
Supplementary Materials for
Understanding and Extending Subgraph GNNs

by Rethinking Their Symmetries

A Subgraph GNNs

A.1 Review of Subgraph GNN architectures

Here we review a series of previously proposed Subgraph GNNs, showing how the proposed architec-
tures are captured by the formulation of Equation 1. We report this here for convenience:

(A,X) 7→
(
µ ◦ ρ ◦ S ◦ π

)
(A,X).

(n−k)-Reconstruction GNN by Cotta et al. [14] is the simplest Subgraph GNN: it applies a Siamese
MPNN base-encoder γ to k-node-deleted subgraphs of the original graph and then processes the
resulting representations with a set network. When k = 1, these models are node-based Subgraph
GNNs. More formally, π = πND, a DeepSets network [58] implements µ ◦ ρ, and S is realised with
layers of the form:

Xi,(t+1) = γt(A
i, Xi,(t)) (7)

Equivariant Subgraph Aggregation Network (ESAN) by Bevilacqua et al. [7] extends Recon-
struction GNNs in two main ways: First, introducing subgraph selection policies that allow for more
general sets of subgraphs such as edge-deleted policies. Second, performing an in-depth equivariance
analysis which advocates the use of the DSS layer structure introduced by Maron et al. [35]. This
choice gives rise to a more expressive architecture that shares information between subgraphs. For-
mally, in ESAN, S is defined as a sequence of equivariant layers which process subgraphs as well
as the aggregated graph Gagg =

(
Aagg, Xagg

)
=

∑
Gi∈BG

Gi. Each layer in S is of the following
form:

Xi,(t+1) = γ0t (A
i, Xi,(t)) + γ1t (A

agg, Xagg,(t)) (8)
with γ0t , γ

1
t being two distinct MPNN base-encoders. The above architecture is referred to as DSS-

GNN. Bevilacqua et al. [7] also explore disabling component γ1 and term this simplified model
DS-GNN (which reduces to a Reconstruction GNN of Cotta et al. [14] under node-deletion policies10).
In the same work, the considered policies are edge-covering [7, Definition 7], that is, each edge in the
original connectivity appears in the connectivity of at least one subgraph. In view of this observation,
the authors consider and implement a simplified version of DSS-GNN, whereby γ1’s operate on the
original connectivity A, rather than Aagg, that is:

Xi,(t+1) = γ0t (A
i, Xi,(t)) + γ1t (A,X

agg,(t)). (9)

Both DS- and DSS-GNN are node-based Subgraph GNNs when equipped with policies in Π. Also,
these policies are clearly edge-covering and, in this work, we will consider DSS-GNN as defined by
Equation 9.

GNN as Kernel (GNN-AK). Zhao et al. [61] employs an ego-network policy (π = πEGO), while
each layer in S is structured as A ◦ S, where S is a stacking of layers in the form of Equation 7 and
A is an aggregation/pooling block in the form:

x
i,(t+1)
j = ϕ

(
h
j,(t)
j ,

∑
ℓ

h
j,(t)
ℓ

)
(10)

with ϕ either concatenation or summation, hi,(t)j =
(
γt(A

i, Xi,(t))
)⊤
j

, for MPNN γt. The authors
introduce an additional variant (GNN-AK-ctx in the following) which also pools information from
nodes in other subgraphs:

x
i,(t+1)
j = ϕ

(
h
j,(t)
j ,

∑
ℓ

h
j,(t)
ℓ ,

∑
ℓ

h
ℓ,(t)
j

)
. (11)

In this paper we consider a more general case of global summation in Equations (10)-(11) 11.
10For this reason, we will only consider DS-GNN in the following proofs.
11The original paper considers summation over each ego network which is specific to a particular policy. Such

summations can be dealt with by adding masking node features.

16

Nested GNN (NGNN). Zhang and Li [59] also uses π = πEGO and applies an independent MPNN
to each ego-network, effectively structuring S as a stack of layers in the form of Equation 7. This
architecture differs in the way block ρ is realised, namely by pooling the obtained local representations
and running an additional MPNN γρ on the original graph:

x
(ρ)
j =

∑
ℓ

x
j,(T)
ℓ , xG =

∑
j

(
γρ(A,X

(ρ))
)
j

(12)

ID-GNN. You et al. [56] proposes distinguishing messages propagated by ego-network roots. This
architecture uses π = πEGO+(T) policy and S as a T -layer stacking performing independent
heterogeneous message-passing on each subgraph:

x
i,(t+1)
j = υt

(
x
i,(t)
j ,

∑
ℓ∼ij,ℓ ̸=i

µ0,t(x
i,(t)
ℓ) + 1[i∼ij] · µ1,t(x

i,(t)
i)

)
(13)

where 1[i∼ij] if i ∼i j, 0 otherwise, and ∼i denotes the connectivity induced by Ai. GNN-AK,
GNN-AK-ctx, NGNN and ID-GNN are all, intrinsically, node-based Subgraph GNNs.

Interestingly, we notice that the contemporary work by Papp and Wattenhofer [42] suggested using a
node marking policy as a more powerful alternative to node deletion. Finally, we note that the model
by Vignac et al. [53] may potentially be considered as a Subgraph GNN as well.

A.2 The computational complexity of Subgraph GNNs

Other than proposing Subgraph GNN architectures, the works by Bevilacqua et al. [7], Zhang and Li
[59], Zhao et al. [61] also study their computational complexity. In particular, Bevilacqua et al. [7]
describe both the space and time complexity of a subgraph method equipped with generic subgraph
selection policy and an MPNN as a base encoder. Given the inherent locality of traditional message-
passing, the authors derive asymptotic bounds accounting for the sparsity of input graphs. Let n, d
refer to, respectively, the number of nodes and maximum node degree of an input graph generating a
subgraph bag of size b. The forward-pass asymptotic time complexity amounts to O(b · n · d), while
the memory complexity to O(b · (n + n · d)). For a node-based selection policy, b = n so these
become, respectively, O(n2 · d) and O(n · (n + nd)). The authors stress the explicit dependence
on d, which is, on the contrary, lacking in 3-IGNs. As we show in Appendix B, 3-IGNs subsume
node-based subgraph methods, but at the cost of a cubic time and space complexity (O(n3)) [7].
Amongst others, this is one reason why Subgraph GNNs may be preferable when applied to sparse,
real world graphs (where we typically have d≪ n).

As we have noted in the above, more sophisticated Subgraph GNNs layers may feature “global”
pooling terms other than local message-passing: see, e.g., term Xagg for DSS-GNN [7] in Equa-
tions (8) and (9) or the “subgraph” and “context” encodings in the GNN-AK-ctx model [61] (second
and third term in the summation of Equation (11)). In principle, each of these operations require
a squared asymptotic computational complexity (O(n2)). However, we note that these terms are
shared in the update equations of nodes / subgraphs: in practice, it is only sufficient to perform the
computation once. In this case, the asymptotic time complexity would amount to O(n2 · d+ n2), i.e.,
still O(n2 · d). Therefore, these Subgraph GNNs retain the same asymptotic complexity described
above.

Our proposed SUN layers involve the same “local” message-passing and “global” pooling operations:
the above analysis is directly applicable, yielding the same asymptotic bounds.

We conclude this section by noting that, for some specific selection policies, these bounds can be
tightened. In particular, let us consider ego-networks and refer to c as the maximum ego-network
size. As observed by Zhang and Li [59], the time complexity of a Subgraph GNN equipped with such
policy becomes O(n · c · d). Importantly, When ego-networks are of limited depth, the size of the
subgraphs may be significantly smaller than that of the input graph; in other words c≪ n, reducing
the overall forward-pass complexity.

17

edges to / from root nodes

edges between non-root nodes

representations of root nodes

representations of non-root nodes

Figure 5: Depiction of cubed tensor Y , its orbit-induced partitioning and the related semantics
when Y is interpreted as a bag of node-based subgraphs, n = 5. Elements in the same partition are
depicted with the same colour. Left: the whole tensor. Middle and right: sections displaying orbit
representations Xiii, Xijj , Xiij in their entirety.

B Proofs for Section 5 – Subgraph GNNs and 3-IGNs

B.1 3-IGNs as computational models

Before proving the results in Section 5, we first describe here a list of simple operations that are
computable by 3-IGNs. These opearations are to be intended as ‘computational primitives’ that
can then be invoked and reused together in a way to program these models to implement more
complex functions. We believe this effort not only serves our need to define those atomic operations
required to simulate Subgraph GNNs, but also, it points out to an interpretation of IGNs as (abstract)
comprehensive computational models beyond deep learning on hypergraphs. We start by describing
the objects on which 3-IGNs operate, and how they can be interpreted as bags of subgraphs.

B.1.1 The 3-IGN computational data structure

The main object on which a 3-IGN operates is a ‘cubed’ tensor in Rn3×d, typically referred to as Y
in the following. An Sn permutation group act on the first three dimensions of this tensor as:(

σ · Y
)
ijkl

= Yσ−1(i)σ−1(j)σ−1(k)l ∀σ ∈ Sn

whereas the last dimension (l above) hosts d ‘channels’ not subject to the permutation group.

The action of the permutation group on [n]k decomposes it into orbits, that is equivalence classes
associated with the relation ∼S defined as:

∀x, y ∈ [n]k, x ∼S y ⇐⇒ ∃σ ∈ Sn : σ(x) = y

Orbits induce a partitioning of [n]k. In particular, for k = 3 we have:

[n]3 = oiii ⊔ oiij ⊔ oiji ⊔ oijj ⊔ oijk (14)

oiii =
{
(i, i, i) | i ∈ [n]

}
,

oiij =
{
(i, i, j) | i, j ∈ [n], i ̸= j

}
,

oiji =
{
(i, j, i) | i, j ∈ [n], i ̸= j

}
,

oijj =
{
(i, j, j) | i, j ∈ [n], i ̸= j

}
,

oijk =
{
(i, j, k) | i, j ∈ [n], i ̸= j ̸= k

}
As studied in Albooyeh et al. [2]12, each of these orbits indexes a specific face-vector, that is a
(vectorised) sub-tensor of Y with a certain number of free index variables, which determines its ‘size’.

12The authors study the more general case of incidence tensors of any order, for which our three-way cubed
tensor is a special case.

18

Importantly, this entails that the partitioning in Equation 14 induces the same partitioning on Y , so
that we can interpret the cubed tensor Y as a disjoint union of following face-vectors13:

Y ∼= Xiii ⊔Xiij ⊔Xiji ⊔Xijj ⊔Xijk (15)

Xiii =
(
Y
)
oiii

(size 1),

Xiij =
(
Y
)
oiij

(size 2),

Xiji =
(
Y
)
oiji

(size 2),

Xijj =
(
Y
)
oijj

(size 2),

Xijk =
(
Y
)
oijk

(size 3)

or, more compactly, as Y ∼=
⊔

ωXω, ω ∈ Ω = {iii, iij, iji, ijj, ijk}. According to this notation,
we consider subscripts in Ω for X as indexing variables for Y . Importantly, since they directly
reflect the set of indexes in oiii, oiij, oiji, oijj, oijk, when subscripting X , i, j, k are always distinct
amongst each other. At the same time, as it can be observed from the definition above, we keep
duplicate indexing variables in the subscripts of X’s to highlight the characteristic equality pattern
of the corresponding orbit. As an example, element

(
Y
)
1,1,1

∈ Rd uniquely belongs to face-vector
Xiii, elements

(
Y
)
1,1,2

,
(
Y
)
1,2,1

,
(
Y
)
1,2,2

to, respectively, face-vectors Xiij , Xiji, Xijj ,
(
Y
)
1,2,3

to Xijk. Since each of these face-vectors is uniquely associated with a particular orbit, we will more
intuitively refer to them as ‘orbit representations’ in the following.

From the considerations above, it is interesting to notice that orbit representations have a precise,
characteristic collocation within the cubed tensor Y , directly induced by the equality patterns of
the orbits they are indexed by. In particular, Xiii corresponds to elements on the main diagonal of
the cube, Xiij , Xiji, Xijj to its three diagonal planes (with main-diagonal excluded), while Xijk

corresponds to the the overall adjacency cube (with the main diagonal and the three diagonal planes
excluded). The described partitioning is visually depicted in Albooyeh et al. [2, Figure in page 6] and
Figure 5 (corresponding to Figure 2 in the main paper).

B.1.2 Bag-of-subgraphs interpretation

An important observation underpinning the majority of our results is that the described cubed tensor
Y can represent bags of node-based subgraphs — this is in contrast with standard interpretations
whereby this tensor represents a 3-hypergraph [33, 32]. In particular, as depicted in Figure 1, we
arrange subgraphs on the first axis, whereas the second and third axes index nodes.

Accordingly, the adjacency matrix and node representations for subgraph ī are in sub-tensor Zī =

(Y)ī,j,k,l ∈ Rn2×d, with j, k = 1, . . . , n, l = 1, . . . , d. Here, coherently with [33], we assume node
representations are stored in the on-diagonal entries (j = k) of Zī, while off-diagonal terms (j ̸= k)
host edges, i.e. connectivity information.

We note that this interpretation of Y assigns meaningful semantics to orbit representations (see
Figure 5 for a visual illustration):

• Xiii stores representations for root nodes;

• Xijj stores representations for non-root nodes;

• Xiij stores connections incoming into root nodes;

• Xiji stores connections outgoing from root nodes;

• Xijk stores connections between non-root nodes.

To come back to the examples above, and consistently with the aforementioned semantics,
(
Y
)
1,1,1

represents subgraph 1’s root node (that is node 1);
(
Y
)
1,1,2

,
(
Y
)
1,2,1

the connectivity between such
root node and node 2 in the same subgraph;

(
Y
)
1,2,2

represents node 2 in subgraph 1;
(
Y
)
1,2,3

the
connectivity from node 3 to node 2 in subgraph 1.

13The use of symbol ‘∼=’, referring to an isomorphism, follows Albooyeh et al. [2].

19

It is important to note how this interpretation induces a correspondence between the 3-IGN tensor Y
and tensors A,X introduced in the main paper, Section 4. X gathers node features across subgraphs
and is therefore in correspondence with Xiii ⊔Xijj ; A hosts subgraph connectivity information and
is thus in correspondence with Xiij ⊔Xiji ⊔Xijk.

As a last note, this interpretation already preludes the more general, less constrained weight sharing
pattern advocated by the ReIGN(2) framework, which prescribes, for example, parameters specific
to root- and non-root-updates. See Figure 3. This will become more clear in the following (see
Equation 18).

B.1.3 Updating orbit representations

A 3-IGN architecture has the following form:
(A,X) 7→

(
m ◦ h ◦ I

)
(A,X) , I = L(T) ◦ σ . . . ◦ σ ◦ L(1) (16)

wherem is an MLP, h is an invariant linear ‘pooling’ layer andL’s are equivariant linear k-IGN-layers,
with k ≤ 3. From here onwards we will assume σ’s are ReLU non-linearities.

