
Large-scale Optimization of Partial AUC in a Range of
False Positive Rates

Yao Yao
Department of Mathematics

The University of Iowa
yao-yao-2@uiowa.edu

Qihang Lin
Tipple College of Business

The University of Iowa
qihang-lin@uiowa.edu

Tianbao Yang
Department of Computer Science & Engineering

Texas A&M University
tianbao-yang@tamu.edu

Abstract

The area under the ROC curve (AUC) is one of the most widely used performance
measures for classification models in machine learning. However, it summarizes
the true positive rates (TPRs) over all false positive rates (FPRs) in the ROC space,
which may include the FPRs with no practical relevance in some applications. The
partial AUC, as a generalization of the AUC, summarizes only the TPRs over a
specific range of the FPRs and is thus a more suitable performance measure in
many real-world situations. Although partial AUC optimization in a range of FPRs
had been studied, existing algorithms are not scalable to big data and not applicable
to deep learning. To address this challenge, we cast the problem into a non-smooth
difference-of-convex (DC) program for any smooth predictive functions (e.g.,
deep neural networks), which allowed us to develop an efficient approximated
gradient descent method based on the Moreau envelope smoothing technique,
inspired by recent advances in non-smooth DC optimization. To increase the
efficiency of large data processing, we used an efficient stochastic block coordinate
update in our algorithm. Our proposed algorithm can also be used to minimize
the sum of ranked range loss, which also lacks efficient solvers. We established
a complexity of Õ(1/ϵ6) for finding a nearly ϵ-critical solution. Finally, we
numerically demonstrated the effectiveness of our proposed algorithms in training
both linear models and deep neural networks for partial AUC maximization and
sum of ranked range loss minimization.

1 Introduction

The area under the receiver operating characteristic (ROC) curve (AUC) is one of the most widely
used performance measures for classifiers in machine learning, especially when the data is imbalanced
between the classes [7, 19]. Typically, the classifier produces a score for each data point. Then a data
point is classified as positive if its score is above a chosen threshold; otherwise, it is classified as
negative. Varying the threshold will change the true positive rate (TPR) and the false positive rate
(FPR) of the classifier. The ROC curve shows the TPR as a function of the FPR that corresponds
to the same threshold. Hence, maximizing the AUC of a classifier is essentially maximizing the
classifier’s average TPR over all FPRs from zero to one. However, for some applications, some FPR
regions have no practical relevance. So does the TPR over those regions. For example, in clinical
practice, a high FPR in diagnostic tests often results in a high monetary cost, so people may only

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

need to maximize the TPR when the FPR is low [13, 34, 64]. Moreover, since two models with the
same AUC can still have different ROCs, the AUC does not always reflect the true performance of a
model that is needed in a particular production environment [8].

As a generalization of the AUC, the partial AUC (pAUC) only measures the area under the ROC
curve that is restricted between two FPRs. A probabilistic interpretation of the pAUC can be found
in [13]. In contrast to the AUC, the pAUC represents the average TPR only over a relevant range
of FPRs and provides a performance measure that is more aligned with the practical needs in some
applications.

In literature, the existing algorithms for training a classifier by maximizing the pAUC include the
boosting method [29] and the cutting plane algorithm [41, 42, 43]. However, the former has no
theoretical guarantee, and the latter applies only to linear models. More importantly, both methods
require processing all the data in each iteration and thus, become computationally inefficient for large
datasets.

In this paper, we proposed an approximate gradient method for maximizing the pAUC that works
for nonlinear models (e.g., deep neural networks) and only needs to process randomly sampled
positive and negative data points of any size in each iteration. In particular, we formulated the
maximization of the pAUC as a non-smooth difference-of-convex (DC) program [30, 54]. Due to
non-smoothness, most existing DC optimization algorithms cannot be applied to our formulation.
Motivated by [52], we approximate the two non-smooth convex components in the DC program by
their Moreau envelopes and obtain a smooth approximation of the problem, which will be solved
using the gradient descent method. Since the gradient of the smooth problem cannot be calculated
explicitly, we approximated the gradient by solving the two proximal-point subproblems defined by
each convex component using the stochastic block coordinate descent (SBCD) method. Our method,
besides its low per-iteration cost, has a rigorous theoretical guarantee, unlike the existing methods.
In fact, we show that our method finds a nearly ϵ-critical point of the pAUC optimization problem
in Õ(ϵ−6) iterations with only small samples of positive and negative data points processed per
iteration.1 This is the main contribution of this paper.

Note that, for non-convex non-smooth optimization, the existing stochastic methods [10, 11] find an
nearly ϵ-critical point in O(ϵ−4) iterations under a weak convexity assumption. Our method needs
O(ϵ−6) iterations because our problem is a DC problem with both convex components non-smooth
which is much more challenging than a weakly non-convex minimization problem. In addition, our
iteration number matches the known best iteration complexity for non-smooth non-convex min-max
optimization [33, 46] and non-smooth non-convex constrained optimization [35].

In addition to pAUC optimization, our method can be also used to minimize the sum of ranked range
(SoRR) loss, which can be viewed as a special case of pAUC optimization. Many machine learning
models are trained by minimizing an objective function, which is defined as the sum of losses over
all training samples [60]. Since the sum of losses weights all samples equally, it is insensitive to
samples from minority groups. Hence, the sum of top-k losses [17, 49] is often used as an alternative
objective function because it provides the model with robustness to non-typical instances. However,
the sum of top-k losses can be very sensitive to outliers, especially when k is small. To address this
issue, [24] proposed the SoRR loss as a new learning objective, which is defined as the sum of a
consecutive sequence of losses from any range after the losses are sorted. Compared to the sum of all
losses and the sum of top-k losses, the SoRR loss maintains a model’s robustness to a minority group
but also reduces the model’s sensitivity to outliers. See Fig.1 in [24] for an illustration of the benefit
of using the SoRR loss over other ways of aggregating individual losses.

To minimize the SoRR loss, [24] applied a difference-of-convex algorithm (DCA) [3, 54], which
linearizes the second convex component and solves the resulting subproblem using the stochastic
subgradient method. DCA has been well studied in literature; but when the both components are
non-smooth, as in our problem, only asymptotic convergence results are available. To establish the
total number of iterations needed to find an ϵ-critical point in a non-asymptotic sense, most existing
studies had to assume that at least one of the components is differentiable, which is not the case in
this paper. Using the approximate gradient method presented in this paper, one can find a nearly
ϵ-critical point of the SoRR loss optimization problem in Õ(ϵ−6) iterations.

1Throughout the paper, Õ(·) suppresses all logarithmic factors.

2

2 Related Works

The pAUC has been studied for decades [26, 37, 57, 65]. However, most studies focused on its
estimation [13] and application as a performance measure, while only a few studies were devoted to
numerical algorithms for optimizing the pAUC. Efficient optimization methods have been developed
for maximizing AUC and multiclass AUC by [69] and [66], but they cannot be applied to pAUC.
Besides the boosting method [29] and the cutting plane algorithm [41, 42, 43] mentioned in the
previous section, [59, 67, 68, 73] developed surrogate optimization techniques that directly maximize
a smooth approximation of the pAUC or the two-way pAUC [64]. However, their approaches can
only be applied when the FPR starts from exactly zero. On the contrary, our method allows the FPR
to start from any value between zero and one. [61] and [47] developed algorithms that use the pAUC
as a criterion for creating a linear combination of multiple existing classifiers while we consider
directly train a classifier using the pAUC.

DC optimization has been studied since the 1950s [2, 20]. We refer interested readers to [30, 45, 54,
55, 58], and the references therein. The actively studied numerical methods for solving a DC program
include DCA [3, 50, 54, 55], which is also known as the concave-convex procedure [32, 51, 72], the
proximal DCA [5, 38, 40, 53], and the direct gradient methods [28]. However, when the two convex
components are both non-smooth, the existing methods have only asymptotic convergence results
except the method by [1], who considered a stopping criterion different from ours. When at least one
component is smooth, non-asymptotic convergence rates have been established with and without the
Kurdyka-Łojasiewicz (KL) condition [5, 6, 28, 50, 62].

The algorithms mentioned above are deterministic and require processing the entire dataset per
iteration. Stochastic algorithms that process only a small data sample per iteration have been
studied [12, 21, 31, 36, 44]. However, they all assumed smoothness on at least one of the two
convex components in the DC program. The stochastic methods of [4, 56, 63] can be applied when
both components are non-smooth but their methods require an unbiased stochastic estimation of the
gradient and/or value of the two components, which is not available in the DC formulation of the
pAUC maximization problem in this paper.

