: return Θ;
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to the order of meta-query scores from Φ given the budget b (Lines 6–13). Then, the meta-training
phase is performed, and the meta-model w is updated via SGD using the labeled query set SQ as a
self-validation set (Lines 14–17). Lines 3–17 repeat for the given number r of rounds. At the first
round, because there is no meta-model trained in the previous round, the query set is constructed by
choosing the examples whose sum of purity and informativeness scores is the largest (Lines 9–10).

C Implementation Details

C.1 Split-dataset Setup

Training Configurations. We train ResNet-18 using SGD with a momentum of 0.9 and a weight
decay of 0.0005, and a batch size of 64. The initial learning rate of 0.1 is decayed by a factor of
0.1 at 50% and 75% of the total training iterations. In the setup of open-set AL, the number of
IN examples for training differs depending on the query strategy. We hence use a fixed number of
training iterations instead of epochs for fair optimization. The number of training iterations is set to
20,000 for CIFAR10/100 and 30,000 for ImageNet. We set η to 0.1 for all cases. We train MQ-Net for
100 epochs using SGD with a weight decay of 0.0005, and a mini-batch size of 64. An initial learning
rate of 0.01 is decayed by a factor of 0.1 at 50% of the total training iterations. Since MQ-Net is not
trained at the querying phase of the first AL round, we simply use the linear combination of purity
and informativeness as the query score, i.e., Φ(x) = P(x) + I(x). For calculating the CSI-based
purity score, we train a contrastive learner for CSI with 1,000 epochs under the LARS optimizer with
a batch size of 32. Following CCAL [48], we use the distance between each unlabeled example to
the closest OOD example in the labeled set on the representation space of the contrastive learner as
the OOD score. The hyperparameters for other algorithms are favorably configured following the
original papers.

C.2 Cross-dataset Setup

Datasets. Each of CIFAR10, CIFAR100, and ImageNet is mixed with OOD examples sampled from
an OOD dataset combined from two different domains—LSUN [44], an indoor scene understanding
dataset of 59M images with 10 classes, and Places365 [45], a large collection of place scene images
with 365 classes. The resolution of LSUN and Places365 is resized into 32×32 after random cropping
when mixing with CIFAR10 and CIFAR100. For ImageNet, as in the split-dataset setup in Section
5.1, we use 50 randomly-selected classes as IN examples, namely ImageNet50.
Implementation Details. For the cross-dataset setup, the budget b is set to 1, 000 for CIFAR-10 and
ImageNet50 and 2, 000 for CIFAR-100 following the literature [5]. Regarding the open-set noise
ratio, we also configure four different levels from light to heavy noise in {10%, 20%, 40%, 60%}.
The initial labeled set is selected uniformly at random from the entire unlabeled set within the labeling
budget b. For instance, when b is 1, 000 and τ is 20%, 800 IN examples and 200 OOD examples are
expected to be selected as the initial set.

D Experiment Results on Cross-datasets

D.1 Results over AL Rounds

Figure 5 shows the test accuracy of the target model throughout AL rounds on the three cross-datasets.
Overall, as analyzed in Section 5.2, MQ-Net achieves the highest test accuracy in most AL rounds,
thereby reaching the best test accuracy at the final round in every case of various datasets and noise
ratios. Compared with the two existing open-set AL methods, CCAL and SIMILAR, MQ-Net
shows a steeper improvement in test accuracy over rounds by resolving the purity-informativeness
dilemma in query selection, which shows that MQ-Net keeps improving the test accuracy even in
a later AL round by finding the best balancing between purity and informativeness in its query set.
Together with the results in Section 5.2, we confirm that MQ-Net is robust to the two different
distributions—‘split-dataset’ and ‘cross-dataset’—of open-set noise.

D.2 Results with Varying Noise Ratios

Table 7 summarizes the last test accuracy at the final AL round for three cross-datasets with varying
levels of open-set noise. Overall, the last test accuracy of MQ-Net is the best in every case, which
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(a) Accuracy over AL rounds on cross-CIFAR10 with open-set noise of 10%, 20%, 40%, and 60%.
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(b) Accuracy comparison over AL rounds on CIFAR100 with open-set noise of 10%, 20%, 40%, and 60%.
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(c) Accuracy comparison over AL rounds on ImageNet with open-set noise of 10%, 20%, 40%, and 60%.

Figure 5: Test accuracy over AL rounds for the three cross-datasets, CIFAR10, CIFAR100, and
ImageNet, with varying open-set noise ratios.

Table 7: Last test accuracy (%) at the final round for three cross-datasets: CIFAR10, CIFAR100, and
ImageNet50 mixed with the merger of LSUN and Places365. The best results are in bold, and the
second best results are underlined.