Albooyeh et al. [2] show that, effectively, a linear 3-IGN-layer L updates each orbit representation
such that output Xω′ is obtained as the sum of linear equivariant transformations of input orbit
representations Xω

14:

Y(t+1) = L(Yt) ∼=
⊔

ω′∈Ω

X
(t+1)
ω′ (17)

X
(t+1)
ω′ =

∑
ω∈Ω

W ω→ω′
(X(t)

ω) (18)

where, as the authors show, each W ω→ω′
corresponds to a linear combination of all pooling-

broadcasting operations defined between input-output orbit representation Xω, Xω′ :

W ω→ω′
(Xω) =

∑
P⊆[m]

B⊆⟨1,...,m′⟩
|B|=m−|P|

Wω→ω′

B,P BroadB,m′
(
PoolP(Xω)

)
(19)

with m the size of input orbit representation Xω and m′ the size of the output one. Broad and Pool
are defined in [2] as follows.

Pooling Let Xi1,...im be a generic face-vector of size m indexed by i1, . . . im. Let P =
{p1, . . . , pℓ} ⊆ [m]. PoolP sums over the indexes in P:

PoolP
(
Xi1,...im

)
=

∑
ip1 ̸=... ̸=ipℓ

ip1∈[n],...,ipℓ∈[n]

Xi1,...im (20)

where the inequality constraints in the summation derive from the fact that Xi1,...im represents an
orbit of the permutation group. To shorten the notation, we will write pooling operations as:

PoolP
(
Xi1,...im

)
= πout Xi1,...im

where out = {ip | p ∈ [m] \ P} i.e. the set of indexes which are not pooled over, from which it
follows that the cardinality of out states the size of the resulting object. For example, πi1

Xi1,i2
returns a size-1 object from a size-2 face-vector by summing over index variable i2.

The pooling operation applies in the same way when we repeat index variables in the subscript of the
input orbit representation: as more concrete examples, when interpreting Y as a bag of subgraphs,
πi Xijj sums the representations of all non-root nodes (subgraph readout) as:(

Poolj
(
Xijj

))
1
=

(
πi Xijj

)
1
=

(∑
j∈[n],j ̸=i

(
Y
)
i,j,j

)
1
=

∑
j∈[n],j ̸=1

(
Y
)
1,j,j

Similarly, πj Xijj sums non-root node representations across subgraphs (cross-subgraph aggregation).
Set out can be empty, in which case pooling amounts to global summation: e.g., π Xiii sums the
representations of all root nodes across the bag. Pooling boils down to the identity operation when
out replicates the free indexes in X – as no pooling is effectively performed. We will refrain from
explicitly writing this operation.

14Even if omitted, each face-vector update equation includes a bias term.

20

Broadcasting Let Xi1,...im be a generic face-vector of size m indexed by i1, . . . im and B =
(b1, . . . , bm) a tuple of m indexes, with bj ∈ [m′], j = 1, . . .m,m′ ≥ m. Operation BroadB,m′

“broadcasts” X over a target size-m′ face-vector in the sense that it identifies X by the target index
sequence B and broadcasts across the remaining m′ −m indexes:(

BroadB,m′
(
Xi1,...,im

))
i1,...,im′

= Xib1 ,...,ibm
(21)

For example, if input Xi1,i2 is a size-2 face-vector and output Yi1,i2,i3 is a size-3 face-vector,
Broad(1,2),3

(
Xi1,i2

)
maps X onto the first two indexes of Y , and broadcasts along the third. As

another example, for output size-2 face-vector Zi1,i2 , Broad(2,1),2
(
Xi1,i2

)
effectively implements

the ‘transpose’ operation. Similarly as above, we shorten the notation. Let us define ι such that,
∀ℓ ∈ [m′]:

ι(ℓ) =

{
j s.t. bj = ℓ if ℓ ∈ B,
∗ otherwise.

where ∗ indicates an index over which broadcasting is performed. We write C = (iι(1), . . . , iι(m′))
and rewrite the broadcast operation as:

BroadB,m′
(
Xi1,...,im

)
= βC Xi1,...,im

Accordingly, the examples above are rewritten as βi1,i2,∗ Xi1,i2 ,βi2,i1 Xi1,i2 :(
Yi1,i2,i3

)
1,2,3

=
(
Broad(1,2),3

(
Xi1,i2

))
1,2,3

=
(
βi1,i2,∗ Xi1,i2

)
1,2,3

=
(
Xi1,i2

)
1,2(

Zi1,i2

)
1,2

=
(
Broad(2,1),2

(
Xi1,i2

))
1,2

=
(
βi2,i1 Xi1,i2

)
1,2

=
(
Xi1,i2

)
2,1

In the subscript of β , we can conveniently retain the equality pattern of the orbit representation
where we are broadcasting onto. For a concrete example, Xijj = βi,∗j,∗j Xiii broadcasts the root
node representations over non-root ones, in a way that each non-root node j in subgraph i gets the
representation of root node i. It has to be noted that, in these cases, the length of tuple C may not
correspond to the size of the output face-vector, i.e. in those cases where indexes repeat, as above.
Finally, let us note that, when both input and target face-vectors have size m and B = [m], the
broadcasting operation boils down to the identity, e.g. βijk Xijk. We will omit it in writing in these
cases.

The above results suggest that a way to describe a 3-IGN stacking I = L(T) ◦ σ . . . ◦ σ ◦ L(1) is
to specify how each orbit representation Xω′ is updated from time step (t) to (t+ 1), according to
Equation 18, expanded as per Equation 19. In other words, stacking I is described by specifying, for
each layer L(t), every linear operator Wω→ω′

B,P,t in Equation 19. This is the main strategy we adopt in
the proofs described in the following.

As a last note, in an effort to ease the notation, we will:

1. Describe updates for Xω′ ’s (in the form of Equation 18) only when non-trivial;

2. (For each of the above) specify only the non-null linear operatorsWω→ω′

B,P,t and corresponding
terms.

For example, if layer L(t) only applies linear transformation W iii→iii
(1),∅,t =W to orbit representation

X
(t)
iii , we will simply write:

X
(t+1)
iii =W ·X(t)

iii

implying that, according to 2., all other terms in Equation 19 are nullified by operator 0 and, according
to 1., all other orbit updates read as X(t+1)

ω = Id ·X(t)
ω .

B.1.4 Pointwise operations

We define as ‘pointwise’ those operations which only apply to the feature dimension(s) and implement
a form of channel mixing. By operating independently on the feature dimension(s), these are trivially
equivariant. As these operations can be performed on any orbit representation, we will not specify

21

them in the following descriptions, and will simply assume to be working with generic tensors
X,Y, Z.

Linear transformations are the most natural pointwise operations the 3-IGN framework supports.
Some of these are of particular interest as they will be heavily used in our proofs. We describe them
below and define convenient notation for them.

Copy/Routing Pointwise linear operators can copy some specific feature channels in the input
tensor and route them into some other output channels. Let X refer to a tensor representing orbit
elements with din channels, and Y to an output tensor with dout channels. We will write:

Y = κa:b
e:f X

to refer to the operation which writes channels a to b (included) in X into channels e to f (included)
in Y , with a ≤ b ≤ din, e ≤ f ≤ dout, b− a = f − e. Here, κa:b

e:f is used to conveniently denote
operator W : a matrix dout × din where the square submatrix We:f,a:b = Ib−a+1 and other entries
are 0. When omitting left indices we start from the first channel, i.e., κ:b

e:f = κ1:b
e:f . When omitting

right indices we end at the last channel, i.e., κa:b
e: = κa:b

e:f for f output channels. We will use notation
κa:b

c:d/(e) to specify the target has e channels, whenever not clear from the context.

Selective copy/routing With a slight notation overload, we also write κin
out — with in, out being

index tuples of the same cardinality ℓ — to refer to specific channels in, respectively, input and output
tensors. For instance, κa,b,c

d,e,f copies (or routes) input channels a, b, c into output channels d, e, f ,
with such indices being not necessarily contiguous. Again, this operation is linear and is implemented
by a matrix W having 1 in all entries in the form (outk, ink), k ∈ [ℓ], 0 elsewhere.

Concatenation Two (compatible) operands can be concatenated by means of the copy/routing
operation above along with summation. For example, if the two are d dimensional, it is sufficient to
route them into the two distinct halves of a 2d-dimensional output tensor and then sum the two:

Z = κ:
:d X + κ:

d+1:2d Y

Concurrent linear transformations We note that one single linear operator can apply multiple
linear transformations on (a specific subset of) channels of the input tensor. Let W1,W2 be two
operators of size dout × din. Obtained as the vertical stacking of W1,W2, operator W can be applied
to tensor X with din channels. It produces an output tensor Y with 2 · dout channels, where the
first dout channels store the result of applying W1, channels dout + 1 to 2 · dout store that from the
application of W2. We write:

Y = [W1 W2] X

Pre-multiplying routing operators allows these transformations to be applied to a selection of a subset
of input channels. As an example, let X be an input with 2 · d channels, and W1,W2 be two d× d
linear operators. Expression:

Y = [W1 · κ:d
:d W2 · κd+1:2d

:d] X

effectively appliesW1 to the first d channels ofX ,W2 to channels d+1 to 2d. In fact, [W1 ·κ:d
:d W2 ·

κd+1:2d
:d] consists, as a whole, of a block diagonal matrix made up of operators W1 (leftmost upper

block) and W2 (rightmost lower block). Clearly, these operations can be extended to more than two
concurrent linear operators.

We note that this notation also captures the following ‘replication’ operation:
Y = [Id Id] X

which outputs two (stacked) copies of d-dimensional input tensor X .

Concurrent transformations and channel-wise summation LetX be an tensor with 2·d channels,
and W1,W2 two d× d linear operators. The following expression applies W1 to the first d channels
of X , W2 to channels d+ 1 to 2d and sums the result channel by channel:

Y = [W1 ||W2] X

In fact, [W1 ||W2] can be interpreted as single linear operator d × 2 · d obtained by horizontally
stacking W1,W2. As a particular case, we can simply sum the two halves of X by [Id || Id] X .

22

A note on non-linearities A 3-IGN-layer stacking is in the form I = L(T) ◦σ . . .◦σ ◦L(1), where
L’s are linear equivariant layers and σ’s are ReLU non-linearities. In principle, these non-linearities
in between layers may alter the result of linear computation they perform. For example, in order to
perform an exact copy of input representation X , it may not be sufficient to simply choose an identity
weight matrix Id: the following ReLU non-linearity would clip negative entries to 0, thus invalidating
the correctness of the operation. However, we note that the identity function can be implemented by
a ReLU-network, as y = x = σ(x)− σ(−x). This means that the copy operation can be realised by
a 3-IGN-layer stacking as:

Y = [Id || − Id] ·
(
σ
(
[Id − Id] X

))
This effectively provides us with a way to ‘choose’, in a 3-IGN layer stacking, when to apply σ’s
and when not to. Indeed, we can always work with 2d channels where all entries are non-negative:
the positive entries in the first d channels store the originally positive ones, those in the second d
channels store the originally negative ones, negated. This expansion can be realised by one layer as
Y = σ

(
[Id −Id]X

)
and is such that ReLU activations act neutrally. Any linear transformationW is

now applied as Y = σ
(
UX

)
, with U = [Id −Id] ·W · [Id || −Id] . Whenever computation requires

the application of ReLUs after linear transformation W , it is sufficient to perform the following:
Y = [Id − Id] ·

(
σ
(
V X

))
, with V = W · [Id || − Id] . Operator [Id − Id] will effectively be

absorbed by the linear transformation in the following layer. This doubled representation also allows
to apply non-linearities to some particular channels only. This can be realised by Y = σ

(
U ′X

)
, with

U ′ constructed as U above, but with the difference being that entries in its (d+ e)-th row are set to 0,
if e is an output channel where the ReLU non-linearity takes effect.

These considerations show that, in fact, interleaving linear (equivariant) layers with ReLU non-
linearities does not hinder the possibility of performing (partially) linear computation, which can
always be recovered at the cost of having additional channels and/or layers. In view of the above
observations, and in an effort to ease the notation, in the proofs reported in the following sections we
will thus assume to be allowed to stack linear layers with no ReLU activations in between.

Multi-Layer Perceptron 3-IGNs can naturally implement the application of a Multi-Layer Percep-
tron (MLP) to the feature dimension(s) of a particular orbit representation, as it stacks linear layers,
interspersed with non-linearities. Each of these dense linear layers is trivially equivariant, and so is
the overall stacking. We generally write:

Y = φ(f) X

to indicate the application of an MLP implementing (or approximating) function f . Additionally,
we use the notation φ

(f)in
out to indicate that φ(f) acts on the in channels of its input and writes

over channels out of the output. This behaviour can be obtained by multiplying the MLP inputs by
operator κin and its output by operator κout .

MLP-copy We can also combine copy and MLP operations together. In other words, we can apply
an MLP on some particular channels while copying some others; we write this operation as

Y = [κin
out φin′

out′] X

This operation can be implemented by ‘embedding’ the weights of the MLP in appropriately sized
matrices where remaining entries perform copy/routing operations and are not affected by non-
linearities (see discussion above). More in specific, to see how this is implemented, let the MLP
φin′

out′ above have weight matrices
(
W1,W2, . . . ,WL

)
with W1 ∈ Rd1×|in′|, Wl ∈ Rdl×dl−1 ,∀l =

2 . . . L− 1, WL ∈ R|out′|×dL−1 . Then, Y is obtained by stacking:

Y =
(
UL ◦ σ . . . ◦ σ ◦ U1

)
X

where Ul, l ∈ [L] are linear operators obtained as follows.

U1 = [I(1) − I∗(1)] · [κin
: W1 · κin′

:]

I(1) = I|in|+d1

I∗(1) = [[I|in| ||0|in|×d1
] 0d1×(|in|+d1)]

23

For any l = 2 . . . L− 1:

Ul = [I(l) − I∗(l)] · Vl · [I|in|+dl−1
|| − I|in|+dl−1

]

Vl = [[I|in| ||0|in|×dl−1
] [0dl×|in| ||Wl]]

I(l) = I|in|+dl

I∗(l) = [[I|in| ||0|in|×dl
] 0dl×(|in|+dl)]

Finally:

UL = κ:
(out||out′) · [I(L) − I∗(L)] · VL · [I|in|+dL−1

|| − I|in|+dL−1
]

VL = [[I|in| ||0|in|×dL−1
] [0|out′|×|in| ||WL]]

I(L) = I|in|+|out′|

I∗(L) = [[I|in| ||0|in|×|out′|] 0|out′|×(|in|+|out′|)]

with (out||out′) the concatenation of the two output index tuples out and out′.

Logical AND For inputs in {0, 1}, it is possible to exactly implement the logical AND function
y = f(a, b) = a ∧ b as y = σ

(
+ 2 · a+ 2 · b− 3

)
, with σ being the ReLU non-linearity. As 3-IGNs

can implement pointwise MLPs, this operation can be performed as well when operands are on two
distinct channels of the same orbit representation. In particular, for a d-dimensional input X we
write:

Y = φ(∧)a,b
c X

to indicate the operation that applies a logical AND between channels a and b of input X and writes
the result into channel c in output Y , with a, b, c ∈ [d]. For this operation in particular, we also
imply that the rest of X is written in the remaining output channels, that is, we imply we are, in fact,
performing [κ

[d]\{c}
[d]\{c} φ

(∧)a,b
c] .

Clipping An MLP equipped with one hidden layer and ReLU activation can exactly implement the
1-clipping function f↓ = min(x, 1). In practice, f↓ clips inputs at the value of 1. For a scalar input,
this is realised as:

y = −σ
(
− x+ 1

)
+ 1

An MLP φ(↓) implementing this function on each channel of a multi-dimensional input X is
constructed as:

Y = −Id σ
(
− Id X + 1d

)
+ 1d

where 1d is the d-dimensional one-vector. The existence of such an MLP entails that 3-IGNs can
exactly implement the clipping function as well, as a pointwise operation.