The technique most related to our work is the smoothing method based on the Moreau envelope [16,
18, 22, 23, 39, 52]. Our work is motivated by [39, 52], but the important difference is that they studied
deterministic methods and assumed either that one function is smooth or that the proximal-point
subproblems can be solved exactly, which we do not assume. However, [39, 52] consider a more
general problem and study the fundamental properties of the smoothed function such as its Lipschitz
smoothness and how its stationary points correspond to those of the original problems. We mainly
focus on partial AUC optimization which has a special structure we can utilize when solving the
proximal-point subproblems. Additionally, [52] developed an algorithm when there were linear
equality constraints, which we do not consider in this paper.

3 Preliminary

We consider a classical binary classification problem, where the goal is to build a predictive model
that predicts a binary label y ∈ {1,−1} based on a feature vector x ∈ Rp. Let hw : Rp → R be the
predictive model parameterized by a vector w ∈ Rd, which produces a score hw(x) for x. Then
x is classified as positive (y = 1) if hw(x) is above a chosen threshold and classified as negative
(y = −1), otherwise.

Let X+ = {x+
i }

N+

i and X− = {x−
i }

N−
i be the sets of feature vectors of positive and negative

training data, respectively. The problem of learning hw through maximizing its empirical AUC on
the training data can be formulated as

max
w

1

N+N−

N+∑
i=1

N−∑
j=1

1(hw(x+
i) > hw(x−

j)), (1)

where 1(·) is the indicator function which equals one if the inequality inside the parentheses holds and
equals zero, otherwise. According to the introduction, pAUC can be a better performance measure of
hw than AUC. Consider two FPRs α and β with 0 ≤ α < β ≤ 1. For simplicity of exposition, we
assume N−α and N−β are both integers. Let m = N−α and n = N−β. The problem of maximizing

3

the empirical pAUC with FPR between α and β can be formulated as

max
w

1

N+(n−m)

N+∑
i=1

n∑
j=m+1

1(hw(x+
i) > hw(x−

[j])), (2)

where [j] denotes the index of the jth largest coordinate in vector (hw(x−
j))

N−
j=1 with ties broken

arbitrarily. Note that N+(n − m) in (2) is a normalizer that makes the objective value between
zero and one. Solving (2) is challenging due to discontinuity. Let ℓ : R → R be a differential
non-increasing loss function. Problem (2) can be approximated by the loss minimization problem

min
w

1

N+(n−m)

N+∑
i=1

n∑
j=m+1

ℓ(hw(x+
i)− hw(x−

[j])). (3)

To facilitate the discussion, we first introduce a few notations. Given a vector S = (si)
N
i=1 ∈ RN and

an integer l with 0 ≤ l ≤ N , the sum of the top-l values in S is

ϕl(S) :=
∑l

j=1 s[j], (4)

where [j] denotes the index of the jth largest coordinate in S with ties broken arbitrarily. For integers
l1 and l2 with 0 ≤ l1 < l2 ≤ N , ϕl2(S)−ϕl1(S) is the sum from the (l1+1)th to the l2th (inclusive)
largest coordinates of S, also called a sum of ranked range (SoRR). In addition, we define vectors

Si(w) := (sij(w))
N−
j=1

for i = 1, . . . , N+, where sij(w) := ℓ(hw(x+
i)− hw(x−

j)) for i = 1, . . . , N+ and j = 1, . . . , N−.
Since ℓ is non-increasing, the jth largest coordinate of Si(w) is ℓ(hw(x+

i)− hw(x−
[j])). As a result,

we have, for i = 1, . . . , N+,∑n
j=m+1 ℓ(hw(x+

i)− hw(x−
[j])) = ϕn(Si(w))− ϕm(Si(w)).

Hence, after dropping the normalizer, (3) can be equivalently written as

F ∗ = min
w

{F (w) := fn(w)− fm(w)} , (5)

where

f l(w) =
∑N+

i=1 ϕl(Si(w)) for l = m,n. (6)

Next, we introduce an interesting special case of (5), namely, the problem of minimizing SoRR loss.
We still consider a supervised learning problem but the target y ∈ R does not need to be binary. We
want to predict y based on a feature vector x ∈ Rp using hw(x). With a little abuse of notation,
we measure the discrepancy between hw(x) and y by ℓ(hw(x), y), where ℓ : R2 → R+ is a loss
function. We consider learning the model’s parameter w from a training set D = {(xj , yj)}Nj=1,
where xj ∈ Rp and yj ∈ R for j = 1, . . . , N , by minimizing the SoRR loss. More specifically, we
define vector

S(w) = (sj(w))Nj=1,

where sj(w) := ℓ(hw(xj), yj), j = 1, . . . , N . Recall (4). For any integers m and n with 0 ≤ m <
n ≤ N , the problem of minimizing the SoRR loss with a range from m + 1 to n is formulated as
minw {ϕn(S(w))− ϕm(S(w))}, which is an instance of (5) with

f l = ϕl(S(w)) for l = m,n. (7)

If we view Si(w) and S(w) only as vector-value functions of w but ignore how they are formulated
using data, (7) is a special case of (6) with N+ = 1 and N− = N .

4 Nearly Critical Point and Moreau Envelope Smoothing

We first develop a stochastic algorithm for (5) with f l defined in (6). To do so, we make the following
assumptions, which are satisfied by many smooth hw’s and ℓ’s.

4

Assumption 1 (a) sij(w) is smooth and there exists L ≥ 0 such that2 ∥∇sij(w)−∇sij(v)∥ ≤
L∥w − v∥ for any w,v ∈ Rd, i = 1, . . . , N+ and j = 1, . . . , N−. (b) There exists B ≥ 0 such that
∥∇sij(w)∥ ≤ B for any w ∈ Rd, i = 1, . . . , N+ and j = 1, . . . , N−. (c) F ∗ > −∞.

Given f : Rd → R ∪ {+∞}, the subdifferential of f is

∂f(w) =
{
ξ ∈ Rd

∣∣∣f(v) ≥ h(w) + ξ⊤(v −w) + o(∥v −w∥2), v → w
}
,

where each element in ∂f(w) is called a subgradient of f at w. We say f is ρ-weakly convex for
some ρ ≥ 0 if f(v) ≥ f(w) + ⟨ξ,v −w⟩ − ρ

2∥v − w∥2 for any v and w and ξ ∈ ∂f(w) and
say f is ρ-strongly convex for some ρ ≥ 0 if f(v) ≥ f(w) + ⟨ξ,v −w⟩ + ρ

2∥v −w∥2 for any
v and w and ξ ∈ ∂f(w). It is known that, if f is ρ-weakly convex, then f(w) + 1

2µ∥w∥2 is a
(µ−1 − ρ)-strongly convex function when µ−1 > ρ.

Under Assumption 1, ϕl(Si(w)) is a composite of the closed convex function ϕl and the smooth map
Si(w). According to Lemma 4.2 in [14], we have the following lemma.

Lemma 1 Under Assumption 1, fm(w) and fn(w) in (6) are ρ-weakly convex with ρ := N+N−L.

To solve (5) numerically, we need to overcome the following challenges. (i) F (w) is non-convex
even if each sij(w) is convex. In fact, F (w) is a DC function because, by Lemma 1, we can represent
F (w) as the difference of the convex functions fn(w) + 1

2µ∥w∥2 and fm(w) + 1
2µ∥w∥2 with

µ−1 > ρ. (ii) F (w) is non-smooth due to ϕl so that finding an approximate critical point (defined
below) of F (w) is difficult. (iii) Computing the exact subgradient of f l(w) for l = m,n requires
processing N+N− data pairs, which is computationally expensive for a large data set.

Because of challenges (i) and (ii), we have to consider a reasonable goal when solving (5). We say
w ∈ Rd is a critical point of (5) if 0 ∈ ∂fn(w) − ∂fm(w). Given ϵ > 0, we say w ∈ Rd is an
ϵ-critical point of (5) if there exists ξ ∈ ∂fn(w) − ∂fm(w) such that ∥ξ∥ ≤ ϵ. A critical point
can only be achieved asymptotically in general.3 Within finitely many iterations, there also exists
no algorithm that can find an ϵ-critical point unless at least one of fm and fn is smooth, e.g., [63].
Since fm and fn are both non-smooth, we have to consider a weaker but achievable target, which is
a nearly ϵ-critical point defined below.