Datasets Cross-CIFAR10 Cross-CIFAR100 Cross-ImageNet50
Noise Ratio 10% 20% 40% 60% 10% 20% 40% 60% 10% 20% 40% 60%

Standard
AL

CONF 89.04 85.09 79.92 74.48 65.17 62.24 52.52 42.13 64.92 61.92 53.60 45.64
CORESET 88.26 86.38 82.36 76.71 65.13 62.83 58.56 49.98 63.88 62.40 57.60 50.02

LL 89.06 85.65 81.81 76.52 65.23 62.64 57.32 48.07 63.68 62.32 58.08 51.24
BADGE 89.2 87.07 83.14 78.38 65.27 63.42 57.01 48.07 64.04 61.40 54.48 45.92

Open-set
AL

CCAL 85.89 81.62 80.55 78.68 61.22 59.91 56.47 52.01 62.72 62.20 60.40 54.32
SIMILAR 87.24 85.50 83.80 80.58 63.61 62.46 60.52 54.05 64.72 62.04 59.68 54.05

Proposed MQ-Net 89.49 87.12 84.39 82.88 67.17 64.17 61.01 55.87 65.36 63.60 61.68 55.28

shows that MQ-Net keeps finding the best trade-off between purity and informativeness in terms
of AL accuracy regardless of the noise ratio. The performance improvement becomes larger as the
noise ratio increases. Meanwhile, CCAL and SIMILAR are even worse than the four standard AL
approaches when noise ratio is less than or equal to 20%. This trend indicates that focusing on
informativeness is more beneficial than focusing on purity when the noise ratio is small.

E In-depth Analysis of CCAL and SIMILAR in a Low-noise Case

In the low-noise case, the standard AL method, such as CONF, can query many IN examples even
without careful consideration of purity. As shown in Table 8, with 10% noise, the ratio of IN examples
in the query set reaches 75.24% at the last AL round in CONF. This number is farily similar to 88.46%
and 90.24% in CCAL and SIMILAR, respectively. In contrast, with the high-noise case (60% noise),
the difference between CONF and CCAL or SIMILAR becomes much larger (i.e., from 16.28% to
41.84% or 67.84%). That is, considering mainly on purity (not informativeness) may not be effective
with the low-noise case. Therefore, especially in the low-noise case, the two purity-focused methods,
SIMILAR and CCAL, have the potential risk of overly selecting less-informative IN examples that
the model already shows high confidence, leading to lower generalization performance than the
standard AL methods.

In contrast, MQ-Net outperforms the standard AL baselines by controlling the ratio of IN examples
in the query set to be very high at the earlier AL rounds but moderate at the later AL rounds; MQ-Net
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Table 8: Test accuracy and ratio of IN examples in a query set for the split-dataset setup on CIFAR10
with open-set noise of 10% and 60%. “%IN in SQ” means the ratio of IN examples in the query set.