B.2 Implementing node-based selection policies

We now show how IGNs can compute node-based selection policies, proving Lemma 4. We will
make use of concepts introduced above; the partitioning into orbits and the computational primitives
in particular.

Proof of Lemma 4. We assume to be given an n-node graph G in input, represented by tensor
A ∈ Rn×n×d. A is subject to Sn symmetry, which partitions it into two distinct orbits: on-diagonal
terms Aii and off-diagonal terms Aij , i ̸= j. Aii store d-dimensional node features; Aij the binary
graph connectivity in its first channels, with others being 0-padded.

The first operation, common to the implementation of all the policies, consists of lifting the two-way
tensor A to the three-way tensor Y ∈ Rn3×d interpreted as a bag of subgraphs and partitioned into
orbit tensors as described above in Section B.1.1. This step is realised by the following broadcasting

24

operations15:

X
(0)
iii = βi,i,i Aii

X
(0)
jii = β∗,i,i Aii

X
(0)
iij = βi,i,j Aij

X
(0)
iji = βi,j,i Aij

X
(0)
kij = β∗,i,j Aij

We now focus on each of the considered policies in particular.

[node-deletion] Given that Xiij , Xiji contain all and only those connections involving root nodes, it
is sufficient to zero them out to recover a node-deleted bag. We thus perform the following operations:

Xiij = 0 ·X(0)
iij

Xiji = 0 ·X(0)
iji

[node-marking] adds a special ‘mark’ to root nodes only. We implement it by adding one additional
dimension to node features and by setting that to 1 only for root nodes via the bias term:

Xiii = κ1:d
1:d/(d+1)

X
(0)
iii + 1d+1

Xijj = κ1:d
1:d/(d+1)

X
(0)
ijj + 0d+1

Xiij = κ1:d
1:d/(d+1)

X
(0)
iij + 0d+1

Xiji = κ1:d
1:d/(d+1)

X
(0)
iji + 0d+1

Xijk = κ1:d
1:d/(d+1)

X
(0)
ijk + 0d+1

where 1d+1 is a (one-hot) (d+ 1)-dimensional vector being 1 in dimension d+ 1, 0 elsewhere; 0d+1

is the (d+ 1)-dimensional zero vector.

[ego-networks(h)] So far, we have mostly made use of the orbit-partitioning that is induced by the Sn

symmetry group, which has allowed us to implement the node-deletion and node-marking policies
with one single 3-IGN layer. We now show that, in order to implement the ego-networks policy,
multiple layers are required, as a 3-IGN effectively needs to perform Breadth-First-Search for each
node in the graph to construct h-hop neighbourhoods. We illustrate the required steps below, which
mainly articulate in (i) the construction of h-hop neighbourhoods around nodes; (ii) extraction of
egonets from such neighbourhoods. The yet-to-describe 3-IGN will realise part (i) by storing a
‘reachability’ patterns in an additional channel in Xijj : element

(
Xd+1

ijj

)
i=v,j=w

will be set to 1 if
node w is reachable from node v in h hops, 0 otherwise. In part (ii), these patterns will be utilised,
for each subgraph, to nullify the connectivity involving unreachable nodes, thus effectively extracting
h-hop egonets. We start by describing the layers implementing part (i).

(Immediate neighbourhood) For immediate neighbours, the reachability pattern is already (implicitly)
stored in Xiij , as it contains the direct connectivity involving root nodes. We therefore copy this
information into an additional channel in Xijj . This value will be updated iteratively as we explore
higher-order neighborhoods. In the following, we conveniently set e = d+ 1 to ease the notation.

X
(1)
ijj = κ:d

:d/(e) X
(0)
ijj + κ:1

e: βi,j,j X
(0)
iij

(Higher-order neighbourhoods) We repeat the following steps (h− 1) times, and describe the generic
l-th step. We first broadcast the current reachability pattern into Xijk, writing it into the second
channel (the first contains the original graph connectivity). Essentially, this operation ‘propagates’
the subgraph-wise reachability pattern copying it row-by-row.

X
(l,1)
ijk = X

(l−1)
ijk + κe:

2:2 βi,∗,j X
(l−1)
ijj

15This layer effectively implements the null policy, see Appendix G.

25

Having placed the pattern as described above, we perform a logical AND between the first two
channels of Xijk and write back the result into the second channel.

X
(l,2)
ijk = φ

(∧)1:2
2:2/(e) X

(l,1)
ijk

For a specific node w in a given subgraph v, this operation spots the neighbours of w that are currently
marked in v, effectively propagating the reachability information one hop farther. At this point,
pooling over rows counts the number of such neighbours: if at least one is reachable, then node w
becomes reachable as well, and its corresponding entry must be set to 1 in the updated reachability
pattern. We therefore complete the l-th hop step by updating the pattern accordingly and by clipping
it to 1.

X
(l,3)
ijj = X

(l,2)
ijj + κ2:2

e: βi,j,j πi,j X
(l,2)
ijk

X
(l)
ijj = [κ:d

:d/(e) φ(↓)e:e
e:e] X

(l,3)
ijj

(Egonet extraction) We complete the implementation of the policy by leveraging the computed
reachability pattern to extract the required egonets. We do this by nullifying the connectivity entries
in Xijk for those nodes still unreached, i.e. we zero out row- and column-elements for nodes whose
entry in the reachability pattern is 0. To perform this operation we appropriately broadcast the pattern
and use it as an argument into a logical AND:

X
(x,1)
ijk = X

(h)
ijk + κe:

2:2 βi,j,∗ X
(h)
ijj

X
(x,2)
ijk = φ

(∧)1:2
2:2 X

(x,1)
ijk

X
(x,3)
ijk = X

(x,2)
ijk + κe:

3:3 βi,∗,j X
(x,2)
ijj

X
(x,4)
ijk = φ

(∧)1:3
3:3 X

(x,3)
ijk

X
(x)
ijk = φ

(∧)2:3
:1 X

(x,4)
ijk

Finally, we save the reachability pattern in channel 2 of Xiij ; this information effectively conveys,
for each subgraph, the membership of each node to that specific subgraph. At the same time, we
bring all other orbit tensors to the original dimension d:

Xiii = κ:d
:d X

(x)
iii

Xijj = κ:d
:d X

(x)
ijj

Xiij = κ:1
:1/(d) X

(x)
iij + κe:

2:2/(d) βi,i,j X
(x)
ijj

Xiji = κ:d
:d X

(x)
iji

Xijk = κ:d
:d X

(x)
ijk

[Retaining original connectivity] In all the derivations above we have overwritten the first channel of
orbit representations Xiij , Xiji, Xijk with the computed subgraph connectivity. However, certain
Subgraph GNNs may require to retain the original graph connectivity, see, e.g., Equations (9) and (12).
In that case it is sufficient to first replicate the first channel of the aforementioned orbit representations
into another one before altering it to obtain the subgraph connectivity.

B.3 Implementing Subgraph GNN layers

Before proceeding to prove Lemma 5, we report the equation of a GNN layer in the form due
to Morris et al. [36], which we assume is the base-encoder of the Subgraph GNN layers considered
in the following.

x
(t+1)
i = σ

(
W1,t · x(t)i +W2,t ·

∑
j∼i

x
(t)
j

)
(22)

Proof of Lemma 5. We will implement the update equations for a generic bag B ∈ {B(t)
1 , B

(t)
2 }

represented by Rn3×d tensor Y(t) ∼= X
(t)
iii ⊔X(t)

ijj ⊔X
(t)
iij ⊔X(t)

iji ⊔X
(t)
ijk. When necessary, we will

26

use an additional subscript to indicate which of the two input bags the tensor is representing, as in
X

(t)
(1),ijk. In the following we assume B1 is the bag for graph G1 of n1 nodes, B2 is the bag for graph

G2 of n2 nodes.

[DS-GNN] When equipped with Morris et al. [36] base-encoder, DS-GNN updates the representation
of node i in subgraph k as:

x
k,(t+1)
i = σ

(
W1,t · xk,(t)i +W2,t ·

∑
j∼ki

x
k,(t)
j

)
(23)

([1] Message broadcasting) One first 3-IGN layer propagates the current node representations in
a way to prepare them for the following aggregation. Node representations Xijj are written over
Xijk, Xiij ; the ones in Xiii over Xiji: This will allow matching them with the subgraph connectivity
stored in the first channel of such tensors.

X
(t,1)
iij = κ:d

:d/(2d) X
(t)
iij + κ:

d+1:2d βi,i,j X
(t)
ijj

X
(t,1)
iji = κ:d

:d/(2d) X
(t)
iji + κ:

d+1:2d βi,∗,i X
(t)
iii

X
(t,1)
ijk = κ:d

:d/(2d) X
(t)
ijk + κ:

d+1:2d βi,∗,j X
(t)
ijj

([2] Message sparsification & aggregation) 3-IGNs only possess global pooling as computational
primitive, while message-passing requires a form of local aggregation in accordance to the con-
nectivity at hand. For each node, we realise this by first nullifying messages from non-adjacent
nodes followed by global summation. We make use of a result by Yun et al. [57] to show that the
aforementioned nullification, over the two bags in input, can be exactly implemented by a (small)
ReLU network memorising a properly assembled dataset. Let us first report the result of interest [57,
Theorem 3.1]:

Theorem 13 (Theorem 3.1 from Yun et al. [57]). Consider any datasaset {(xi, yi)}Ni=1 such that all
xi’s are distinct and all yi ∈ [−1,+1]dy . If a 3-layer ReLU-like MLP fθ satisfies 4⌊d1/4⌋⌊d2/(4dy)⌋ ≥
N , then there exists a parameter θ such that yi = fθ(xi) for all i ∈ [N].

The theorem guarantees the existence of a properly sized ReLU network able to memorise an input
dataset satisfying the reported conditions. We note that one of these conditions can, in a sense, be
relaxed:

Proposition 14 (Memorisation). Consider any dataset D = {(xi, yi)}Ni=1 such that all xi’s ∈ Rdx

are distinct and all yi ∈ Rdy . There exists a 3-layer ReLU-like MLP φ(D) such that yi = φ(D) (xi)
for all i ∈ [N].

Proof. Let M = max{maxi∈[N] |yi|,1dy}, where max is intended to be applied element-wise.
Let D̃ = {(xi, ỹi) | ỹi = yi ⊘ M}Ni=1, where ⊘ is element-wise division. Dataset D̃ satisfies
the assumptions in Theorem 13, as targets ỹi are now all necessarily in [−1,+1]dy . Hence, there
exists a 3-layer ReLU MLP fθ memorising D̃. Let (Wl, bl) refer to its weight matrix and bias
vector at the l-th layer, l = 1, 2, 3. Let W̄ = diag(M), i.e. a diagonal matrix in Rdy×dy such
that W̄ii = Mi, i ∈ [dy]. To conclude the proof it is sufficient to construct a 3-layer ReLU MLP
φ(D) with parameter stacking {(WD

l , b
D
l)}l=1,2,3 such that: (WD

1 , b
D
1) = (W1, b1), (W

D
2 , b

D
2) =

(W2, b2), (W
D
3 , b

D
3) = (W̄ ·W3, W̄ · b3).

We now continue our proof. Formally, we seek to find two MLPs φ(⊙iij) ,φ(⊙ijk) implementing,
respectively, functions f⊙iij , f

⊙
ijk satisfying the following. f⊙iij is such that ∀a, b ∈ [n], a ̸= b:

f⊙iij
(
X

(t,1)
aab

)
=

{
0d if X(t,1),1

aab = 0,

X
(t,1),d+1:
aab otherwise.

Likewise, f⊙ijk is such that: ∀a, b, c ∈ [n], a ̸= b ̸= c:

f⊙ijk
(
X

(t,1)
abc

)
=

{
0d if X(t,1),1

abc = 0,

X
(t,1),d+1:
abc otherwise.

27

We construct two datasets:

Diij =
{(
x, f⊙iij(x)

) ∣∣x = X
(t,1)
(1),aab ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙iij(x)

) ∣∣x = X
(t,1)
(2),aab ∀a, b ∈ [n2], a ̸= b

}
Dijk =

{(
x, f⊙ijk(x)

) ∣∣x = X
(t,1)
(1),abc ∀a, b, c ∈ [n1], a ̸= b ̸= c

}
∪

∪
{(
x, f⊙ijk(x)

) ∣∣x = X
(t,1)
(2),abc ∀a, b, c ∈ [n2], a ̸= b ̸= c

}
Here, as all targets are the output of a well-defined function, these datasets satisfy, by construction,
the hypothesis of Preposition 14, which we apply on both. This guarantees the existence of φ(⊙iij) ,
φ(⊙ijk) ; their application allows global pooling to effectively recover sparse message aggregation.
We also notice that, when updating representations of non-root nodes, roots may be amongst their
neighbours, so that it may be needed to additionally sum their representations in Xiii to Xijj ,
conditioned on the subgraph connectivity information stored in Xiji. Accordingly, let us define
function f⊙iji:

f⊙iji
(
X

(t,1)
aba

)
=

{
0d if X(t,1),1

aba = 0,

X
(t,1),d+1:
aba otherwise.

We construct dataset:

Diji =
{(
x, f⊙iji(x)

) ∣∣x = X
(t,1)
(1),aba ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙iji(x)

) ∣∣x = X
(t,1)
(2),aba ∀a, b ∈ [n2], a ̸= b

}
Invoking Proposition 14 on Diji guarantees the existence of φ(⊙iji) memorising Diji. We let the
described 3-IGN implement such networks:

X
(t,2)
iij = [κ:d

:d φ
(⊙iij):
d+1:] X

(t,1)
iij

X
(t,2)
iji = [κ:d

:d φ
(⊙iji):
d+1:] X

(t,1)
iji

X
(t,2)
ijk = [κ:d

:d φ
(⊙ijk):
d+1:] X

(t,1)
ijk

This last layer completes message aggregation:

X
(t,3)
iii = κ:d

:d X
(t,2)
iii + κd+1:

d+1: βiii πi X
(t,2)
iij (24)

X
(t,3)
ijj = κ:d

:d X
(t,2)
ijj + κd+1:

d+1: βijj X
(t,2)
iji + κd+1:

d+1: βijj πij X
(t,2)
ijk (25)

([3] Update) We finally describe the statements implementing linear transformations operated by
parameters W1,t,W2,t, other than bringing the other orbit representations to dimension d:

X
(t+1)
iii = σ

(
[W1,t ||W2,t] X

(t,3)
iii

)
(26)

X
(t+1)
ijj = σ

(
[W1,t ||W2,t] X

(t,3)
ijj

)
(27)

X
(t+1)
iij = κ:1

:1/(d) X
(t,3)
iij

X
(t+1)
iji = κ:1

:1/(d) X
(t,3)
iji

X
(t+1)
ijk = κ:1

:1/(d) X
(t,3)
ijk

[DSS-GNN] When equipped with Morris et al. [36] base-encoder, DSS-GNN updates representation
of node i in subgraph k as:

x
k,(t+1)
i = σ

(
W 1

1,t · x
k,(t)
i +W 1

2,t ·
∑
j∼ki

x
k,(t)
j +W 2

1,t ·
∑
h

x
h,(t)
i +W 2

2,t ·
∑
j∼i

∑
h

x
h,(t)
j

)
(28)

28

([0] Cross-bag aggregation) We start by performing those operations above of the form
∑

h:

X
(t,0)
iii = [Id Id] X

(t)
iii + κ:

d+1:2d βj,j,j πj X
(t)
ijj

X
(t,0)
ijj = κ:

:d X
(t)
ijj + κ:

d+1:2d β∗,j,j πj X
(t)
ijj + κ:

d+1:2d β∗,i,i X
(t)
iii

([1] Message broadcasting) Similarly as in DS-GNN, we propagate node representations — and their
cross-bag aggregated counterparts — on those orbits storing (sub)graph connectivity.