Definition 1 Given ϵ > 0, we say w ∈ Rd is a nearly ϵ-critical point of (5) if there exist ξ, w′, and
w′′ ∈ Rd such that ξ ∈ ∂fn(w′)− ∂fm(w′′) and max {∥ξ∥, ∥w −w′∥, ∥w −w′′∥} ≤ ϵ.

Definition 1 is reduced to the ϵ-stationary point defined by [39, 52] when w equals w′ or w′′.
However, obtaining their ϵ-stationary point requires exactly solving the proximal mapping of fm

or fn while finding a nearly ϵ-critical point requires only solving the proximal mapping inexactly.
When w is generated by a stochastic algorithm, we also call w a nearly ϵ-critical point if it satisfies
Definition 1 with each ∥ · ∥ replaced by E∥ · ∥.

Motivated by [52] and [39], we approximate non-smooth F (w) by a smooth function using the
Moreau envelopes. Given a proper, ρ-weakly convex and closed function f on Rd, the Moreau
envelope of f with the smoothing parameter µ ∈ (0, ρ−1) is defined as

fµ(w) := min
v

{
f(v) +

1

2µ
∥v −w∥2

}
(8)

and the proximal mapping of f is defined as

vµf (w) := argmin
v

{
f(v) +

1

2µ
∥v −w∥2

}
. (9)

Note that the vµf (w) is unique because the minimization above is strongly convex. Standard results
show that fµ(w) is smooth with ∇fµ(w) = µ−1(w−vµf (w)) and vµf (w) is (1−µρ)−1-Lipschitz
continuous. See Proposition 13.37 in [48] and Proposition 1 in [52]. Hence, using the Moreau
envelope, we can construct a smooth approximation of (5) as follows

min
w

{
Fµ := fn

µ (w)− fm
µ (w)

}
. (10)

2In this paper, ∥ · ∥ represents Euclidean norm.
3A stronger notion than criticality is (directional) stationarity, which can also be achieved asymptotically [45].

5

Function Fµ has the following properties. The first property is shown in [52]. We give the proof for
the second in Appendix B.

Lemma 2 Suppose Assumption 1 holds and µ > ρ−1 with ρ defined in Lemma 1. The following
claims hold

1. ∇Fµ(w) = µ−1(vµfm(w)− vµfn(w)) and it is Lµ-Lipschitz continuous with Lµ = 2
µ−µ2ρ .

2. If v̄ and w are two random vectors such that E∥∇Fµ(w)∥2 ≤ min{1, µ−2}ϵ2/4 and E∥v̄ −
vµf l(w)∥2 ≤ ϵ2/4 for either l = m or l = n, then v̄ is a nearly ϵ-critical points of (5).

Since Fµ is smooth, we can directly apply a first-order method for smooth non-convex optimization
to (10). To do so, we need to evaluate ∇Fµ(w), which requires computing vµfm(w) and vµfn(w),
i.e., exactly solving (9) with f = fm and f = fn, respectively. Computing the subgradients of fm

and fn require processing N+N− data pairs which is costly. Unfortunately, the standard approach
of sampling over data pairs does not produce unbiased stochastic subgradients of fm and fn due to
the composite structure ϕl(Si(w)). In the next section, we will discuss a solution to overcome this
challenge and approximate vµfm(w) and vµfn(w), which leads to an efficient algorithm for (10).

5 Algorithm for pAUC Optimization

Consider (10) with f l defined in (6) for l = m and n. To avoid of processing N+N− data points, one
method is to introduce dual variables pi = (pij)

N−
j=1 for i = 1, . . . , N+ and formulate f l as

f l(w) = max
pi∈Pl,i=1,...,N+

{∑N+

i=1

∑N−
j=1 pijsij(w)

}
, (11)

where P l = {p ∈ RN− |
∑N−

j=1 pj = l, pj ∈ [0, 1]}. Then (10) can be reformulated as a min-
max problem and solved by a primal-dual stochastic gradient method (e.g. [46]). However, the
maximization in (11) involves N+N− decision variables and equality constraints, so the per-iteration
cost is still O(N+N−) even after using stochastic gradients.

To further reduce the per-iteration cost, we take the dual form of the maximization in (11) (see
Lemma 4 in Appendix B) and formulate f l as

f l(w) = min
λ

{
gl(w,λ) := l1⊤λ+

N+∑
i=1

N−∑
j=1

[sij(w)− λi]+

}
, (12)

where λ = (λ1, . . . , λN+
). Hence, (9) with f = f l for l = m and n can be reformulated as

min
v,λ

{
gl(v,λ) +

1

2µ
∥v −w∥2

}
. (13)

Note that gl(v,λ) is jointly convex in v and λ when µ−1 > ρ = N+N−L (see Lemma 3 in
Appendix B). Thanks to formulation (13), we can construct stochastic subgradient of gl and apply
coordinate update to λ by sampling indexes i’s and j’s, which significantly reduce the computational
cost when N+ and N− are both large. We present this standard stochastic block coordinate descent
(SBCD) method for solving (13) in Algorithm 1 and present its convergence property as follows.

Proposition 1 Suppose Assumption 1 holds and µ−1 > ρ = N+N−L, θt = dist(λ(0),Λ∗)√
ITN−

and

ηt =
∥v

µfl (w)−w∥
N+N−B

√
T

for any t in Algorithm 1. It holds that(
1

2µ
− ρ

2

)
E∥v̄ − vµfl(w))∥2 ≤ N+N−√

IT
dist(λ(0),Λ∗) +

N+N−B

2
√
T

∥vµfl(w)−w∥+
∥vµfl(w)−w∥2

2µT
,

where Λ∗ = argmin
λ

gl(vµf l(w),λ).

Using Algorithm 1 to compute an approximation of vµf l(w) for l = m and n and thus, an approxi-
mation of ∇Fµ(w), we can apply an approximate gradient descent (AGD) method to (10) and find a
nearly ϵ-critical point of (5) according to Lemma 2. We present the AGD method in Algorithm 2 and
its convergence property as follows.

6

Algorithm 1 Stochastic Block Coordinate Descent for (13): (v̄, λ̄) =SBCD(w,λ, T, µ, l)

1: Input: Initial solution (w,λ), the number of iterations T , µ > 0, an integer l > 0 and sample
sizes I and J .

2: Set (v(0),λ(0)) = (w,λ) and choose (ηt, θt)
T−1
t=0 .

3: for t = 0 to T − 1 do
4: Sample It ⊂ {1, . . . , N+} with |It| = I and sample Jt ⊂ {1, . . . , N−} with |Jt| = J .
5: Compute stochastic subgradient w.r.t. v:

G
(t)
v =

N+N−
IJ

∑
i∈It

∑
j∈Jt

∇sij(v
(t))1

(
sij(v

(t)) > λ
(t)
i

)
6: Proximal stochastic subgradient update on v:

v(t+1) = argmin
v

(G(t)
v)⊤v +

∥v −w∥2

2µ
+

∥v − v(t)∥2

2ηt
(14)

7: Compute stochastic subgradient w.r.t. λi for i ∈ It:

G
(t)
λi

= l − N−
J

∑
j∈Jt

1
(
sij(v

(t)) > λ
(t)
i

)
for i ∈ It

8: Stochastic block subgradient update on λi for i ∈ It:

λ
(t+1)
i = λ

(t)
i − θtG

(t)
λi

for i ∈ It and λ
(t+1)
i = λ

(t)
i for i /∈ It. (15)

9: end for
10: Output: (v̄, λ̄) = 1

T

∑T−1
t=0 (v(t),λ(t)).

Algorithm 2 Approximate Gradient Descent (AGD) for (10)

1: Input: Initial solutions (w(0), λ̄
(0)
m , λ̄

(0)
n), the number of iterations K, µ > ρ−1, γ > 0,

m = αN− and n = βN−.
2: for k = 0 to K − 1 do
3: (v̄

(k)
m , λ̄

(k+1)
m) =SBMD(w(k), λ̄

(k)
m , Tk, µ,m)

4: (v̄
(k)
n , λ̄

(k+1)
n) =SBMD(w(k), λ̄

(k)
n , Tk, µ, n)

5: w(k+1) = w(k) − γµ−1(v̄
(k)
m − v̄

(k)
n)

6: end for
7: Output: v̄(k̄)

n with k̄ sampled from {0, . . . ,K − 1}.