Noise Ratio Method Round 1 2 3 4 5 6 7 8 9 10

10%

CONF
Acc 62.26 74.77 80.81 84.52 86.79 88.98 90.58 91.48 92.36 92.83

%IN in SQ 87.52 82.28 80.84 79.00 75.16 76.21 74.08 74.61 74.00 75.24

CCAL
Acc 61.18 71.80 78.18 82.26 84.96 86.98 88.23 89.22 89.82 90.55

%IN in SQ 89.04 88.48 89.12 88.64 89.52 88.80 90.44 88.08 88.64 88.46

SIMILAR
Acc 63.48 73.51 77.92 81.54 84.04 86.28 87.61 88.46 89.20 89.92

%IN in SQ 91.44 91.04 91.52 92.56 92.61 91.40 92.24 90.64 90.75 90.24

MQ-Net
Acc 61.59 73.30 80.36 84.88 87.91 90.10 91.26 92.23 92.90 93.10

%IN in SQ 94.76 93.28 88.84 86.96 82.04 79.60 77.24 76.92 79.00 75.80

60%

CONF
Acc 56.14 65.17 69.60 73.63 76.28 80.27 81.63 83.69 84.88 85.43

%IN in SQ 37.44 32.20 28.16 25.40 25.64 20.08 20.88 17.00 18.04 16.28

CCAL
Acc 56.54 66.97 72.16 76.32 80.21 82.94 84.64 85.68 86.58 87.49

%IN in SQ 41.92 38.52 39.76 41.20 38.64 42.16 42.24 40.32 42.24 41.84

SIMILAR
Acc 57.60 67.58 71.95 75.70 79.67 82.20 84.17 85.86 86.81 87.58

%IN in SQ 56.08 61.08 67.12 66.56 67.32 67.28 68.08 67.00 68.16 67.84

MQ-Net
Acc 54.87 68.49 75.84 80.16 83.37 85.64 87.56 88.43 89.26 89.51

%IN in SQ 82.80 79.92 65.88 55.40 52.00 47.52 46.60 41.44 36.52 35.64

achieves a higher ratio of IN examples in the query set than CONF at every AL round, but the gap
keeps decreasing. Specifically, with 10% noise, the ratio of IN examples in the query set reaches
94.76% at the first AL round in MQ-Net, which is higher than 87.52% in CONF, but it becomes
75.80% at the last AL round, which is very similar to 75.24% in CONF. This observation means
that MQ-Net succeeds in maintaining the high purity of the query set and avoiding the risk of overly
selecting less-informative IN examples at the later learning stage.

F In-depth Analysis of Various Purity Scores

Table 9: OOD detection performance
(AUROC) of two different OOD scores
over AL rounds with MQ-Net.

Dataset CIFAR10 (4:6 split), 40% Noise
Round 2 4 6 8 10

MQ-Net ReAct 0.615 0.684 0.776 0.819 0.849
CSI 0.745 0.772 0.814 0.849 0.870

The OSR performance of classifier-dependent OOD de-
tection methods, e.g., ReAct, degrades significantly if the
classifier performs poorly [39]. Also, the OSR perfor-
mance of self-supervised OOD detection methods, e.g.,
CSI, highly depends on the sufficient amount of clean IN
examples [35, 36]. Table 9 shows the OOD detection per-
formance of two OOD detectors, ReAct and CSI, over AL
rounds with MQ-Net. Notably, at the earlier AL rounds,
CSI is better than ReAct, meaning that self-supervised OOD detection methods are more robust than
classifier-dependent methods when the amount of labeled data is small. Thus, the versions of MQ-Net
using CSI as the purity score is better than those using ReAct, as shown in Section 5.4.

G Additional Experiment Results

G.1 AL Performance with More Rounds

Figure 6 shows the test accuracy over longer AL rounds for the split-dataset setup on CIFAR10 with
an open-set noise ratio of 40%. Owing to the ability to find the best balance between purity and
informativeness, MQ-Net achieves the highest accuracy on every AL round. The purity-focused
approaches, CCAL and SIMILAR, lose their effectiveness at the later AL rounds, compared to the
informativeness-focused approaches, CONF, CORESET, and BADGE; the superiority of CONF,
CORESET, and BADGE over CCAL and SIMILAR gets larger as the AL round proceeds, meaning
that fewer but highly-informative examples are more beneficial than more but less-informative
examples for model generalization as the model performance converges. However, with low (e.g.,
20%) open-set noise cases, most OOD examples are selected as a query set and removed from the
unlabeled set in a few additional AL rounds, because the number of OOD examples in the unlabeled
set is originally small. Thus, the situation quickly becomes similar to the standard AL setting.
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CONF CORESET BADGE CCAL SIMILAR MQ-Net

Figure 6: Test accuracy over longer AL rounds for the split-dataset setup on CIFAR10 with an
open-set noise ratio of 40%. 500 examples are selected as a query set in each AL round.

G.2 Standard Deviations of Main Results

Table 10 repeats Table 1 with the addition of the standard deviations. Note that the standard deviations
are very small, and the significance of the empirical results is sufficiently high.

H Limitation and Potential Negative Societal Impact

Limitation. Although MQ-Net outperforms other methods on multiple pairs of noisy datasets
under the open-set AL settings, there are some issues that need to be further discussed. First, the
performance gap between standard AL without open-set noise and open-set AL still exists. That
is, we could not completely eliminate the negative effect of open-set noise. Second, although we
validated MQ-Net with many OOD datasets, its effectiveness may vary according to the types of
the OOD datasets. Formulating the effectiveness of MQ-Net based on the characteristics of a given
pair of IN and OOD datasets can be an interesting research direction. Third, we regarded the OOD
examples in a query set to be completely useless in training, but recent studies have reported that the
OOD examples are helpful for model generalization [49, 50, 51, 15]. Therefore, analyzing how to
use OOD examples for model generalization and sample selection in AL can also be an interesting
research direction.

Potential Negative Societal Impact. As in all active learning approaches, since MQ-Net requires
human oracles to label each of queried data examples, the oracle can see these examples in a database,
even if the proportion of the revealed examples could be very small. Then, if the oracle is not
trustworthy, there may be a leak of information. Therefore, in active learning, not specifically
confined to MQ-Net, this privacy breach issue should be carefully considered, especially if the
database contains private or sensitive information.
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