X
(t,1)
iij = κ:d

:d/(3d) X
(t,0)
iij + κ:

d+1:3d βi,i,j X
(t,0)
ijj

X
(t,1)
iji = κ:d

:d/(3d) X
(t,0)
iji + κ:

d+1:3d βi,∗,i X
(t,0)
iii

X
(t,1)
ijk = κ:d

:d/(3d) X
(t,0)
ijk + κ:

d+1:3d βi,∗,j X
(t,0)
ijj

([2] Message sparsification & aggregation) We now follow the same rationale as for DS-GNN, and
construct datasets that allow the invocation of Proposition 14. This will guarantee the existence of an
MLP that can be applied to retain, for each node, only those messages coming from direct neighbours,
according to the subgraph connectivity (stored in channel 1) or the original one (which we assume to
be stored in channel 2). Precisely, we would like to memorise the following functions:

f⊙,∼i

iij

(
X

(t,1)
aab

)
=

{
0d if X(t,1),1

aab = 0,

X
(t,1),d+1:2d
aab otherwise.

f⊙,∼i

iji

(
X

(t,1)
aba

)
=

{
0d if X(t,1),1

aba = 0,

X
(t,1),d+1:2d
aba otherwise.

f⊙,∼i

ijk

(
X

(t,1)
abc

)
=

{
0d if X(t,1),1

abc = 0,

X
(t,1),d+1:2d
abc otherwise.

f⊙,∼
iij

(
X

(t,1)
aab

)
=

{
0d if X(t,1),2

aab = 0,

X
(t,1),2d+1:
aab otherwise.

f⊙,∼
iji

(
X

(t,1)
aba

)
=

{
0d if X(t,1),2

aba = 0,

X
(t,1),2d+1:
aba otherwise.

f⊙,∼
ijk

(
X

(t,1)
abc

)
=

{
0d if X(t,1),2

abc = 0,

X
(t,1),2d+1:
abc otherwise.

and construct the corresponding datasets:

D∼i
iij =

{(
x, f⊙,∼i

iij (x)
) ∣∣x = X

(t,1)
(1),aab ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,∼i

iij (x)
) ∣∣x = X

(t,1)
(2),aab ∀a, b ∈ [n2], a ̸= b

}
D∼i

iji =
{(
x, f⊙,∼i

iji (x)
) ∣∣x = X

(t,1)
(1),aba ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,∼i

iij (x)
) ∣∣x = X

(t,1)
(2),aba ∀a, b ∈ [n2], a ̸= b

}
D∼i

ijk =
{(
x, f⊙,∼i

ijk (x)
) ∣∣x = X

(t,1)
(1),abc ∀a, b, c ∈ [n1], a ̸= b ̸= c

}
∪

∪
{(
x, f⊙,∼i

ijk (x)
) ∣∣x = X

(t,1)
(2),abc ∀a, b, c ∈ [n2], a ̸= b ̸= c

}
D∼

iij =
{(
x, f⊙,∼

iij (x)
) ∣∣x = X

(t,1)
(1),aab ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,∼

iij (x)
) ∣∣x = X

(t,1)
(2),aab ∀a, b ∈ [n2], a ̸= b

}
D∼

iji =
{(
x, f⊙,∼

iji (x)
) ∣∣x = X

(t,1)
(1),aba ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,∼

iij (x)
) ∣∣x = X

(t,1)
(2),aba ∀a, b ∈ [n2], a ̸= b

}
D∼

ijk =
{(
x, f⊙,∼

ijk (x)
) ∣∣x = X

(t,1)
(1),abc ∀a, b, c ∈ [n1], a ̸= b ̸= c

}
∪

∪
{(
x, f⊙,∼

ijk (x)
) ∣∣x = X

(t,1)
(2),abc ∀a, b, c ∈ [n2], a ̸= b ̸= c

}

29

These, by Proposition 14, are memorised by, respectively, MLPs
φ(⊙∼i

iij) ,φ(⊙∼i
iji) ,φ(⊙∼i

ijk) ,φ(⊙∼
iij) ,φ(⊙∼

iji) ,φ(⊙∼
ijk) . We let our 3-IGN model apply

these:

X
(t,2)
iij =

[
κ:d
:d φ

(⊙∼i
iij):

d+1:2d φ
(⊙∼

iij):

2d+1:

]
X

(t,1)
iij

X
(t,2)
iji =

[
κ:d
:d φ

(⊙∼i
iji):

d+1:2d φ
(⊙∼

iji):

2d+1:

]
X

(t,1)
iji

X
(t,2)
ijk =

[
κ:d
:d φ

(⊙∼i
ijk):

d+1:2d φ
(⊙∼

ijk):

2d+1:

]
X

(t,1)
ijk

It is only left to aggregate messages via global pooling:

X
(t,3)
iii = κ:2d

:2d/(4d) X
(t,2)
iii + κd+1:

2d+1:4d βiii πi X
(t,2)
iij

X
(t,3)
ijj = κ:2d

:2d/(4d) X
(t,2)
ijj + κd+1:

2d+1:4d βijj X
(t,2)
iji + κd+1:

2d+1:4d βijj πij X
(t,2)
ijk

([4] Update) We describe the statements implementing the final linear transformations:

X
(t+1)
iii = σ

(
[W 1

1,t ||W 2
1,t ||W 1

2,t ||W 2
2,t] X

(t,3)
iii

)
X

(t+1)
ijj = σ

(
[W 1

1,t ||W 2
1,t ||W 1

2,t ||W 2
2,t] X

(t,3)
ijj

)
X

(t+1)
iij = κ:2

:2/(d) X
(t,3)
iij

X
(t+1)
iji = κ:2

:2/(d) X
(t,3)
iji

X
(t+1)
ijk = κ:2

:2/(d) X
(t,3)
ijk

[GNN-AK-ctx] When equipped with Morris et al. [36] base-encoder, GNN-AK-ctx updates represen-
tation of node i in subgraph k as:

x
k,(t,0)
i = x

k,(t)
i

x
k,(t,l+1)
i = σ

(
W1,t,l · xk,(t,l)i +W2,t,l ·

∑
j∼ki

x
k,(t,l)
j

)
, l = 0, . . . , L− 1 [S] (29)

x
k,(t+1)
i = x

i,(t,L)
i +

∑
j

x
j,(t,L)
i +

∑
j

x
i,(t,L)
j [A] (30)

([S]) In order to implement block [S], it is sufficient to repeat steps [1–3] in the DS-GNN derivation
L times, i.e. the desired number of message-passing steps. We obtain representations X(t,L).

([A]) Block [A] is implemented as:

X
(t+1)
iii = 3 ·X(t,L)

iii + βi,i,i πi X
(t,L)
ijj + βj,j,j πj X

(t,L)
ijj

X
(t+1)
ijj = 3 · β∗,i,i ·X(t,L)

iii + β∗,i,i πi X
(t,L)
ijj + β∗,j,j πj X

(t,L)
ijj

In the original paper [61], the second and third terms in block [A] only operate on the nodes which
are members of the ego-networks at hand:

x
k,(t+1)
i = x

i,(t,L)
i +

∑
j∈V i

x
j,(t,L)
i +

∑
j∈V i

x
i,(t,L)
j [A]

We show that 3-IGNs can implement this block formulation as well, by resorting to the same
sparsification technique employed in the derivation of DS-GNN. Let us recall that, as already
mentioned above, the ego-networks policy can store reachability patterns in orbit representation
Xiij : they convey, for each node j, its membership to subgraph i. This information can be used to
sparsify node representations being aggregated by the global pooling operations taking place in the
equations above. We start by placing node representations Xijj onto Xiij , Xiji. Let us also replicate
reachability patterns into the second channel of Xiji.

X
(t,p)
iij = κ:d

:d X
(t,L)
iij + κ:d

d+1:2d βi,i,j X
(t,L)
ijj

X
(t,p)
iji = κ:d

:d X
(t,L)
iji + κ2:2

2:2 βi,j,i X
(t,L)
iij + κ:d

d+1:2d βj,i,j X
(t,L)
ijj

30

We would like to memorise the following sparsification functions:

f⊙,V i

iij

(
X

(t,p)
aab

)
=

{
0d if X(t,p),2

aab = 0,

X
(t,p),d+1:
aab otherwise.

f⊙,V i

iji

(
X

(t,p)
aba

)
=

{
0d if X(t,p),2

aba = 0,

X
(t,p),d+1:
aba otherwise.

so we construct the following datasets:

DV i

iij =
{(
x, f⊙,V i

iij (x)
) ∣∣x = X

(t,p)
(1),aab ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,V i

iij (x)
) ∣∣x = X

(t,p)
(2),aab ∀a, b ∈ [n2], a ̸= b

}
DV i

iji =
{(
x, f⊙,V i

iji (x)
) ∣∣x = X

(t,p)
(1),aba ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,V i

iji (x)
) ∣∣x = X

(t,p)
(2),aba ∀a, b ∈ [n2], a ̸= b

}
Again, we invoke Proposition 14, which guarantees the existence of MLPs φ(⊙V i

iij) ,φ(⊙V i

iji) . Let
the 3-IGN model implement them:

X
(t,p+1)
iij = [κ:d

:d φ
(⊙V i

iij):

d+1:2d] X
(t,p)
iij

X
(t,p+1)
iji = [κ:d

:d φ
(⊙V i

iji):

d+1:2d] X
(t,p)
iji

Then, we perform the last global pooling step to complete the implementation of block [A]:

X
(t+1)
iii = 3 · κ:d

:d X
(t,p+1)
iii + κd+1:2d

:d βi,i,i πi X
(t,p+1)
iij + κd+1:2d

:d βi,i,i πi X
(t,p+1)
iji (31)

X
(t+1)
ijj = 3 · κ:d

:d β∗,i,i X
(t,p+1)
iii + κd+1:2d

:d β∗,i,i πi X
(t,p+1)
iij + κd+1:2d

:d β∗,i,i πi X
(t,p+1)
iji (32)

X
(t+1)
iij = κ1:2

1:2/(d) X
(t,p+1)
iij

X
(t+1)
iji = κ1:1

1:1/(d) X
(t,p+1)
iji

X
(t+1)
ijk = κ1:1

1:1/(d) X
(t,p+1)
ijk

[GNN-AK] In the case of [A] operating only on those nodes in the ego-networks at hand, it is
sufficient to rewrite Equations 31, 32 as:

X
(t+1)
iii = 2 · κ:d

:d X
(t,p+1)
iii + κd+1:2d

:d βi,i,i πi X
(t,p+1)
iij

X
(t+1)
ijj = 2 · κ:d

:d β∗,i,i X
(t,p+1)
iii + κd+1:2d

:d β∗,i,i πi X
(t,p+1)
iij

These equations would also implement the more general block [A] in Equation (30).

[ID-GNN] With Morris et al. [36] base-encoder, ID-GNN updates node representations as:

x
k,(t+1)
i = σ

(
W1,tx

k,(t)
i +W2,t

∑
j∼ki,j ̸=k

x
k,(t)
j + 1[k∼ki] ·W3,tx

k,(t)
k

)
(33)

Message passing is performed according to the same 3-IGN programme as in DS-GNN, with the only
modifications required to Equations 24,25,26,27. Equations 24 and 25 are rewritten as:

X
(t,3)
iii = κ:d

:d X
(t,2)
iii + κ:d

d+1: W2,tκ
d+1:
:d βiii πi X

(t,2)
iij

X
(t,3)
ijj = κ:d

:d X
(t,2)
ijj + κ:d

d+1: W3,tκ
d+1:
:d βijj X

(t,2)
iji + κ:d

d+1: W2,tκ
d+1:
:d βijj πij X

(t,2)
ijk

whereas Equations 26, 27 as:

X
(t+1)
iii = σ

(
[W1,t || Id] X(t,3)

iii

)
X

(t+1)
ijj = σ

(
[W1,t || Id] X(t,3)

ijj

)
[NGNN] Using a Morris et al. [36] base-encoder, the update equation for the inner siamese GNN
in a Nested GNN [59] exactly match that of Equation 23. It is therefore sufficient for the 3-IGN to
execute the same programme employed in the DS-GNN derivation.

31

B.4 Upperbounding Subgraph GNNs

Proof of Thereom 6. Subgraph GNN NΘ distinguishes G1, G2 if they are assigned distinct repre-
sentations, that is: yG1 = NΘ

(
A1, X1

)
̸= NΘ

(
A2, X2

)
= yG2 . Naturally, a 3-IGN instance MΩ

implementing NΘ on the same pair of graphs would distinguish them as well. We prove the theorem
by showing that such an instance exists.

We seek to find a 3-IGN model MΩ in the form of Equation 16 such that: MΩ

(
A1, X1

)
=

NΘ

(
A1, X1

)
= yG1

and MΩ

(
A2, X2

)
= NΘ

(
A2, X2

)
= yG2

. According to Equation 1, NΘ

(
·
)
=

(µ ◦ ρ ◦ S ◦ π
)
Θ
(·). We will show how to construct MΩ as an appropriate stacking of 3-IGN layers

exactly implementing each of the components π,S, ρ, µ when applied to graphs G1, G2. We assume,
w.l.o.g., that stacking S has the form S = L(T) ◦ L(T−1) ◦ . . . ◦ L(1), where L’s are N -layers.

By the definition of class Υ, π in NΘ is such that π ∈ Π, thus, by Lemma 4, there exists a stacking
of 3-IGN layers Mπ implementing π. At the same time, for each N -layer L(t), Lemma 5 has its
hypotheses satisfied, hence there exists a 3-IGN-stacking M(t) implementing L(t) on both G1, G2.
We can compose such stacks so that, overall, we have:

(
M(T) ◦ . . .◦M(1) ◦Mπ

) ∼={G1,G2}
(
S ◦π

)
,

∼={G1,G2} denoting implementation over set {G1, G2} ⊂ G.

We are left with implementing blocks µ, ρ. We show this for every Subgraph GNN in Υ.