Theorem 1 Suppose Assumption 1 holds and Algorithm 1 is called in iteration k of Algorithm 2 with

parameters µ−1 > ρ = N+N−L, θt =
dist(λ̄(k),Λ∗

k)√
ITkN−

, ηt =
∥v

µfl (w
(k))−w(k)∥

N+N−B
√
Tk

for any t, and

Tk = max

{
144N2

+N
2
−D

2
l (k + 1)2

I(µ−1 − ρ)2
,
4N2

+N
2
−µ

2l2B2(k + 1)2

(µ−1 − ρ)2
,
6µl2B2(k + 1)

2(µ−1 − ρ)2

}
where Λ∗

k = argmin
λ

gl(vµf l(w(k)),λ) and

Dl := max

{
dist(λ̄(0)

l ,Λ∗
0),

1

2

(
1

µ
− ρ

)
+

µl2B2

2
+N+B +

N+B

1− µρ

(
2γ

µ
+ γnB + γmB

)}
. (16)

Then v̄
(k̄)
n is a nearly ϵ-critical point of (5) with f l defined in (6) with K no more than

K = max

{
16µ2

γmin{1, µ2}ϵ2
(
F (vµfn(w(0)))− F ∗

)
,

96

min{1, µ2}ϵ2 log

(
96

min{1, µ2}ϵ2

)}
. (17)

According to Theorem 1, to find a nearly ϵ-critical point of (5), we need K = Õ(ϵ−2) iterations in
Algorithm 2 and

∑K−1
k=0 Tk = O(K3) = Õ(ϵ−6) iterations of Algorithm 1 in total across all calls.

Remark 1 (Challenges in proving Theorem 1) Suppose we can set Tk in lines 3 and 4 of Algo-
rithm 2 appropriately such that the approximation errors E∥v̄(k)

m − vµfm(w(k))∥2 and E∥v̄(k)
n −

7

0 50 100 150

of epoch

1

1.5

2

2.5

3

T
ra

in
in

g
 L

o
s

s

CheXpert_D1

AGD-SBCD

DCA

Proximal DCA

20 40 60 80
0.55

0.6

0.65

0 50 100 150

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D1

AGD-SBCD

DCA

Proximal DCA

SVM
pAUC

-tight

Random Classifier

0 50 100 150

of epoch

1

1.5

2

2.5

3

T
ra

in
in

g
 L

o
s

s

CheXpert_D2

AGD-SBCD

DCA

Proximal DCA

50 100 150
0.54

0.56

0.58

0 50 100 150

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D2

AGD-SBCD

DCA

Proximal DCA

SVM
pAUC

-tight

Random Classifier

Figure 1: Results for Patial AUC Maximization of D1 and D2. (Results of D3, D4 and D5 are shown
in Appendix E.3 Figure 3)

vµfn(w(k))∥2 are both O(1/k). We can then prove that Algorithm 2 finds a nearly ϵ-critical point
within K = Õ(ϵ−2) iterations and the total complexity is

∑K−1
k=0 Tk. This is just a standard idea.

However, by Proposition 1, such a Tk must be Θ(k2(dist2(λ̄(k)
,Λ∗

k) + ∥vµf l(w(k)) − w(k)∥2))
where dist2(λ̄(k)

,Λ∗
k) and ∥vµf l(w(k)) − w(k)∥2 also change with k. Then it is not clear what

the order of Tk is. By a novel proving technique based on the (linear) error-bound condition of
gl(w,λ) with respect to λ, we prove that both dist2(λ̄(k)

,Λ∗
k) and ∥vµf l(w(k))−w(k)∥2 are O(1)

(see (27) and (30) in Appendix D) which ensures that Tk = Θ(k2) and thus the total complexity is∑K−1
k=0 Tk = O(K3) = Õ(ϵ−6).

Remark 2 (Analysis of sensitivity of the algorithm to µ) For the interesting case where ρ ≥ 1, we
have µ < 1/ρ < 1. In this case, we can derive that the order of dependency on µ is O(1

ϵ6µ6) and
the optimal choice of µ is thus Θ(ρ−1), e.g., µ = 1

2ρ , which leads to a complexity of O(ρ6/ϵ6). We
present the convergence curves and the test performance of our method when applied to training a
linear model with µ of different values in Appendix E.7.

The technique in the previous sections can be directly applied to minimize the SoRR loss, which is
formulated as (5) but with f l defined in (7). Due to the limit of space, we present the algorithm for
minimizing the SoRR loss and its convergence result in Appendix A.

6 Numerical Experiments

In this section, we demonstrate the effectiveness of our algorithm AGD-SBCD for pAUC maximiza-
tion and SoRR loss minimization problems (see Appendix E.1 for details). All experiments are
conducted in Python and Matlab on a computer with the CPU 2GHz Quad-Core Intel Core i5 and the
GPU NVIDIA GeForce RTX 2080 Ti. All datasets we used are publicly available and contain no
personally identifiable information and offensive contents.

6.1 Partial AUC Maximization

For maximizing pAUC, we focus on large-scale imbalanced medical dataset CheXpert [25], which is
licensed under CC-BY-SA and has 224,316 images. We construct five binary classification tasks with
the logistic loss ℓ(z) = log(1 + exp(−z)) for predicting five popular diseases, Cardiomegaly (D1),
Edema (D2), Consolidation (D3), Atelectasis (D4), and P. Effusion (D5).

For comparison of training convergence, we consider different methods for optimizing the partial
AUC. We compare with three baselines, DCA [24] (see Appendix E.4 for details), proximal DCA [62]
(see Appendix E.5 for details) and SVMpAUC -tight [42]. Since DCA, proximal DCA and SVMpAUC -
tight cannot be applied to deep neural networks, we focus on linear model and use a pre-trained deep
neural network to extract a fixed dimensional feature vectors of 1024. The deep neural network was
trained by optimizing the cross-entropy loss following the same setting as in [70].

For three baselines and our algorithm, the process to tune the hyper-parameters is explained in
Appendix E.2. In Figure 1 and Figure 3 in Appendix E.3, we show how the training loss (the objective
value of (3)) and normalized partial AUC on the training data change with the number of epochs.

8

Table 1: Comparison on the CheXpert training data. From left to right, the columns are the tasks, the
pAUCs returned by SVMpAUC-tight, the CPU time (in seconds) SVMpAUC-tight takes, the CPU
and GPU time AGD-SBCD uses to exceed SVMpAUC-tight’s pAUCs, the final pAUCs returned by
AGD-SBCD, and the CPU and GPU time (in seconds) AGD-SBCD takes to return the final pAUCs.

Methods SVMpAUC-tight AGD-SBCD

Tasks pAUC CPU CPU time (epoch) GPU time to pAUC CPU GPU
time to outperform outperform time time

D1 0.6259 95.14 2.91 (0.23) 1.85 0.7005±0.0003 118.32 82.13
D2 0.5860 90.83 3.36 (0.23) 1.93 0.7214±0.0024 415.66 247.29
D3 0.3745 90.56 3.26 (0.23) 1.84 0.4910±0.0006 181.70 104.55
D4 0.3895 89.64 10.09 (0.63) 8.38 0.4616±0.0006 187.36 158.14
D5 0.7267 90.86 3.97 (0.23) 1.89 0.8272±0.0001 238.10 142.91

We observe that for all of these five diseases, our algorithm converges much faster than DCA and
proximal DCA and we get a better partial AUC than DCA and proximal DCA.

The comparison between our AGD-SBCD and SVMpAUC-tight on training data are shown in Table
1. As shown from the second to the fifth column of Table 1, our algorithm needs only a few seconds
to exceed the pAUCs that SVMpAUC-tight takes more than one minute to return. As shown from
sixth to eighth column, our algorithm eventually improves the pAUC by at least 12% compared
with SVMpAUC-tight. DCA and proximal DCA are not included in the tables because it computes
deterministic subgradients, which leads to a runtime significantly longer than the other two methods.
We plot the convergence curves of training pAUC over GPU time for DCA and our algorithm in
Figure 7 in Appendix E.8.

To compare the testing performances, we consider the deep neural networks besides the linear model.
For linear model, we still compare with DCA and SVMpAUC-tight. For deep neural networks,
we compare with the naive mini-batch based method (MB) [27] and methods based on different
optimization objectives, including the cross-entropy loss (CE) and the AUC min-max margin loss
(AUC-M) [71]. We learn the model DenseNet121 from scratch with the CheXpert training data split
in train/val=9:1 and the CheXpert validation dataset as the testing set, which has 234 samples. The
range of FPRs in pAUC is [0.05, 0.5]. For optimizing CE, we use the standard Adam optimizer.
For optimizing AUC-M, we use the PESG optimizer in [71]. We run each method 10 epochs
and the learning rate (c in AGD-SBCD) of all methods is tuned from {10−5 ∼ 100}. The mini-
batch size is 32. For AGD-SBCD, Tk is set to 50(k + 1)2, µ is set to 103

N+N−
and γ is tuned from

{0.1, 1, 2} × 103/(N+N−). For MB, the learning rate decays in the same way as in [27]. For
CE and AUC-M, the learning rate decays 10-fold after every 5 epochs. For AUC-M, we tune the
hyperparameter γ in {100, 500, 1000}. For each method, the validation set is used to tune the
hyperparameters and select the best model across all iterations. The results of the pAUCs on the
testing set are reported in Table 2, which shows that our algorithm performs the best for all diseases.
The complete ROC curves on the testing set are shown in Appendix E.3.

Table 2: The pAUCs with FPRs between 0.05 and 0.5 on the testing sets from the CheXpert data.

Method D1 D2 D3 D4 D5

Linear
Model

SVMpAUC-tight 0.6538±0.0042 0.6038±0.0009 0.6946±0.0020 0.6521±0.0006 0.7994±0.0004
DCA 0.6636±0.0093 0.8078±0.0030 0.7427±0.0257 0.6169±0.0208 0.8371±0.0022

Proximal DCA 0.6615±0.0103 0.8041±0.0033 0.7064±0.0253 0.5945±0.0266 0.8352±0.0023
AGD-SBCD 0.6721±0.0081 0.8257±0.0025 0.8016±0.0075 0.6340±0.0165 0.8500±0.0017

Deep
Model

MB 0.7510±0.0248 0.8197±0.0127 0.6339±0.0328 0.5698±0.0343 0.8461±0.0188
CE 0.6994±0.0453 0.8075±0.0244 0.7673±0.0266 0.6499±0.0184 0.7884±0.0080

AUC-M 0.7403±0.0339 0.8002±0.0274 0.8533±0.0469 0.7420±0.0277 0.8504±0.0065
AGD-SBCD 0.7535±0.0255 0.8345±0.0130 0.8689±0.0184 0.7520±0.0079 0.8513±0.0107

For deep neural networks, we also learn the model ResNet-20 from scratch with the CIFAR-10-LT
and the Tiny-ImageNet-200-LT datasets, which are constructed similarly as in [67]. Details about
these two datasets are summarized in Appendix E.6. The range of FPRs in pAUC is [0.05, 0.5]. The
process of tuning hyperparameters is the same as that for CheXpert. The results of the pAUCs on the

9

testing set are reported in Table 3, which shows that our algorithm performs the best for these two
long-tailed datasets.

Table 3: The pAUCs with FPRs between 0.05 and 0.5 on the testing sets from the CIFAR-10-LT and
the Tiny-ImageNet-200-LT Datasets.

Dataset MB CE AUC-M AGD-SBCD

Deep
Model

CIFAR-10-LT 0.9337±0.0043 0.9016±0.0137 0.9323±0.0055 0.9408±0.0084
Tiny-ImageNet-200-LT 0.6445±0.0214 0.6549±0.008 0.6497±0.009 0.6594±0.0192

7 Conclusion

Most existing methods for optimizing pAUC are deterministic and only have an asymptotic con-
vergence property. We formulate pAUC optimization as a non-smooth DC program and develop
a stochastic subgradient method based on the Moreau envelope smoothing technique. We show
that our method finds a nearly ϵ-critical point in Õ(ϵ−6) iterations and demonstrate its performance
numerically. A limitation of this paper is the smoothness assumption on sij(w), which does not hold
for some models, e.g., neural networks using ReLU activation functions. It is a future work to extend
our results for non-smooth models.

Acknowledgements

This work was jointly supported by the University of Iowa Jumpstarting Tomorrow Program and NSF
award 2147253. T. Yang was also supported by NSF awards 2110545 and 1844403, and Amazon
research award. We thank Zhishuai Guo, Zhuoning Yuan and Qi Qi for discussing about processing
the image dataset.

References
[1] Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani. On the rate of convergence

of the difference-of-convex algorithm (dca). arXiv preprint arXiv:2109.13566, 2021. 3

[2] AD Alexandroff. Surfaces represented by the difference of convex functions. In Doklady
Akademii Nauk SSSR (NS), volume 72, pages 613–616, 1950. 3

[3] Le Thi Hoai An and Pham Dinh Tao. The dc (difference of convex functions) programming
and dca revisited with dc models of real world nonconvex optimization problems. Annals of
operations research, 133(1):23–46, 2005. 2, 3

[4] Le Thi Hoai An, Huynh Van Ngai, Pham Dinh Tao, and Luu Hoang Phuc Hau. Stochastic
difference-of-convex algorithms for solving nonconvex optimization problems. arXiv preprint
arXiv:1911.04334, 2019. 3

[5] Nguyen Thai An and Nguyen Mau Nam. Convergence analysis of a proximal point algorithm
for minimizing differences of functions. Optimization, 66(1):129–147, 2017. 3

[6] Francisco J Aragón Artacho, Ronan MT Fleming, and Phan T Vuong. Accelerating the dc
algorithm for smooth functions. Mathematical Programming, 169(1):95–118, 2018. 3

[7] Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern recognition, 30(7):1145–1159, 1997. 1

[8] Andrew P Bradley. Half-auc for the evaluation of sensitive or specific classifiers. Pattern
Recognition Letters, 38:93–98, 2014. 2

[9] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011. 14, 23

[10] Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate
o(k−1/4) on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018. 2

10

[11] Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for
nonsmooth, nonconvex problems. SIAM Journal on Optimization, 29(3):1908–1930, 2019. 2

[12] Qi Deng and Chenghao Lan. Efficiency of coordinate descent methods for structured nonconvex
optimization. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 74–89. Springer, 2020. 3

[13] Lori E Dodd and Margaret S Pepe. Partial auc estimation and regression. Biometrics, 59(3):614–
623, 2003. 2, 3

[14] Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of convex
functions and smooth maps. Mathematical Programming, 178(1):503–558, 2019. 5, 17

[15] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. 14, 23

[16] Rachid Ellaia. Contribution à l’analyse et l’optimisation de différence de fonctions convexes.
PhD thesis, Université Paul Sabatier, 1984. 3

[17] Yanbo Fan, Siwei Lyu, Yiming Ying, and Bao-Gang Hu. Learning with average top-k loss.
arXiv preprint arXiv:1705.08826, 2017. 2

[18] D. Gabay. Minimizing the difference of two convex functions. I. Algorithms based on exact
regularization. 1982. 3

[19] James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982. 1

[20] Philip Hartman. On functions representable as a difference of convex functions. Pacific Journal
of Mathematics, 9(3):707–713, 1959. 3

[21] Lulu He, Jimin Ye, et al. Accelerated proximal stochastic variance reduction for dc optimization.
Neural Computing and Applications, 33(20):13163–13181, 2021. 3

[22] J-B Hiriart-Urruty. Generalized differentiability/duality and optimization for problems dealing
with differences of convex functions. In Convexity and duality in optimization, pages 37–70.
Springer, 1985. 3

[23] J-B Hiriart-Urruty. How to regularize a difference of convex functions. Journal of mathematical
analysis and applications, 162(1):196–209, 1991. 3

[24] Shu Hu, Yiming Ying, Siwei Lyu, et al. Learning by minimizing the sum of ranked range.
Advances in Neural Information Processing Systems, 33, 2020. 2, 8, 24

[25] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A.
Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz,
Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison, 2019. 8, 14

[26] Yulei Jiang, Charles E Metz, and Robert M Nishikawa. A receiver operating characteristic
partial area index for highly sensitive diagnostic tests. Radiology, 201(3):745–750, 1996. 3

[27] Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. Online and stochastic gradient
methods for non-decomposable loss functions. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014. 9

[28] Koulik Khamaru and Martin Wainwright. Convergence guarantees for a class of non-convex
and non-smooth optimization problems. In International Conference on Machine Learning,
pages 2601–2610. PMLR, 2018. 3

[29] Osamu Komori and Shinto Eguchi. A boosting method for maximizing the partial area under
the roc curve. BMC bioinformatics, 11(1):1–17, 2010. 2, 3

11

[30] Hoai An Le Thi and Tao Pham Dinh. Dc programming and dca: thirty years of developments.
Mathematical Programming, 169(1):5–68, 2018. 2, 3