[DS-GNN & DSS-GNN] perform graph readout on each subgraph and then apply a Deep Sets
network to these obtained representations:

xk,(T) =
∑
i

x
k,(T)
i

yG = ψ
(∑

k

ϕ(xk,(T))
)

The following instruction implements subgraph readout as a 3- to 1- equivariant layer:

X
ρ,(1)
i = πi X

(T)
ijj +X

(T)
iii

Transformation ϕ is implemented by a stacking of 1-IGN layers:

X
ρ,(2)
i = φ(ϕ) X

ρ,(1)
i (34)

Finally, we let module h in the 3-IGN model implement summation
∑

k, and choose MLP m in the
3-IGN such that m ≡ ψ:

xG = h
(
X

ρ,(2)
i

)
=

∑
i

X
ρ,(2)
i (35)

yG = m
(
xG

)
= ψ

(
xG

)
It is possible for the DeepSets network to implement a late invariant-aggregation strategy, so that
µ ◦ ρ is realised as:

xk,(T) =
∑
i

x
k,(T)
i

xk,(T+1) = σ
(
W 1

Tx
k,(T) +

∑
h

W 2
Tx

h,(T)
)

. . .

xk,(T+L) = σ
(
W 1

T+L−1x
k,(T+L−1) +

∑
h

W 2
T+L−1x

h,(T+L−1)
)

yG = ψ
(∑

k

xk,(T+L)
)

In this case, it is sufficient to rewrite Equation 34 as:

X
ρ,(1+l)
i = σ

(
W 1

l X
ρ,(l)
i +W 2

l β∗ π X
ρ,(l)
i

)
32

with l ranging from 1 to L, so that then Equation (35) becomes:

xG = h
(
X

ρ,(1+L)
i

)
=

∑
i

X
ρ,(1+L)
i

[GNN-AK, GNN-AK-ctx & ID-GNN] do not perform subgraph pooling, rather pool the representa-
tions of root nodes directly:

yG = µ
(∑

h

x
h,(T)
h

)
Block h implements pooling on roots:

xG = h(Y(T)) =
∑
i

X
(T)
iii

and it is then sufficient to choose block m such that m ≡ µ.

[NGNN], in its most general form, performs L layers of message passing on subgraph pooled
representations over the original graph connectivity:

x(T)
v =

∑
w∈V v

xv,(T)
w

x(T+1)
v = σ

(
W 1

Tx
(T)
v +W 2

T

∑
w∼v

x(T)
w

)
. . .

x(T+L)
v = σ

(
W 1

T+L−1x
(T+L−1)
v +W 2

T+L−1

∑
w∼v

x(T+L−1)
w

)
yG = µ

(∑
w

x(T+L)
w

)
We assume the original graph connectivity has been retained in the third channel of orbit representa-
tions Xiij , Xiji, Xijk, while the second channel in Xiij hosts reachability patterns (see Section B.2,
[ego-networks(h)] and [Retaining original connectivity]). First, we pool representations of nodes
in each subgraph, excluding those nodes not belonging to the ego-nets. We need to extend the
summation only to those nodes belonging to the ego-networks. This information is stored in the
reachability pattern in Xiij , and we make use of this information to mask node representations before
aggregating them. First, we place node representations in Xijj over Xiij :

X
ρ,(1)
iij = κ:d

:d/(2d) Xiij + κ:
d+1:2d βiij X

(T)
ijj

We note that it is needed to memorise the following sparsification function:

f⊙,V i

iij

(
X

ρ,(1)
aab

)
=

{
0d if Xρ,(1),2

aab = 0,

X
ρ,(1),d+1:
aab otherwise.

and construct the following dataset:

DV i

iij =
{(
x, f⊙,V i

iij (x)
) ∣∣x = X

ρ,(1)
(1),aab ∀a, b ∈ [n1], a ̸= b

}
∪

∪
{(
x, f⊙,V i

iij (x)
) ∣∣x = X

ρ,(1)
(2),aab ∀a, b ∈ [n2], a ̸= b

}

Proposition 14 can be invoked, guaranteeing the existence of MLP φ(⊙V i

iij) memorising such dataset.
We let the 3-IGN implement it:

X
ρ,(2)
iij = [κ:d

:d φ
(⊙V i

iij):

d+1:2d] X
ρ,(1)
iij

33

and complete the subgraph readout via a global pooling operation:

X
ρ,(3)
iii = κ:d

:d X
ρ,(3)
iii + κd+1:

:d βiii πi X
ρ,(2)
iij

At this point it is left to perform message passing on these pooled representations for L steps on
the original connectivity. We note that it is sufficient to broadcast these onto Xijj and run the same
message passing steps in parallel on each subgraph, using the same original graph connectivity:

X
ρ,(4)
ijj = β∗,i,i X

ρ,(3)
iii

Such message-passing steps are implemented with the same programme provided in the Proof of
Lemma 5 for DS-GNN, with the only difference being that the sparsification functions are defined
based on the third channel of Xiij , Xiji, Xijk:

f⊙iij
(
X

ρ,(4+l)
aab

)
=

{
0d if Xρ,(4+l),3

aab = 0,

X
ρ,(4+l),d+1:
aab otherwise.

f⊙ijk
(
X

ρ,(4+l)
abc

)
=

{
0d if Xρ,(4+l),3

abc = 0,

X
ρ,(4+l),d+1:
abc otherwise.

f⊙iji
(
X

ρ,(4+l)
aba

)
=

{
0d if Xρ,(4+l),3

aba = 0,

X
ρ,(4+l),d+1:
aba otherwise.

Datasets to be memorised are defined accordingly. This construction is repeated L times. Afterwards,
blocks h and m in the 3-IGN model pool the root representations and apply MLP µ on the obtained
embedding. These are implemented as shown above for GNN-AK, GNN-AK-ctx, ID-GNN. The
proof concludes.

Proof of Corollary 7. We prove the corollary by contradiction. Suppose there exist non-isomorphic
but 3-WL-equivalent graphs G1, G2 distinguished by instance NΘ of N ∈ Υ. That is, NΘ

(
G1

)
̸=

NΘ

(
G2

)
. In view of Theorem 6, there must exists a 3-IGN instance MΩ such that MΩ

(
G1

)
̸=

MΩ

(
G2

)
. We note that the expressive power of k-IGNs has been fully characterised by Azizian and

Lelarge [5], Geerts [21]. In particular, let us report Geerts [21, Theorem 2]:

Theorem 15 (Expressive power of k-IGNs, Theorem 2 in Geerts [21]). For any two graphs G1 and
G2, if k-WL does not distinguish G1, G2 then any k-IGN does not distinguish them either, i.e., it
assigns G1, G2 the same (tensorial) representations.

This theorem equivalently asserts that if there exists a k-IGN distinguishing G1, G2, then these two
graphs must be distinguished by the k-WL algorithm. Thus, given the existence of 3-IGN model MΩ,
the theorem ensures us that 3-WL distinguishes graphs G1, G2, against our hypothesis.

Let us conclude this section by reporting the following

Remark 16. Any Subgraph Network N ∈ Υ equipped with policy πEGO(h) (or πEGO+(h)) is at most
as expressive as 3-WL, for any h > 0.

In other words, given the results proved above, deeper ego-networks may increase the expressive
power of a model, but not in a way to exceed that of 3-WL.

C Illustrated comparison of Subgraph GNNs

In this section we explain in detail Figure 6 (corresponding to Figure 3 in the main paper) by linking
the coloured updates of each Subgraph GNN to its corresponding formulation in Appendix A. We
consider grids of n subgraphs with n nodes. The figure shows the aggregation and update rules in
Subgraph GNNs for both diagonal (i, i) and off-diagonal (k, i) entries, which correspond respectively
to updates of root and non-root nodes. Each color represents a different parameter. We use squares to
indicate global pooling and triangles for local pooling.

34

ID-GNN
(n–1)-Reconstr.GNN /

NGNN / DS-GNN DSS-GNN GNN-AK-ctx SUN ReIGN(2) 2-IGN

k,i

i,i

nodes →

su
bg

ra
ph

s
→

on-diag.
(roots)

off-diag.
(non-roots)

updates

Figure 6: A comparison of aggregation and update rules in Subgraph GNNs, illustrated on an n× n
matrix holding n subgraphs with n node features. Top row shows off-diagonal updates, bottom
row shows diagonal (root node) updates. Each colour represents a different parameter. Full squares
represent global sum pooling; triangles represent local pooling. Two triangles represent both local
and global pooling.

Reconstruction GNN / NGNN / DS-GNN. These methods do not distinguish between root and
non-root nodes, effectively sharing the parameters between the two (same yellow colour). The
representation of a node in a subgraph is obtained via message passing and aggregation within the
subgraph, thus, locally.

ID-GNN. ID-GNN performs message passing on each subgraph but distinguishes messages coming
from the root (purple instead of yellow), resulting in an additional parameter for non-root updates.

DSS-GNN. DSS allows information sharing between subgraphs. Indeed, it does not only perform
message passing within each subgraph (yellow), but also on the aggregated adjacency matrix. The
message passing on the aggregated adjacency matrix uses the original connectivity and it is therefore
still local (triangle, yellow). However, it uses node representations obtained by aggregating node
representations globally across subgraphs (orange).

GNN-AK-ctx. GNN-AK-ctx distinguishes between root and non-root updates. Non-root node are
updated by first copying the diagonal representation of the corresponding node (green) and then
performing message passing locally (yellow). Root nodes are updated first by performing a local
message passing (yellow), and then by also considering the subgraph readout (yellow squares) and
the aggregated representation of the node across subgraphs (orange).

SUN. SUN distinguishes root and non-root updates. Each non-root node is updated with: (1) the
representation of the node at the previous iteration (black), (2) the representation of the root of the
subgraph in which the current node is located (purple), (3) the representation of the node in the
subgraph where it is root (green), (4) the readout on the subgraph (yellow squares), (5) message
passing on the subgraph (yellow triangles), (6) message passing on the aggregated connectivity
(yellow triangles and orange squares). For root nodes many of these terms collapse and the node
is updated by only considering (1) (bright green), (4) (blue squares), (5) (blue triangles), (6) (blue
triangles and red squares).

2-IGN and ReIGN(2). The node representations are updated according to Equation (4). In the
2-IGN case, the operations are all global (squares), whilst for ReIGN(2) each aggregation can also
be performed locally (triangles), as prescribed by the connectivity of the subgraph or by the original
connectivity.

D Proofs for Section 6 – Subgraph GNNs and ReIGN(2)

D.1 ReIGN(2) expansion of aggregation terms

We report in Table 3 the expansion rules which allow to derive the ReIGN(2) equations from the
2-IGN ones (Equation 4), which we copy here below for convenience.

x
i,(t+1)
i =υθ1

(
x
i,(t)
i ,□

j
x
j,(t)
j , □

j ̸=i
x
i,(t)
j , □

h̸=i
x
h,(t)
i , □

h̸=j
x
h,(t)
j

)
x
k,(t+1)
i =υθ2

(
x
k,(t)
i , x

i,(t)
k , □

h̸=j
x
h,(t)
j , □

h ̸=i
x
h,(t)
i , □

j ̸=k
x
k,(t)
j , □

j ̸=i
x
i,(t)
j , □

h ̸=k
x
h,(t)
k , x

k,(t)
k , x

i,(t)
i ,□

j
x
j,(t)
j

)

35

In Table 3 we assign each term an identifier (id.) which will allow us to easily refer to specific
terms in the proofs we report below. We additionally provide an interpretation for each of the three
expanded terms in the last column. Global and local ‘vertical’ aggregations are dubbed ‘needle’s in
analogy with what the authors in Bevilacqua et al. [7, Definition 5] define as ‘needle’ colours in their
DSS- Weisfeiler-Leman variant.

Table 3: ReIGN(2) expansion rules. For each of the 2-IGN global aggregation terms in Equation 4,
ReIGN(2) additionally considers two more local aggregation terms, which sparsify the aggregation
to only include factors adjacent according to the subgraph or original graph connectivities.

target id. 2-IGN term ReIGN(2) expansion interpretation

xi
i

#1.on □j xj
j

[∑
j/j∼ii/j∼i x

j
j

]
root-readout / root-msg for i (on i)

#2.on □j ̸=i x
i
j

[∑
j ̸=i/j∼ii/j∼i x

i
j

]
i-readout / i-msg for i (on i)

#3.on □h ̸=i x
h
i

[∑
h̸=i/h∼ii/h∼i x

h
i

]
i-‘needle’ / local i-‘needle’ for i (on i)

#4.on □h ̸=j xh
j

[∑
h/h∼ii/h∼i

∑
j/j∼hh/j∼h xh

j

]
non-root-readout / joint local needle for i (on i)
and msg for h (on h)

xk
i

#1.off □h ̸=j xh
j

[∑
h/h∼ki/h∼i

∑
j/j∼hi/j∼i x

h
j

]
non-root-readout / joint local needle and msg for
i (on k and h)

#2.off □h ̸=i x
h
i

[∑
h ̸=i/h∼ki/h∼i x

h
i

]
i-‘needle’ / local i-‘needle’ for i (on k)

#3.off □j ̸=k xk
j

[∑
j ̸=k/j∼ki/j∼i x

k
j

]
k-readout / k-msg for i (on k)

#4.off □h ̸=i x
i
h

[∑
h ̸=i/h∼ki/h∼i x

i
h

]
i-readout / i-msg for i (on k)

#5.off □h̸=k xh
k

[∑
h̸=k/h∼ki/h∼i x

h
k

]
k-‘needle’ / local k-‘needle’ for i (on k)

#6.off □j xj
j

[∑
j/j∼ki/j∼i x

j
j

]
root-readout / root-msg for i (on k)

Interestingly, expansions in Table 3 could be extended to also include global summations extending
only over subgraph nodes as already proposed in Zhang and Li [59], Zhao et al. [61]. For example,
term [#3.off] could also include summation

∑
j∈V k xkj , where V k is the vertex set of subgraph k. As

a last note, we remark how all subgraph-local aggregations updating target xki (second expansions)
consider the connectivity of subgraph k. We believe it could be possible to extend ReIGN(2) to also
make use of a different subgraph connectivity, e.g. to define a variant of term [#2.off] which includes
expansion

∑
h∼ii

xhi . We defer these enquiries to future works.

D.2 Proofs for Section 6.1

Proof of Theorem 8. Any Subgraph GNN in class Υ has the following form:

N =
(
µ ◦ ρ ◦ S ◦ π

)
with µ any MLP, ρ a permutation invariant pooling function, π ∈ Π and S a stacking S = LT ◦ . . . L1.
Any ReIGN(2) model has exactly the same form, with the only (important) difference that layers
Lt’s in the stacking are ReIGN(2) layers. Therefore, the theorem is proved by showing that, for any
N ∈ Υ, the N -layer equations can be implemented by an appropriate ReIGN(2) layer stacking. This
effort consists in describing (a series of) linear functions υ1, υ2 as in Equation 4 implementing the
layer equation for model N ∈ Υ. In practice, this will involve specifying which linear transformation
W is applied to each of the terms in Equation 4 after expanding each summation according to the rules
in Table 3. For convenience, we will directly omit terms assigned a ‘nullifying’ linear transformation
0.