[31] Hoai An Le Thi, Hoai Minh Le, Duy Nhat Phan, and Bach Tran. Stochastic dca for the large-sum
of non-convex functions problem and its application to group variable selection in classification.
In International Conference on Machine Learning, pages 3394–3403. PMLR, 2017. 3

[32] Thomas Lipp and Stephen Boyd. Variations and extension of the convex–concave procedure.
Optimization and Engineering, 17(2):263–287, 2016. 3

[33] Mingrui Liu, Hassan Rafique, Qihang Lin, and Tianbao Yang. First-order convergence theory
for weakly-convex-weakly-concave min-max problems. Journal of Machine Learning Research,
22(169):1–34, 2021. 2

[34] Hua Ma, Andriy I Bandos, Howard E Rockette, and David Gur. On use of partial area under the
roc curve for evaluation of diagnostic performance. Statistics in medicine, 32(20):3449–3458,
2013. 2

[35] Runchao Ma, Qihang Lin, and Tianbao Yang. Quadratically regularized subgradient methods
for weakly convex optimization with weakly convex constraints. In International Conference
on Machine Learning, pages 6554–6564. PMLR, 2020. 2

[36] Julien Mairal. Stochastic majorization-minimization algorithms for large-scale optimization.
arXiv preprint arXiv:1306.4650, 2013. 3

[37] Donna Katzman McClish. Analyzing a portion of the roc curve. Medical decision making,
9(3):190–195, 1989. 3

[38] Abdellatif Moudafi. On the difference of two maximal monotone operators: Regularization and
algorithmic approaches. Applied mathematics and computation, 202(2):446–452, 2008. 3

[39] Abdellatif Moudafi. A complete smooth regularization of dc optimization problems. 2021. 3, 5

[40] Abdellatif Moudafi and Paul-Emile Maingé. On the convergence of an approximate proximal
method for dc functions. Journal of computational Mathematics, pages 475–480, 2006. 3

[41] Harikrishna Narasimhan and Shivani Agarwal. A structural svm based approach for optimizing
partial auc. In International Conference on Machine Learning, pages 516–524. PMLR, 2013. 2,
3

[42] Harikrishna Narasimhan and Shivani Agarwal. SVMtight
pAUC: a new support vector method for

optimizing partial auc based on a tight convex upper bound. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 167–175,
2013. 2, 3, 8, 24

[43] Harikrishna Narasimhan and Shivani Agarwal. Support vector algorithms for optimizing the
partial area under the roc curve. Neural computation, 29(7):1919–1963, 2017. 2, 3

[44] Atsushi Nitanda and Taiji Suzuki. Stochastic difference of convex algorithm and its application
to training deep boltzmann machines. In Artificial intelligence and statistics, pages 470–478.
PMLR, 2017. 3

[45] Jong-Shi Pang, Meisam Razaviyayn, and Alberth Alvarado. Computing b-stationary points of
nonsmooth dc programs. Mathematics of Operations Research, 42(1):95–118, 2017. 3, 5

[46] Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex–concave min–
max optimization: provable algorithms and applications in machine learning. Optimization
Methods and Software, pages 1–35, 2021. 2, 6

[47] Maria Teresa Ricamato and Francesco Tortorella. Partial auc maximization in a linear combina-
tion of dichotomizers. Pattern Recognition, 44(10-11):2669–2677, 2011. 3

[48] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009. 5

12

[49] Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In
International Conference on Machine Learning, pages 793–801. PMLR, 2016. 2

[50] João Carlos O Souza, Paulo Roberto Oliveira, and Antoine Soubeyran. Global convergence
of a proximal linearized algorithm for difference of convex functions. Optimization Letters,
10(7):1529–1539, 2016. 3

[51] Bharath K Sriperumbudur and Gert RG Lanckriet. On the convergence of the concave-convex
procedure. In Nips, volume 9, pages 1759–1767. Citeseer, 2009. 3

[52] Kaizhao Sun and Xu Andy Sun. Algorithms for difference-of-convex (dc) programs based on
difference-of-moreau-envelopes smoothing. arXiv preprint arXiv:2104.01470, 2021. 2, 3, 5, 6,
16, 23

[53] Wen-yu Sun, Raimundo JB Sampaio, and MAB Candido. Proximal point algorithm for
minimization of dc function. Journal of computational Mathematics, pages 451–462, 2003. 3

[54] Pham Dinh Tao and Le Thi Hoai An. Convex analysis approach to dc programming: theory,
algorithms and applications. Acta mathematica vietnamica, 22(1):289–355, 1997. 2, 3

[55] Pham Dinh Tao and Le Thi Hoai An. A dc optimization algorithm for solving the trust-region
subproblem. SIAM Journal on Optimization, 8(2):476–505, 1998. 3

[56] Hoai An Le Thi, Hoang Phuc Hau Luu, and Tao Pham Dinh. Online stochastic dca with
applications to principal component analysis. arXiv preprint arXiv:2108.02300, 2021. 3

[57] Mary Lou Thompson and Walter Zucchini. On the statistical analysis of roc curves. Statistics
in medicine, 8(10):1277–1290, 1989. 3

[58] Hoang Tuy. Dc optimization: theory, methods and algorithms. In Handbook of global optimiza-
tion, pages 149–216. Springer, 1995. 3

[59] Naonori Ueda and Akinori Fujino. Partial auc maximization via nonlinear scoring functions.
arXiv preprint arXiv:1806.04838, 2018. 3

[60] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural
information processing systems, pages 831–838, 1992. 2

[61] Zhanfeng Wang and Yuan-Chin Ivan Chang. Marker selection via maximizing the partial area
under the roc curve of linear risk scores. Biostatistics, 12(2):369–385, 2011. 3

[62] Bo Wen, Xiaojun Chen, and Ting Kei Pong. A proximal difference-of-convex algorithm with
extrapolation. Computational optimization and applications, 69(2):297–324, 2018. 3, 8

[63] Yi Xu, Qi Qi, Qihang Lin, Rong Jin, and Tianbao Yang. Stochastic optimization for dc functions
and non-smooth non-convex regularizers with non-asymptotic convergence. In International
Conference on Machine Learning, pages 6942–6951. PMLR, 2019. 3, 5

[64] Hanfang Yang, Kun Lu, Xiang Lyu, and Feifang Hu. Two-way partial auc and its properties.
Statistical methods in medical research, 28(1):184–195, 2019. 2, 3

[65] Tianbao Yang and Yiming Ying. Auc maximization in the era of big data and ai: A survey. ACM
Comput. Surv., (August 2022), 37 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn, 2022. 3

[66] Zhiyong Yang, Qianqian Xu, Shilong Bao, Xiaochun Cao, and Qingming Huang. Learning with
multiclass auc: Theory and algorithms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. 3

[67] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming Huang.
When all we need is a piece of the pie: A generic framework for optimizing two-way partial auc.
In International Conference on Machine Learning, pages 11820–11829. PMLR, 2021. 3, 9

[68] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming Huang.
Optimizing two-way partial auc with an end-to-end framework. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. 3

13

[69] Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. Advances in
neural information processing systems, 29, 2016. 3

[70] Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. Robust deep auc maximization:
A new surrogate loss and empirical studies on medical image classification. arXiv preprint
arXiv:2012.03173, 2020. 8

[71] Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. Large-scale robust deep AUC
maximization: A new surrogate loss and empirical studies on medical image classification. In
2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 3020–3029. IEEE, 2021. 9

[72] Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation,
15(4):915–936, 2003. 3

[73] Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, and Tianbao Yang. When auc meets dro:
Optimizing partial auc for deep learning with non-convex convergence guarantee. arXiv preprint
arXiv:2203.00176, 2022. 3

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Algorithm 1 and 2 and Section 6.

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [No] We are not

aware of any negative societal impacts of our work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 6.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 6.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Section 6.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 6.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite them
as [9, 15, 25]

(b) Did you mention the license of the assets? [Yes] See Section 6.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We only use publicly available data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Section 6.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

14

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

Appendix

A Algorithm for Sum of Range Optimization

The technique in the previous sections can be directly applied to minimize the SoRR loss, which
is formulated as (5) but with f l defined in (7). Since (7) is a special case of (6) with N+ = 1 and
N− = N , we can again formulate subproblem (9) with f = f l as (13) with λ = λ being a scalar.
Since λ is a scalar, when solving (13), we no longer use block coordinate update but only need to
sample over indexes j = 1, . . . , N to construct stochastic subgradients. We present the stochastic
subgradient (SGD) method for (13) in Algorithm 3. Next, we apply Algorithm 2 with SBCD in lines
3 and 4 replaced by SGD. The convergence result in this case is directly from Theorem 1.