[DS-GNN] has its layer equations in the form of Equation 23. These are recovered with one ReIGN(2)
layer by linearly transforming the second expansion for aggregated terms [#2.on] and [#3.off], and by
sharing parameters between off- and on-diagonal updates:

x
i,(t+1)
i = σ

(
W1,tx

i,(t)
i +W2,t

∑
j∼ii

x
i,(t)
j

)
x
k,(t+1)
i = σ

(
W1,tx

k,(t)
i +W2,t

∑
j∼ki

x
k,(t)
j

)
[DSS-GNN] has its update rule in the form of Equation 28. It is needed to stack two linear ReIGN(2)
layers to recover these. The first layer computes message passing on each subgraph as in DS-GNN

36

and cross-bag aggregation of features. We expand the hidden dimension to 2d so that the first half
stores the result from the former, the second that of the latter. We ‘utilise’ terms [#2.on] and [#3.off]
in their second expansion for the message-passing operation and terms [#3.on] and [#2.off] in their
global version for cross-bag aggregation:

x
i,(t,1)
i = [W 1

1,t Id] x
i,(t)
i + κ:

:d W
1
2,t

∑
j∼ii

x
i,(t)
j + κ:

d+1:2d

∑
h̸=i

x
h,(t)
i

x
k,(t,1)
i = κ:

:d W
1
1,tx

k,(t)
i + κ:

:d W
1
2,t

∑
j∼ki

x
k,(t)
j + κ:

d+1:2d

∑
h ̸=i

x
h,(t)
i + κ:

d+1:2d x
i,(t)
i

The second layer reduces the dimensionality back to d and completes the implementation by per-
forming message-passing of the cross-bag-aggregated representations over the original graph. This is
realised by employing terms [#2.on] and [#3.off] in their third expansion.

x
i,(t+1)
i = σ

(
[Id ||W 2

1,t] x
i,(t,1)
i +W 2

2,tκ
d+1:2d
:d

∑
j∼i

x
i,(t,1)
j

)
x
k,(t+1)
i = σ

(
[Id ||W 2

1,t] x
k,(t,1)
i +W 2

2,tκ
d+1:2d
:d

∑
j∼i

x
k,(t,1)
j

)
[GNN-AK-ctx & GNN-AK] Equations 29 and 30 describe the update equations for these models.
First, block [S] performs independent message-passing on each subgraph for L steps. The l-th update,
l = 1, . . . , (L− 1) is implemented as for DS-GNN, that is by employing terms [#2.on] and [#3.off]
as follows:

x
i,(t,l+1)
i = σ

(
W1,t,lx

i,(t,l)
i +W2,t,l

∑
j∼ii

x
i,(t,l)
j

)
x
k,(t,l+1)
i = σ

(
W1,t,lx

k,(t,l)
i +W2,t,l

∑
j∼ki

x
k,(t,l)
j

)
Block [A] in GNN-AK-ctx is implemented by one ReIGN(2) layer via aggregated terms [#2.on],
[#3.on], [#2.off], [#4.off] all in their global version:

x
i,(t+1)
i = 3 · Id xi,(t,L)

i +
∑
h̸=i

x
h,(t,L)
i +

∑
j ̸=i

x
i,(t,L)
j

x
k,(t+1)
i = 3 · Id xi,(t,L)

i +
∑
h̸=i

x
h,(t,L)
i +

∑
j ̸=i

x
i,(t,L)
j

In the case of GNN-AK, Block [A] is implemented more simply as

x
i,(t+1)
i = 2 · Id xi,(t,L)

i +
∑
j ̸=i

x
i,(t,L)
j

x
k,(t+1)
i = 2 · Id xi,(t,L)

i +
∑
j ̸=i

x
i,(t,L)
j

where terms [#3.on], [#2.off] are nullified.

[ID-GNN] Implements the update rule in Equation 33, which we report here for convenience:

x
k,(t+1)
i = σ

(
W1,tx

k,(t)
i +W2,t

∑
j∼ki,j ̸=k

x
k,(t)
j + 1[k∼ki] ·W3,tx

k,(t)
k

)
We observe that we can rewrite this equation as follows:

x
k,(t+1)
i = σ

(
W1,tx

k,(t)
i +

∑
j∼ki

W(1[j=k]+2),tx
k,(t)
j

)
(36)

where (1[j=k] + 2) = 3 if j = k, 2 otherwise. That is: (i) we do not explicitly exclude the root
node from the set of i’s neighbours; (ii) messages are computed via W3,t if from root nodes, via
W2,t otherwise. This update equation can be implemented by two ReIGN(2) layers. Similarly as in

37

the DSS-GNN derivation, the first layer expands the hidden dimension to 2d. The first d channels
will store node representations transformed according to W1,t, whilst the remaining d + 1 to 2d
channels will store node representations transformed according to W3,t,W2,t for, respectively, on-
and off-diagonal terms, namely root and non-root nodes:

x
i,(t,1)
i = [W1,t W3,t] x

i,(t)
i

x
k,(t,1)
i = [W1,t W2,t] x

k,(t)
i

The second ReIGN(2) layer effectively completes implementing message-passing and brings back
the dimension to d. It combines and aggregates the resulting transformations via terms [#2.on] and
[#3.off] in their second expansion as follows:

x
i,(t+1)
i = σ

(
κ:d
:d x

i,(t,1)
i + κd+1:2d

:d

∑
j∼ii

x
i,(t,1)
j

)
x
k,(t+1)
i = σ

(
κ:d
:d x

k,(t,1)
i + κd+1:2d

:d

∑
j∼ki

x
k,(t,1)
j

)

[NGNN] Computes independent subgraph-wise message passing as in DS-GNN: the same ReIGN(2)
layer implements this one.

Proof of Proposition 9. ReIGN(2) model Rρ,Θ,π distinguishes G1, G2 if they are assigned distinct
representations, that is: yG1 = Rρ,Θ,π

(
A1, X1

)
̸= Rρ,Θ,π

(
A2, X2

)
= yG2 . A 3-IGN instance MΩ

implementing Rρ,Θ,π on the same pair of graphs would distinguish the same graphs as well. We will
show the existence of such a model instance.

We seek to find a 3-IGN model MΩ in the form of Equation 16 such that: MΩ

(
A1, X1

)
=

Rρ,Θ,π

(
A1, X1

)
= yG1 and MΩ

(
A2, X2

)
= Rρ,Θ,π

(
A2, X2

)
= yG2 , where Rρ,Θ,π

(
·
)

=

(µ ◦ ρ ◦ S ◦π
)
Θ
(·). From the hypotheses of the theorem, block ρ is 3-IGN-computable, so there must

exist a 3-IGN layer stacking Mρ such that Mρ
∼= ρ. At the same time, π ∈ Π so Lemma 4 ensures

the existence of a 3-IGN stacking Mπ such that Mπ
∼= π. It is left to show the existence of a 3-IGN

stacking MS implementing the ReIGN(2) stacking S on the same pair of graphs. Without loss of
generality, it is sufficient to show the existence of a 3-IGN stacking ML implementing one single
ReIGN(2) intermediate layer L defined as per Equations 4 and the aggregated term expansions in
Table 3. We will then show how to construct ML for a generic step t in the following. In order to more
explicitly reflect the index notation used in Table 3 (i refers to nodes, k to subgraphs) we will refer to
the 3-IGN orbit representations with different subscripts: Y ∼= Xiii ⊔Xiij ⊔Xkik ⊔Xkii ⊔Xkij ,
that is we rename Xiji as Xkik, Xijj as Xkii, Xijk as Xkij .

We note that the summation of all non-aggregated and globally aggregated terms is recovered by
just one 3-IGN layer, including their linear transformations. In the yet-to-construct stacking, the
first layer performs this computation and stores the result into d-auxiliary channels. The layer also
replicates the current representations xk,(t),i, xi,(t),i in the first d channels. The implementation of
local aggregations, i.e. second and third expansions in Table 3, will require a larger number of layers:
this aforementioned input replication allows them to operate on the original representations even
after having implemented non-aggregated globally aggregated terms, as required. The result of their
computation will then be used to update the intermediate term in channels d+ 1 to 2d, as we shall
see next. Let us start by describing the first 3-IGN layer, constructed as follows:

X
(t,1)
iii = [Id θ

(i,i)
1,t] X

(t)
iii +

∑
o1∈O1

κ:
d+1:2d o1

X
(t,1)
kii = [Id θ

(k,i)
2,t] X

(t)
kii +

∑
o2∈O2

κ:
d+1:2d o2

with set O1 being:

O1=
{
θ
(j,j)
1,t β∗i,∗i,∗i π X

(t)
iii , θ

(i,j)
1,t βi,i,i πi X

(t)
ijj , θ

(h,i)
1,t βj,j,j πj X

(t)
ijj , θ

(h,j)
1,t β∗i,∗i,∗i π X

(t)
ijj

}

38

and set O2 being:

O2=
{
θ
(i,k)
2,t βi,k,k X

(t)
kii, θ

(h,j)
2,t β∗k,∗i,∗i π X

(t)
kii, θ

(h,i)
2,t β∗,i,i πi X

(t)
kii, θ

(k,j)
2,t βk,∗i,∗i πk X

(t)
kii

θ
(i,j)
2,t β∗,k,k πk X

(t)
kii, θ

(h,k)
2,t βi,∗k,∗k πi X

(t)
kii, θ

(k,k)
2,t βi,∗k,∗k X

(t)
iii , θ

(i,i)
2,t β∗,i,i X

(t)
iii ,

θ
(j,j)
2,t β∗k,∗i,∗i π X

(t)
iii

}

We now focus on the following layers. The l-th local aggregation in Table 3 (second and third
expansions) can be obtained by a 3-IGN layer stacking implementing the steps of: (1) Message
broadcasting, (2) Message sparsification, (3) Message aggregation, (4) Update, similarly to what
already shown for the Proof of Lemma 5. More in detail, the underlying construction will be such
such that: first, messages are placed on the third axis of the cubed tensor on which the 3-IGN operates
(broadcasting, 1); they are then sparsified consistently with the (sub)graph connectivity (sparsification,
2); aggregated via pooling operations on the same axis (aggregation, 3); finally, linearly transformed
with their specific linear operator and used to update the intermediate representation(s) in channels
d+ 1 to 2d (update, 4). We note that for each local aggregation term, these steps essentially differ in
the way messages are propagated (1) and in the specific linear transformations applied (4), while the
same computation is shared for the sparsification (2) and aggregation (3) steps. Thus, we deem it
convenient to first describe these steps and then show how specific choices for (1), (4) recover each
desired term.

Here, we assume that Mπ writes in Xkij , i ̸= j, the connectivity between nodes i, j in subgraph
k (first channel) as well as that prescribed by the original graph connectivity (second channel) —
once more, see discussion [Retaining original connectivity] in the Proof of Lemma 4. In order to
implement this step on the input graph pair, it is sufficient to have 3-IGN layers applying an MLP
which sparsifies messages according to the aforementioned connectivities and then to aggregate the
sparsified messages by global summation, effectively realising both the second and third expansion
for terms in Table 3. Step (2) is realised as:

X
(t,l,sp.)
iij =

[
κ:d
:d φ

(⊙∼i
iij):

d+1:2d φ
(⊙∼

iij):

2d+1:

]
X

(t,l,broad.)
iij (37)

X
(t,l,sp.)
kik =

[
κ:d
:d φ

(⊙∼k
kik):

d+1:2d φ
(⊙∼

kik):
2d+1:

]
X

(t,l,broad.)
kik (38)

X
(t,l,sp.)
kij =

[
κ:d
:d φ

(⊙∼k
kij):

d+1:2d φ
(⊙∼

kij):

2d+1:

]
X

(t,l,broad.)
kij (39)

where X(t,l,broad.)
iij , X

(t,l,broad.)
kik , X

(t,l,broad.)
kij are computed by the yet-to-describe step (1) and MLPs

φ(⊙∼i
iij) ,φ(⊙∼

iij) ,φ(⊙∼k
kik) ,φ(⊙∼

kik) ,φ(⊙∼k
kij) ,φ(⊙∼

kij) compute the required sparsifications. We
do not describe how to construct such MLPs, but their existence is guaranteed by Proposition 14,
which we can invoke by constructing the same datasets as shown in the Proof of Lemma 5 for the
DSS-GNN derivation. Step (3) aggregates these sparsified messages; concurrently the same layer
linearly transforms the result and adds it to the current, intermediate node representations, performing
step (4):

X
(t,l+1)
iii = κ:2d

:2d X
(t,l,sp.)
iii + κ:

d+1:2d [0 || θ∼i

1,l,t || θ
∼
1,l,t] βiii πi X

(t,l,sp.)
iij

X
(t,l+1)
kii = κ:2d

:2d X
(t,l,sp.)
kii + κ:

d+1:2d [0 || θ∼k

2,l,t || θ
∼
2,l,t] βkii X

(t,l,sp.)
kik +

+ κ:
d+1:2d [0 || θ∼k

2,l,t || θ
∼
2,l,t] βkii πki X

(t,l,sp.)
kij

Here, parameters θ∼i

1,l,t, θ
∼
1,l,t, θ

∼k

2,l,t, θ
∼
2,l,t will depend on the specific term being implemented.

As for step (1), one 3-IGN layer suffices to properly broadcast the current input representations
X

(t,l)
iii , X

(t,l)
kii over, respectively, X(t,l,broad.)

iji and X(t,l,broad.)
kik , X

(t,l,broad.)
kij . We will now show the

required broadcasting operations in a way that, then, the following layers described above will

39

effectively implement the second and third expansions of the terms in Table 3:

[#1.on] X
(t,l,broad.)
iij = κ:d

:d X
(t,l)
iij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] β∗,∗,i X
(t,l)
iii

[#2.on] X
(t,l,broad.)
iij = κ:d

:d X
(t,l)
iij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βk,k,i X
(t,l)
kii

[#3.on] X
(t,l,broad.)
iij = κ:d

:d X
(t,l)
iij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βi,i,k X
(t,l)
kii

[#2.off] X
(t,l,broad.)
kik = κ:d

:d X
(t,l)
kik + κ:2d

d+1:3d [κ:d
:d κ:d

:d] β∗,i,∗ X
(t,l)
iii

X
(t,l,broad.)
kij = κ:d

:d X
(t,l)
kij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] β∗,i,k X
(t,l)
kii

[#3.off] X
(t,l,broad.)
kik = κ:d

:d X
(t,l)
kik + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βi,∗,i X
(t,l)
iii

X
(t,l,broad.)
kij = κ:d

:d X
(t,l)
kij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βk,∗,i X
(t,l)
kii

[#4.off] X
(t,l,broad.)
kik = κ:d

:d X
(t,l)
kik + κ:2d

d+1:3d [κ:d
:d κ:d

:d] β∗,i,∗ X
(t,l)
iii

X
(t,l,broad.)
kij = κ:d

:d X
(t,l)
kij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] β∗,k,i X
(t,l)
kii

[#5.off] X
(t,l,broad.)
kik = κ:d

:d X
(t,l)
kik + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βi,∗,i X
(t,l)
iii

X
(t,l,broad.)
kij = κ:d

:d X
(t,l)
kij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βi,∗,k X
(t,l)
kii

[#6.off] X
(t,l,broad.)
kik = κ:d

:d X
(t,l)
kik + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βi,∗,i X
(t,l)
iii

X
(t,l,broad.)
kij = κ:d

:d X
(t,l)
kij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] β∗,∗,i X
(t,l)
iii

Terms [#4.on], [#1.off] involve two sparse summations and thus require a slightly different construc-
tion. In particular, they are concurrently implemented by computing steps (1,2,3) twice, in sequence,
followed by computation of step (4). The first brodcasting step (1) is realised as follows:

X
(t,l,1stbroad.)
iij = κ:d

:d X
(t,l)
iij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βk,k,i X
(t,l)
kii

X
(t,l,1stbroad.)
kik = κ:d

:d X
(t,l)
kik + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βi,∗,i X
(t,l)
iii

X
(t,l,1stbroad.)
kij = κ:d

:d X
(t,l)
kij + κ:2d

d+1:3d [κ:d
:d κ:d

:d] βk,∗,i X
(t,l)
kii

that is, in the same way as in the implementation of terms [#2.on], [#3.off]. Then,
the first sparsification step (2) is computed as per Equations (37) to (39), generating
X

(t,l,1stsp.)
iij , X

(t,l,1stsp.)
kik , X

(t,l,1stsp.)
kij . The first aggregation step (3) is performed jointly with the

second broadcasting step (1) as:

X
(t,l,2ndbroad.)
iij = κ:d

:d X
(t,l,1stsp.)
iij + κd+1:3d

d+1:3d β∗,∗,i πi X
(t,l,1stsp.)
iij

X
(t,l,2ndbroad.)
kik = κ:d

:d X
(t,l,1stsp.)
kik + κd+1:3d

d+1:3d βk,i,k πk,i X
(t,l,1stsp.)
kij +

+ κ:2d
d+1:3d [κ:d

:d κ:d
:d] βi,∗,i X

(t,l,1stsp.)
iii

X
(t,l,2ndbroad.)
kij = κ:d

:d X
(t,l,1stsp.)
kij + κd+1:3d

d+1:3d β∗,i,k X
(t,l,1stsp.)
kik + κd+1:3d

d+1:3d β∗,i,k πk,i X
(t,l,1stsp.)
kij

where, crucially, the results from pooling are broadcast back into orbit tensors Xiij , Xkik, Xkij ,
given that one more local summation is required. Next, one more sparsification takes place in the
form of Equations (37) to (39), generating X(t,l,2ndsp.)

iij , X
(t,l,2ndsp.)
kik , X

(t,l,2ndsp.)
kij . Finally, second

aggregation step (3) is performed jointly with the final update step (4), which writes back into orbit
tensors Xiii, Xkii:

X
(t,l+1)
iii = κ:2d

:2d X
(t,l,2ndsp.)
iii + κ:

d+1:2d [0 || θ∼i

1,l,t || θ
∼
1,l,t] βi,i,i πi X

(t,l,2ndsp.)
iij

X
(t,l+1)
kii = κ:2d

:2d X
(t,l,2ndsp.)
kii + κ:

d+1:2d [0 || θ∼k

2,l,t || θ
∼
2,l,t] βkii X

(t,l,2ndsp.)
kik +

+ κ:
d+1:2d [0 || θ∼k

2,l,t || θ
∼
2,l,t] βkii πk,i X

(t,l,2ndsp.)
kij

40

When all terms are implemented and combined together, it is only left to bring back the dimensionality
to d, overwriting the previous node representations with the newly computed one:

X
(t+1)
iii = σ

(
κd+1:
:d X

(t,L)
iii

)
X

(t+1)
kii = σ

(
κd+1:
:d X

(t,L)
kii

)

Proof of Corollary 10. We proceed by contradiction as in the Proof of Corollary 7. Suppose there
exist non-isomorphic but 3-WL-equivalent graphs G1, G2 distinguished by instance Rρ,Θ,π̄ . That is,
Rρ,Θ,π̄

(
G1

)
̸= Rρ,Θ,π̄

(
G2

)
. In view of Theorem 9, there must exists a 3-IGN instance MΩ such

that MΩ

(
G1

)
̸= MΩ

(
G2

)
. By Theorem 15, if there exists a 3-IGN distinguishing G1, G2, then

these two graphs must be distinguished by the 3-WL algorithm, against our hypothesis.

D.3 Proofs for Section 6.2

SUN in linear form

x
i,(t+1)
i = σ

(
U2
r,t · x

i,(t)
i + U3

r,t ·
∑
j

x
i,(t)
j +

+ U4
r,t ·

∑
j∼ii

x
i,(t)
j + U5

r,t ·
∑
h

x
h,(t)
i + U6

r,t ·
∑
j∼i

∑
h

x
h,(t)
j

)
(40)

x
k,(t+1)
i = σ

(
U0
t · xi,(t)i + U1

t · xk,(t)k + U2
t · xk,(t)i + U3

t ·
∑
j

x
k,(t)
j +

+ U4
t ·

∑
j∼ki

x
k,(t)
j + U5

t ·
∑
h

x
h,(t)
i + U6

t ·
∑
j∼i

∑
h

x
h,(t)
j

)
(41)

Proof of Proposition 11. We construct a stacking of 2 ReIGN(2) layers implementing one SUN layer
as per Equations 40 and 41. The first layer expands the dimension of the hidden representations to 2d.
The first d channels store the sum of linear transformations operated by U2

r,t, U
3
r,t, U

4
r,t in Equation 40

and those operated by U0
t , U

1
t , U

2
t , U

3
t , U

4
t in Equation 41. Channels d + 1 to 2d will store terms∑

h x
h,(t)
i :

x
i,(t,1)
i = [(U2

r,t + Id) Id] x
i,(t)
i + κ:

:d/(2d) U
3
r,t ·

∑
j ̸=i

x
i,(t)
j +

+ κ:
:d/(2d) U

4
r,t ·

∑
j∼ii

x
i,(t)
j + κ:

d+1:2d

∑
h̸=i

x
h,(t)
i

x
k,(t,1)
i = [U0

t Id] x
i,(t)
i + κ:

:d/(2d) (U
1
t + Id) · xk,(t)k + κ:

:d/(2d) U
2
t · xk,(t)i +

+ κ:
:d/(2d) U

3
t ·

∑
j ̸=k

x
k,(t)
j + κ:

:d/(2d) U
4
t ·

∑
j∼ki

x
k,(t)
j + κ:

d+1:2d

∑
h̸=i

x
h,(t)
i

where we have used the following aggregated terms. First equation: [#2.on] in its global version
and second expansion, [#3.on] in its global version. Second equation: [#2.off] in its global version,
[#3.off] in its global version and second expansion. Non-appearing ReIGN(2) terms are nullified.
The second ReIGN(2) layer completes the computation by implementing linear transformations
U5
t,r, U

6
t,r, U

5
t , U

6
t , and by contracting the dimensionality back to d:

x
i,(t+1)
i = σ

(
[Id ||U5

r,t] x
i,(t,1)
i + U6

r,t · κd+1:2d
:d

∑
j∼i

x
i,(t,1)
j

)
x
k,(t+1)
i = σ

(
[Id ||U5

t] x
k,(t,1)
i + U6

t · κd+1:2d
:d

∑
j∼i

x
k,(t,1)
j

)
where we have used aggregated terms [#2.on] and [#3.off] in their third expansion.

41

Proof of Proposition 12. We describe how a stacking of SUN layers in the form of Equations 40
and 41 implements layers of models in Υ with Morris et al. [36] base-encoders. As usual, we proceed
model by model.

[DS-GNN] updates root and non-root nodes in the same manner. Thus, we seek to find a choice of
linear operators in Equations 40 and 41 in a way that the two coincide and exactly correspond to
Equation 23. To this aim, it is sufficient to set:

• U2
r,t = U2

t =W1,t

• U4
r,t = U4

t =W2,t

and all other weight matrices U to 0.

[DSS-GNN] implements Equation 28. We proceed similarly as above, setting:

• U2
r,t = U2

t =W 1
1,t

• U4
r,t = U4

t =W 1
2,t

• U5
r,t = U5

t =W 2
1,t

• U6
r,t = U6

t =W 2
2,t

and all other weight matrices U to 0.

[GNN-AK-ctx & GNN-AK] We seek to recover Equations 29 ([S]) and 30 ([A]). Each message
passing layer in [S] is implemented by one SUN layer similarly as above, that is by setting:

• U2
r,t,l = U2

t,l =W1,t,l

• U4
r,t,l = U4

t,l =W2,t,l

and all other weight matrices U to 0. Then, block [A] is implemented by one SUN layer by setting:

• U2
r,t = U3

r,t = U5
r,t = I

• U0
t = U3

t = U5
t = I

and all other weight matrices U to 0. In the case of GNN-AK, we instead require U5
r,t = U5

t = 0.
No activation σ is applied after this layer.

[ID-GNN] Two SUN layers can implement one ID-GNN layer as in Equation 36, similarly as shown
for ReIGN(2) in the Proof of Theorem 8. The first layer doubles the representation dimension and
applies projections W1,t,W2,t,W3,t, by setting:

• U2
r,t,1 = [W1,t W3,t]

• U2
t,1 = [W1,t W2,t]

and all other weight matrices U to 0. Here, as usual,
[
· ·
]

indicates vertical concatenation. No
activation σ is applied after this layer.

The second layer has its weight matrices set to:

• U2
r,t,2 = U2

t,2 = κ:d
:d

• U4
r,t,2 = U4

t,2 = κd+1:2d
:d

42

and all other weight matrices U to 0.

[NGNN] layers perform independent message passing on each subgraph. SUN implements these as
shown for DS-GNN.

E Future research directions

The following are promising directions for future work:

1. Extension to higher-order node policies. The prior works of Cotta et al. [14], Papp et al.
[43] suggested using more complex policies that depend on tuples of nodes rather than a
single node. Since there are exactly nk distinct k-tuples, and each subgraph is defined by a
second-order adjacency tensor, we conjecture that Subgraph GNNs applied to such policies
are bounded by (k+2)-WL. See Appendix F for additional details.

2. Beyond 3-WL. Our results suggest two directions for breaking the 3-WL representational
limit: (i) Using policies not computable by 3-IGNs (ii) Using higher-order node-based
policies as mentioned above.

3. Layers vs. policies. We make an interesting observation regarding the relationship between
layer structure and subgraph selection policies: Having a non-shared set of parameters for
root and non-root nodes, SUN may be capable of learning the policies πNM, πND by itself.
This raises the question of whether we should let the model learn a policy or specify one in
advance.

4. Lower bound on SUN and ReIGN(2). In this work we have proved a 3-WL upper bound on
the expressive power of SUN, ReIGN(2) and other node-based Subgraph GNNs by showing
their computation on a given graph pair can be simulated by a 3-IGN. It is natural to ask
whether a (tighter) lower bound exists as well. In this sense, it is reasonable to believe that
node-based Subgraph GNNs are not capable of implementing 3-IGNs, as they inherently
operate on a second-order object. However, this does not necessarily imply these models are
less expressive than 3-IGNs, when considering graph separation. For example, they may
still be able to distinguish between the same pairs of graphs distinguished by 3-IGNs, hence
attaining 3-WL expressive power. It is because of this reason that we believe studying the
expressivity gap between ReIGN(2) (or any of the subsumed Subgraph GNNs) and 3-WL
represents an interesting open question that could be addressed in future work.

5. Expressive power of subgraph selection policies. Another interesting direction for future
work would be to better characterise the impact of subgraph selection policies on the
expressive power of Subgraph GNNs. Bevilacqua et al. [7] already showed that the DS-GNN
model can distinguish some Strongly Regular graphs in the same family when equipped with
edge-deletion policy, but not with node-deletion or depth-n ego-networks [7, Proposition 3].
However, edge-deletion is not a node-based policy since subgraphs are not in a bijection
with nodes in the original graph. It still remains unclear whether a stratification in expressive
power exists amongst node-based policies in particular, and under which conditions – if any
– this last holds.

We note that, related to 3. and concurrently to the present work, Qian et al. [46] experiment with
directly learning policies by back-propagating through discrete structures via perturbation-based
differentiation [41].

F Extension to higher-order node policies

Constructing a higher-order subgraph selection policy (Appendix E, direction 1.), amounts to defining
selection function f on a graph and a k-tuple of its nodes: For a graph G ∈ G, the subgraphs of
such a policy are obtained as G(v1,...,vk) = f

(
G, (v1, . . . , vk)

)
. The policy contains a subgraph for

each possible tuple (v1, . . . , vk). We refer to such policies as k-order node policies. The k-node
deletion policy suggested by Cotta et al. [14] is a natural example as the bag of subgraphs contains
all subgraphs that are obtained by removing k distinct nodes from the original graph. Since there
are exactly nk distinct tuples, and each subgraph is defined by a second-order adjacency tensor in
Rn2

, these bags of subgraphs can be arranged into tensors in Rnk+2

. Noting that the symmetry of

43

Table 4: TUDatasets. The top three are highlighted by First, Second, Third.
Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

DCNN [4] N/A N/A 61.3±1.6 56.6±1.0 N/A 49.1±1.4 33.5±1.4
DGCNN [60] 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A 70.0±0.9 47.8±0.9
IGN [33] 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5 72.0±5.5 48.7±3.4
PPGNS [32] 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4 73.0±5.8 50.5±3.6
NATURAL GN [15] 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 N/A 73.5±2.0 51.3±1.5
GSN [11] 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 N/A 77.8±3.3 54.3±3.3
SIN [10] N/A N/A 76.4±3.3 82.7±2.1 N/A 75.6±3.2 52.4±2.9
CIN [9] 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6 75.6±3.7 52.7±3.1

GIN [55] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6 75.1±5.1 52.3±2.8

ID-GNN (GIN) [56] 90.4±5.4 67.2±4.3 75.4±2.7 82.6±1.6 82.1±1.5 76.0±2.7 52.7±4.2

DROPEDGE [48] 91.0±5.7 64.5±2.6 73.5±4.5 82.0±2.6 82.2±1.4 76.5± 3.3 52.8± 2.8

DS-GNN (GIN) (ND) [7] 89.4±4.8 66.3±7.0 77.1±4.6 83.8±2.4 82.4±1.3 75.4±2.9 52.7±2.0
DS-GNN (GIN) (EGO) [7] 89.9±6.5 68.6±5.8 76.7±5.8 81.4±0.7 79.5±1.0 76.1±2.8 52.6±2.8
DS-GNN (GIN) (EGO+) [7] 91.0±4.8 68.7±7.0 76.7±4.4 82.0±1.4 80.3±0.9 77.1±2.6 53.2±2.8

DSS-GNN (GIN) (ND) [7] 91.0±3.5 66.3±5.9 76.1±3.4 83.6±1.5 83.1±0.8 76.1±2.9 53.3±1.9
DSS-GNN (GIN) (EGO) [7] 91.0±4.7 68.2±5.8 76.7±4.1 83.6±1.8 82.5±1.6 76.5±2.8 53.3±3.1
DSS-GNN (GIN) (EGO+) [7] 91.1±7.0 69.2±6.5 75.9±4.3 83.7±1.8 82.8±1.2 77.1±3.0 53.2±2.4

GIN-AK+ [61] 91.3±7.0 67.8±8.8 77.1±5.7 85.0±2.0 N/A 75.0±4.2 N/A

SUN (GIN) (NULL) 91.6±4.8 67.5±6.8 76.8±4.4 84.1±2.0 83.0±0.9 76.2±1.9 52.6±3.2
SUN (GIN) (NM) 91.0±4.7 67.0±4.8 75.7±3.4 84.2±1.5 83.1±1.5 76.1±2.9 53.1±2.5
SUN (GIN) (EGO) 92.7±5.8 67.2±5.9 76.8±5.0 83.7±1.3 83.0±1.0 76.6±3.4 52.7±2.3
SUN (GIN) (EGO+) 92.1±5.8 67.6±5.5 76.1±5.1 84.2±1.5 83.1±1.0 76.3±1.9 52.9±2.8

these tensors can be naturally defined by the diagonal action of Sn on {1, . . . , n}k+2 we raise the
following generalisation of Corollary 7:
Conjecture 1. Subgraph GNNs equipped with k-order node-deletion, k-order node-marking or
k-order ego-networks policies are bounded by (k + 2)-WL.