Algorithm 3 Stochastic Subgradient Descent for SoRR: (v̄, λ̄) =SGD(w, λ, T, µ, l)

1: Input: Initial solution (w, λ), the number of iterations T , µ > ρ−1, an integer l > 0 and sample
size J .

2: Set (v(0), λ(0)) = (w, λ) and choose (ηt, θt)
T−1
t=0 .

3: for t = 0 to T − 1 do
4: Sample Jt ⊂ {1, . . . , N} with |Jt| = J .
5: Compute stochastic subgradient w.r.t. v:

G(t)
v =

N

J

∑
j∈Jt

∇sj(v
(t))1

(
sj(v

(t)) > λ
(t)
i

)
6: Proximal stochastic subgradient update on v:

v(t+1) = argmin
v

(G(t)
v)⊤v +

∥v −w∥2

2µ
+

∥v − v(t)∥2

2ηt

7: Compute stochastic subgradient w.r.t. λ:

G
(t)
λ = l − N

J

∑
j∈Jt

1
(
sj(v

(t)) > λ(t)
)

8: Stochastic subgradient update on λ:

λ(t+1) = λ(t) − ηtG
(t)
λ

9: end for
10: Output: (v̄, λ̄) = 1

T

∑T−1
t=0 (v(t), λ(t)).

Corollary 1 Suppose Assumption 1 holds with N+ = 1, N− = N and sij(w) = sj(w) and SBCD
in Algorithm 2 are replaced by SGD (Algorithm 3). Suppose θt, ηt, and Tk are set the same as in
Theorem 1 when Algorithm 3 is called in iteration k of Algorithm 2. Then v̄

(k̄)
n is an nearly ϵ-critical

point of (5) with f l defined in (7) with K no more than (17).

B Proofs of Lemmas

Proof.[of Lemma 2] We will only prove the second conclusion in Lemma 2 since the first conclusion
has been shown in Proposition 1 in [52].

Suppose E∥∇Fµ(w)∥2 ≤ min{1, µ−2}ϵ2/4. By the first conclusion in Lemma 2, we must have
µ−2E∥vµfm(w) − vµfn(w)∥2 ≤ min{1, µ−2}ϵ2/4. By the optimality conditions satisfied by
vµfm(w) and vµfn(w), there exist ξm ∈ ∂fm(vµfm(w)) and ξn ∈ ∂fn(vµfn(w)) such that

ξm + µ−1(vµfm(w)−w) = 0 = ξn + µ−1(vµfn(w)−w),

which implies ξ = ξn−ξm = µ−1(vµfm(w)−vµfn(w)) ∈ ∂fn(vµfn(w))−∂fm(vµfm(w)) and
E∥ξ∥ ≤

√
E∥ξ∥2 ≤ ϵ/2. Suppose E∥v̄ − vµfn(w)∥2 ≤ ϵ2/4. We have E∥v̄ − vµfn(w)∥ ≤ ϵ/2

and E∥v̄ − vµfm(w)∥ ≤ E∥v̄ − vµfn(w)∥ + E∥vµfn(w) − vµfm(w)∥ ≤ ϵ. Hence, v̄ satisfies
Definition 1 with w′ = vµfn(w) and w′′ = vµfm(w). Suppose E∥v̄ − vµfm(w)∥2 ≤ ϵ2/4. The
conclusion can be also proved similarly. □

16

We first present the following lemma which is similar to Lemma 4.2 in [14].

Lemma 3 Suppose Assumption 1 holds. For any v, λ, v′, λ′, and (ξv, ξλ) ∈ ∂gl(v′,λ′), we have

gl(v,λ) ≥ gl(v′,λ′) + ξ⊤v (v − v′) + ξ⊤λ (λ− λ′)− ρ

2
∥v − v′∥2,

where ρ = N+N−L. Moreover, gl(v,λ) + 1
2µ∥v −w∥2 is jointly convex in λ and v for any w and

any µ−1 > ρ.

Proof. By Assumption 1, we have

sij(v)− sij(v
′) ≥ ∇sij(v

′)⊤(v − v′)− L

2
∥v − v′∥2. (18)

Let ξij ∈ ∂[sij(v
′)− λ′

i]+. We have

gl(v,λ)

= l1⊤λ+

N+∑
i=1

N−∑
j=1

[sij(v)− λi]+

≥ l1⊤λ′ + l1⊤(λ− λ′) +

N+∑
i=1

N−∑
j=1

[sij(v
′)− λ′

i]+ +

N+∑
i=1

N−∑
j=1

ξij(sij(v)− sij(v
′)− λi + λ′

i)

≥ gl(v′,λ′) + ξ⊤λ (λ− λ′) +

N+∑
i=1

N−∑
j=1

ξij∇sij(v
′)⊤(v − v′)−

N+∑
i=1

N−∑
j=1

ξij
L

2
∥v − v′∥2

≥ gl(v′,λ′) + ξ⊤v (v − v′) + ξ⊤λ (λ− λ′)− N+N−L

2
∥v − v′∥2,

where the first inequality is by the convexity of [·]+, the second inequality is from (18) and the last
inequality is by the definitions of (ξv, ξλ) and the fact that ξij ∈ [0, 1].

Combining the inequality from the first conclusion with the equality 1
2µ∥v −w∥2 = 1

2µ∥v − v′∥2 +
1
µ (v − v′)⊤(v′ −w) + 1

2µ∥v
′ −w∥2 and using the fact that µ−1 > ρ, we can obtain

gl(v,λ)+
1

2µ
∥v−w∥2 ≥ gl(v′,λ′)+

1

2µ
∥v′−w∥2+(µ−1(v′−w)+ξv)

⊤(v−v′)+ξ⊤λ (λ−λ′),

which proves the second conclusion. □

Lemma 4 The dual problem of the maximization problem in (11) is the minimization problem in
(12).

Proof. For i = 1, . . . , N+, we introduce a Lagrangian multiplier λi for the constraint
∑N−

j=1 pj = l

in (11). Let [z]− = min{z, 0} which equals −[−z]+. Then, for each i, we have

max
pi∈Pl


N−∑
j=1

pijsij(w)

 = − min
pij∈[0,1] ∀j

max
λi

−
N−∑
j=1

pijsij(w) + λi(

N−∑
j=1

pj − l)


= −max

λi

min
pij∈[0,1] ∀j

−lλi +

N−∑
j=1

pij [λi − sij(w)]


= −max

λi

−lλi +

N−∑
j=1

[λi − sij(w)]−


= min

λi

lλi +

N−∑
j=1

[sij(w)− λi]+

 .

The conclusion is thus proved by summing up the equality above for i = 1, . . . , N+. □

17

C Proof of Proposition 1

Let v∗ = vµf l(w) be the unique optimal solution of (8) and let si[j](v∗) be the jth largest coordinate
of Si(v

∗). It is easy to show that the set of optimal solutions of (13) is {v∗} × Λ∗ where

Λ∗ = argmin
λ

gl(v∗,λ) +
1

2µ
∥v∗ −w∥2 =

N+∏
i=1

(
Λ∗
i :=

[
si[l](v

∗), si[l+1](v
∗)
])

. (19)

Given any λ ∈ RN+ , we denote its projection onto Λ∗ as ProjΛ∗(λ). By the structure of Λ∗, the
ith coordinate of ProjΛ∗(λ) is just the projection of λi onto Λ∗

i , which we denote by ProjΛ∗
i
(λi).

Moreover, we denote the distance from λ to Λ∗ as dist(λ,Λ∗) and it satisfies

dist2(λ,Λ∗) =

N+∑
i=1

dist2(λi,Λ
∗
i) =

N+∑
i=1

(λi − ProjΛ∗
i
(λi))

2 (20)

With these definitions, we can present the following lemma.

Lemma 5 Suppose Assumption 1 holds and µ−1 > ρ. For any w, v, λ and v∗ = vµf l(w), we have

N+B∥v − v∗∥+ gl(v,λ)− gl(v∗,ProjΛ∗(λ)) ≥
N+∑
i=1

dist(λi,Λ
∗
i) ≥ dist(λ,Λ∗).