We believe that proving this conjecture can be accomplished by following the same steps as our proof,
i.e., by showing that (k+2)-IGN can implement the bag and the update steps of Subgraph GNNs.
We also note that ReIGN(k), a higher order analogue of ReIGN(2), can be obtained by following the
steps in Section 6. We leave both directions for future work.

We end this section by noting that the statement in our conjecture is considered in a work concurrent
to ours by Qian et al. [46].

G Experimental details and additional results

Table 5: Test mean metric on the Graph Properties dataset. All Subgraph GNNs employ a GIN
base-encoder.

Method Graph Properties (log10(MSE))

IsConnected Diameter Radius

GCN [27] -1.7057 -2.4705 -3.9316
GIN [55] -1.9239 -3.3079 -4.7584
PNA [13] -1.9395 -3.4382 -4.9470
PPGN [32] -1.9804 -3.6147 -5.0878

GNN-AK [61] -1.9934 -3.7573 -5.0100
GNN-AK-CTX [61] -2.0541 -3.7585 -5.1044
GNN-AK+ [61] -2.7513 -3.9687 -5.1846

SUN (EGO) -2.0001 -3.6671 -5.5720
SUN (EGO+) -2.0651 -3.6743 -5.6356

G.1 Additional experiments

TUDatasets. We experimented the performances of SUN on the widely used datasets from the TUD
repository [37], and include a comparison of different subgraph selection policies. Marking a first,

44

Table 6: Test mean and std for the corresponding metric on the synthetic tasks. A comparison with
other methods can be found in Tables 1 and 5.

Method Counting Substructures (MAE)

Triangle Tailed Tri. Star 4-Cycle

SUN (EGO) 0.0092±0.0002 0.0105±0.0010 0.0064±0.0006 0.0140±0.0014
SUN (EGO+) 0.0079±0.0003 0.0080±0.0005 0.0064±0.0003 0.0105±0.0006

Method Graph Properties (log10(MSE))

IsConnected Diameter Radius

SUN (EGO) -2.0001±0.0211 -3.6671±0.0078 -5.5720±0.0423
SUN (EGO+) -2.0651±0.0533 -3.6743±0.0178 -5.6356±0.0200

0 200 400 600 800 1000 1200 1400
training examples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 M
AE

4-Cycles (NM)

GNN
ReconstructionGNN

DS
DSS

SUN

Figure 7: Generalisation capabilities of Subgraph GNNs in the counting prediction task with the
node-marking (NM) selection policy.

preliminary, step in the future research direction (3) in Appendix E, we also experiment with a
‘NULL’ policy, i.e. by constructing bags by simply replicating the original graph n times, without any
marking or connectivity alteration. Results are reported in Table 4. Notably, the EGO policies obtain
the best results in 6 out of 7 datasets, while the NULL policy does not seem an advantageous strategy
on this benchmarking suite. On average, SUN compares well with best performing approaches across
domains, while featuring smaller result variations w.r.t. to GNN-AK+ [61].

Synthetic – Graph property prediction. Table 5 reports mean test log10(MSE) on the Graph
Properties dataset. SUN achieves state-of-the art results on the “Radius” task, where each target is
defined as the largest (in absolute value) eigenvalue of the graph’s adjacency matrix. Table 6 gathers
the standard deviation on the results for these benchmarks as well as “Counting Substructures” ones
over 3 seeds as in Zhao et al. [61].

Generalisation from limited data – Node Marking. Figure 7 tests the generalisation abilities of
Subgraph GNNs on the 4-Cycles task using the node-marking selection policy (NM). Similarly to
Figures 4a and 4b, SUN outperforms all other Subgraph GNNs by a large margin and, except for a
short initial phase where all Subgraph architectures perform similarly, SUN generalises better.

Analysis of generalisation. The GNN’s poor performance on this set of experiments may be due
to different reasons, e.g. underfitting vs. overfitting behaviours. In this sense, here we deepen our
understanding on the 4-Cycles counting task by additionally inspecting characteristics of the train
samples and performance thereon. Table 7 reports evaluation results on training and validation sets at
the epoch of best validation performance, as well as the best overall training performance. We include
the GNN and SUN models, along with a trivial predictor which always outputs the mean training target.

45

Table 7: Performances for the 4-Cycles counting task. The Trivial Predictor always outputs the mean
training target.

Best Train Train Val Test

Trivial Predictor 0.9097 0.9097 0.9193 0.9275
GIN [55] 0.0283±0.0032 0.1432±0.0526 0.2148±0.0051 0.2185±0.0061
SUN (EGO+) 0.0072±0.0002 0.0072±0.0001 0.0097±0.0005 0.0105±0.0002

Table 8: Test results on ZINC dataset (GIN base-encoder). Each row reports a particular ablation
applied on top of the ones in the upper rows.

Method ZINC (MAE ↓)

EGO EGO+

SUN 0.083±0.003 0.084±0.002

w/o x
i,(t)
i , x

k,(t)
k 0.089±0.004 0.089±0.002

θ1 = θ2 0.093±0.003 0.093±0.004
w/o

∑
j x

k,(t)
j 0.093±0.004 0.090±0.004

w/o
∑

h x
h,(t)
i ,

∑
j∼i

∑
h x

h,(t)
j 0.111±0.005 0.101±0.007

First, we observe that the GNN exhibits a relatively large gap between the two reported training
MAEs if compared to SUN. This rules out scenarios of complete underfitting, especially considering
the trivial predictor performs much worse than the GNN. This led us to evaluate the expressiveness
class required to disambiguate all training and test samples: out of all possible graph pairs, we only
found one not distinguished by a 1-WL test running 6 colour refinement rounds — same as the number
of message passing layers in our GNN. As a consequence, the GNN baseline can effectively assign
unique representations to almost all graphs, this justifying its superior performance w.r.t. the trivial
predictor. Yet, SUN achieves much better results on all sets, while displaying a smaller train-test gap.
This is an indication that, although the hypothesis class of the GNN is sufficiently large to avoid
underfitting, it renders the overall learning procedure difficult, leading to suboptimal solutions and
partial memorisation phenomena. These results are in line with the observations in Cotta et al. [14,
Appendix G.1], where the authors have performed a similar analysis on real-world benchmarks.

Ablation study. To assess the impact of the terms in the SUN layer, we perform an ablation study by
making sequential changes to Equations (5) and (6) until recovering an architecture similar to NGNN,
DS-GNN. We considered the ZINC-12k molecular dataset, using GIN as base graph encoder. Table 8
reports the performances for the EGO and EGO+ policies. As it can be seen, each ablation generally
produces some performance degradation, with the removal of

∑
j x

k,(t)
j having no significant impact

(EGO policy) or even being beneficial when the other changes are made (EGO+ policy). Interestingly,
in the EGO+ policy case, although root nodes are explicitly marked, the architecture seems to still
benefit from not sharing parameters between root and non-root updates. Indeed, imposing the weight
sharing θ1 = θ2 deteriorates the overall performance, which gets similar to the one obtained for the
EGO policy. These results indicates that, in the SUN layer, most of the terms concur to the strong
empirical performance of the architecture, including the choice of not sharing parameters between
root and non-root updates.

G.2 Experimental details

We implemented our model using Pytorch [44] and Pytorch Geometric [18] (available respectively
under the BSD and MIT license). We ran our experiments on NVIDIA DGX V100, GeForce
2080, and TITAN V GPUs. We performed hyperparameter tuning using the Weight and Biases
framework [8]. The time spent on each run depends on the dataset under consideration, with the
largest being ogbg-molhiv which takes around 8 hours for 200 epochs and asam optimizer. The time
for a single ZINC run is 1 hour and 10 minutes for 400 epochs. SUN uses the mean aggregator for
the feature matrix and directly employs the adjacency matrix of the original graph as the aggregated
adjacency (Equations (5) and (6)). We used the sum aggregator for all the other terms. Unless

46

otherwise specified, SUN uses the following update equations:

xv,(t+1)
v = σ

(
µ2
t,r

(
xv,(t)v

)
+ µ3

t,r

(∑
w

xv,(t)w

)
+

+ γ0t,r
(
xv,(t)v ,

∑
w∼vv

xv,(t)w

)
+ γ1t,r

(∑
h

xh,(t)v ,
∑
w∼v

∑
h

xh,(t)w

))
(42)

xk,(t+1)
v = σ

(
µ0
t

(
xv,(t)v

)
+ µ1

t

(
x
k,(t)
k

)
+ µ2

t

(
xk,(t)v

)
+ µ3

t

(∑
w

xk,(t)w

)
+

+ γ0t
(
xk,(t)v ,

∑
w∼kv

xk,(t)w

)
+ γ1t

(∑
h

xh,(t)v ,
∑
w∼v

∑
h

xh,(t)w

))
(43)

where µ’s are two-layer MLPs and each γ consists of one GIN [55] convolutional layer whose internal
MLP matches the dimensionality of µ’s, e.g.,

γ0t
(
xk,(t)v ,

∑
w∼kv

xk,(t)w

)
= µ̂0

t

(
(1 + ϵ)xk,(t)v +

∑
w∼kv

xk,(t)w

)
where µ̂0

t is an MLP. Details on the hyperparameter grid and architectural choices specific for each
dataset are reported in the following subsections.

G.2.1 Synthetic datasets

We used the dataset splits and evaluation procedure of Zhao et al. [61]. We considered a batch size of
128 and used Adam optimiser with a learning rate of 0.001 which is decayed by 0.5 every 50 epochs.
Training is stopped after 250 epochs. We used GIN as base encoder, and tuned the number of layers
in {5, 6}, and the embedding dimension in {64, 96, 110}. The depth of the ego-networks is set 2
and 3 in, respectively, the Counting and Graph Property tasks, in accordance with Zhao et al. [61].
Results of existing baselines reported in Tables 1 and 5 are taken from Zhao et al. [61].

G.2.2 ZINC-12k

We used the same dataset splits of Dwivedi et al. [17], and followed the evaluation procedure
prescribed therein. We used Mean Absolute Error as training loss and evaluation metric. We
considered batch size of 128, and Adam optimizer with initial learning rate of 0.001 which is decayed
by 0.5 after the validation metric does not improve for a patience that we set of 40 epochs. Training is
stopped after the learning rate reaches the value of 0.00001, at which time we compute the test metric.
We re-trained all Subgraph GNNs to comply with the 500k parameter budget, and also to the above
standard procedure in the case of GNN-AK and GNN-AK-ctx. For GNN-AK+, we reported the
result 0.086±??? specified by the authors in the rebuttal phase on Openreview, where the question
marks indicate that the standard deviation was not provided. We also re-ran GNN-AK+ with the
aforementioned standard procedure (learning rate decay and test at the time of early stopping) and
obtained 0.091± 0.011. All Subgraph GNNs use 6 layers and ego-networks of depth 3. We use GIN
as the base encoder and we set the embedding dimension to 128 for NGNN, DS- and DSS-GNN, to
100 for GNN-AK variants and to 64 for SUN. DS-GNN employs invariant deep sets layers [58] of the
form ρ(1n

∑n
i=1 ϕ(xi)) where xi denotes the representation of subgraph i. We tuned ϕ and ρ to be

either a 2-layers MLP or a single layer with dimensions in {64, 128}. All other parameters are left
as in the original implementation of the corresponding method. We repeat the experiments with 10
different initialisation seeds, and report mean and standard deviation.

G.2.3 OGBG-molhiv dataset

We used the evaluation procedure proposed in Hu et al. [23], which prescribes running each experi-
ment with 10 different seeds and reporting the results at the epoch achieving the best validation metric.
Following Zhao et al. [61], we disabled the subgraph aggregation components µ3

t,r

(∑
w x

v,(t)
w

)
and µ3

t

(∑
w x

k,(t)
w

)
in Equations (42) and (43). We used the same architectural choices of Zhao

et al. [61], namely depth-3 ego-networks, 2 GIN layers, residual connections and dropout of 0.3.
We set the embedding dimension of the GNNs to be 64. Early experimentation with the common
Adam optimiser revealed large fluctuations in the validation metric, which we found to considerably

47

oscillate across optimisation steps even for small learning rate values. Thus, given the non-uniform
strategy adopted to generate train, validation and test splits, we considered employing the ASAM
optimiser [29]. ASAM considers the sharpness of the training loss in each gradient descent step,
effectively driving the optimisation towards flatter minima. We left its ρ parameter to its default
value of 0.5. Additionally, to further prevent overfitting, we adopted linear layers in place of MLPs,
as shown in Equations (44) and (45). These choices showed to greatly reduce the aforementioned
fluctuations. Finally, we tuned the learning rate in {0.01, 0.005} and the batch size in {32, 64}.
The result in Table 2 corresponds to the configuration attaining best overall validation performance
(ROC AUC 85.19 ± 0.82), with a batch size of 32 and a learning rate of 0.01. We note that other
configurations performed comparably well. Amongst others, the configuration with a batch size of 64
and a learning rate of 0.005 attained a Test ROC AUC of 80.41± 0.76 with a Validation ROC AUC
of 84.87± 0.55. We remark how these SUN configurations perform comparably well when contrasted
with state-of-the-art GNN approaches which explicitly model (molecular) rings, crucially, both on
test and validation sets, despite the non-uniform splitting procedure. As an example, CIN [9] reports
a Test ROC AUC of 80.94± 0.57 with a Validation ROC AUC of 82.77± 0.99.

xv,(t+1)
v = σ

(
U2
t,r · xv,(t)v + γ0t,r

(
xv,(t)v ,

∑
w∼vv

xv,(t)w

)
+ γ1t,r

(∑
h

xh,(t)v ,
∑
w∼v

∑
h

xh,(t)w

))
(44)

xk,(t+1)
v = σ

(
U0
t · xv,(t)v + U1

t · xk,(t)k + U2
t · xk,(t)v +

+ γ0t
(
xk,(t)v ,

∑
w∼kv

xk,(t)w

)
+ γ1t

(∑
h

xh,(t)v ,
∑
w∼v

∑
h

xh,(t)w

))
(45)

G.2.4 TUDatasets

We followed the evaluation procedure described in Xu et al. [55]. We conducted 10-fold cross
validation and reported the performances at the epoch achieving the best averaged validation accuracy
across the folds. We used the same hyperparameter grid of Bevilacqua et al. [7]. We used GIN as
base encoder, setting the number of layers to 4 and tuning its embedding dimension in {16, 32}. We
used Adam optimizer with batch size in {32, 128}, and initial learning rate in {0.01, 0.001}, which
is decayed by 0.5 every 50 epochs. Training is stopped after 350 epochs. All ego-networks are of
depth 2.

G.2.5 Generalisation from limited data

We select each architecture by tuning the hyperparameters with the entire training and validation
sets, and choosing the configuration achieving the best validation performances. The hyperparameter
grids for SUN are the ones in Appendices G.2.1 and G.2.2. In the 4-Cycles task, for NGNN, DS-
and DSS-GNN we used the same grid but we tuned the embedding dimension in {64, 128, 256} to
allow them to have a similar number of parameters as SUN. For GNN-AK variants we used the best
performing parameters as provided in Zhao et al. [61].

G.2.6 Ablation study

For every ablation we tuned the embedding dimension in {64, 96, 110, 128} and chose the model
obtaining the lowest validation MAE while still being complaint with the 500K parameter budget.
The evaluation procedure and all the other hyperparameters are as specified in Appendix G.2.2.

48