Proof. It is easy to observe that gl(v,λ) :=
∑N+

i=1 g
l
i(v, λi), where

gli(v, λi) := lλi +

N−∑
j=1

[sij(v)− λi]+,

and Λ∗
i = argminλi

gli(v
∗, λi). Since gli(v

∗, λi) is a piecewise linear in λi with an outward slope of
at least one at either end of the interval Λ∗

i , we must have

gli(v
∗, λi)− gli(v

∗,ProjΛ∗
i
(λi)) ≥ |λi − ProjΛ∗

i
(λi)|,

which implies

gl(v∗,λ)− gl(v∗,ProjΛ∗(λ)) ≥
N+∑
i=1

|λi − ProjΛ∗
i
(λi)| =

N+∑
i=1

dist(λi,Λ
∗
i) ≥ dist(λ,Λ∗).

Moreover, by Assumption 1, gli(v, λi) is B-Lipschitz continuous in v so gl(v,λ) is N+B-Lipschitz
continuous in v. We then have N+B∥v−v∗∥+ gl(v,λ) ≥ gl(v∗,λ), which implies the conclusion
together with the previous inequality. □

We present the proof of Proposition 1 below.

Proof.[of Proposition 1] Let us denote I[t] = {I0, . . . , It} and J[t] = {J0, . . . ,Jt}. Let Et be the
expectation conditioning on I[t−1] and J[t−1].

By Assumption 1 and the definitions of G(t)
v and G

(t)
λi

in Algorithm 1, we have

∥G(t)
v ∥ ≤ N+N−B and |G(t)

λi
| ≤ N− for t = 0, . . . , T − 1 and i = 1, . . . , N+. (21)

By the optimality condition satisfied by v(t+1) and
(

1
µ + 1

ηt

)
-strong convexity of the objective

function in (14), we have
1

2µ
∥v(t+1) −w∥2 + 1

2ηt
∥v(t+1) − v(t)∥2 + 1

2

(
1

µ
+

1

ηt

)
∥v∗ − v(t+1)∥2

≤ (G(t)
v)⊤

(
v∗ − v(t+1)

)
+

1

2µ
∥v∗ −w∥2 + 1

2ηt
∥v∗ − v(t)∥2

= (G(t)
v)⊤

(
v∗ − v(t)

)
+ (G(t)

v)⊤
(
v(t) − v(t+1)

)
+

1

2µ
∥v∗ −w∥2 + 1

2ηt
∥v∗ − v(t)∥2

≤ (G(t)
v)⊤

(
v∗ − v(t)

)
+

ηt(G
(t)
v)2

2
+

1

2ηt
∥v(t) − v(t+1)∥2 + 1

2µ
∥v∗ −w∥2 + 1

2ηt
∥v∗ − v(t)∥2,

18

where the last inequality is by Young’s inequality. Since v∗ − v(t) is deterministic conditioning on
I[t−1] and J[t−1], applying (21) and taking expectation Et on the both sides of the inequality above
yield

1

2µ
Et∥v(t+1) −w∥2 + 1

2

(
1

µ
+

1

ηt

)
Et∥v∗ − v(t+1)∥2

≤
(
EtG

(t)
v

)⊤ (
v∗ − v(t)

)
+

ηtN
2
+N

2
−B

2

2
+

1

2µ
∥v∗ −w∥2 + 1

2ηt
∥v∗ − v(t)∥2. (22)

By the updating equation (15) for λ(t+1), we have

dist2(λ(t+1),Λ∗) =
∑
i∈Ic

t

(λ
(t+1)
i − ProjΛ∗

i
(λ

(t+1)
i))2 +

∑
i∈It

(λ
(t+1)
i − ProjΛ∗

i
(λ

(t+1)
i))2

≤
∑
i∈Ic

t

(λ
(t)
i − ProjΛ∗

i
(λ

(t)
i))2 +

∑
i∈It

(λ
(t+1)
i − ProjΛ∗

i
(λ

(t)
i))2

=
∑
i∈Ic

t

(λ
(t)
i − ProjΛ∗

i
(λ

(t)
i))2 +

∑
i∈It

(λ
(t)
i − θtG

(t)
λi

− ProjΛ∗
i
(λ

(t)
i))2

=
∑
i∈Ic

t

(λ
(t)
i − ProjΛ∗

i
(λ

(t)
i))2 +

∑
i∈It

(λ
(t)
i − ProjΛ∗

i
(λ

(t)
i))2

−2θt
∑
i∈It

(G
(t)
λi
)⊤(λ

(t)
i − ProjΛ∗

i
(λ

(t)
i)) + θ2t

∑
i∈It

(G
(t)
λi
)2.

Since λ(t)
i −ProjΛ∗

i
(λ

(t)
i) is deterministic conditioning on I[t−1] and J[t−1], applying (21) and taking

expectation Et on the both sides of the inequality above yield

Etdist2(λ(t+1),Λ∗) ≤ dist2(λ(t),Λ∗)− 2θtI

N+

N+∑
i=1

EtG
(t)
λi

(λ
(t)
i − ProjΛ∗

i
(λ

(t)
i)) + θ2t IN

2
− (23)

Multiplying both sides of (23) by N+

2Iθt
and adding it with (22), we have

N+

2Iθt
Etdist2(λ(t+1),Λ∗) +

1

2µ
Et∥v(t+1) −w∥2 + 1

2

(
1

µ
+

1

ηt

)
Et∥v∗ − v(t+1)∥2

≤ N+

2Iθt
dist2(λ(t),Λ∗) +

1

2µ
∥v∗ −w∥2 + 1

2ηt
∥v∗ − v(t)∥2 + ηtN

2
+N

2
−B

2

2
+

θtN+N
2
−

2

+
[
EtG

(t)
v

]⊤ (
v∗ − v(t)

)
+

N+∑
i=1

EtG
(t)
λi

(ProjΛ∗
i
(λ

(t)
i)− λ

(t)
i)

≤ N+

2Iθt
dist2(λ(t),Λ∗) +

1

2µ
∥v∗ −w∥2 + 1

2

(
ρ+

1

ηt

)
∥v∗ − v(t)∥2 + ηtN

2
+N

2
−B

2

2
+

θtN+N
2
−

2

+gl(v∗, ProjΛ∗(λ
(t)))− gl(v(t),λ(t)), (24)

where the second inequality is because (EtG
(t)
v ,EtG

(t)
λ1
, . . . ,EtG

(t)
λN+

) ∈ ∂gl(v(t),λ(t)), which

allows us to apply Lemma 3 with (v,λ) = (v∗,ProjΛ∗(λ
(t))) and (v′,λ′) = (v(t),λ(t)).

Notice that θt and ηt do not change with t that ρ < µ−1. Summing up (24) for t = 0, . . . , T − 1,
taking full expectation, and organizing terms give us

T−1∑
t=0

E
(
gl(v(t),λ(t)) +

1

2µ
∥v(t) −w∥2 − gl(v∗,ProjΛ∗(λ

(t)))− 1

2µ
∥v∗ −w∥2

)
+

N+

2IθT−1
Edist2(λ(T),Λ∗) +

1

2µ
E∥v(T) −w∥2 + 1

2

(
1

µ
+

1

ηT−1

)
E∥v∗ − v(T)∥2

≤ N+

2Iθ0
dist2(λ(0),Λ∗) +

1

2µ
∥v(0) −w∥2 + 1

2

(
1

µ
+

1

η0

)
∥v∗ − v(0)∥2

+

T−1∑
t=0

(
ηtN

2
+N

2
−B

2

2
+

θtN+N
2
−

2

)
. (25)

19

Because f l(v̄) + 1
2µ∥v̄−w∥2 is (µ−1 − ρ)-strongly convex and the facts that f l(v̄) ≤ gl(v̄, λ̄) and

that f l(v∗) = gl(v∗,λ∗) for any optimal λ∗, we have that

1

2

(
1

µ
− ρ

)
E∥v̄ − v∗∥2

≤ E
(
f l(v̄) +

1

2µ
∥v̄ −w∥2 − f l(v∗)− 1

2µ
∥v∗ −w∥2

)
≤ E

(
gl(v̄, λ̄) +

1

2µ
∥v̄ −w∥2 − gl(v∗,λ∗)− 1

2µ
∥v∗ −w∥2

)
≤ 1

T

T−1∑
t=0

E
(
gl(v(t),λ(t)) +

1

2µ
∥v(t) −w∥2 − gl(v∗, ProjΛ∗(λ

(t)))− 1

2µ
∥v∗ −w∥2

)
, (26)

where the last inequality is because gl(v,λ) + 1
2µ∥v−w∥2 is jointly convex in v and λ. Recall that

v(0) = w. Applying (25) to the left-hand side of the inequality above, we obtain

1

2

(
1

µ
− ρ

)
E∥v̄ − v∗∥2

≤ N+

2Iθ0T
dist2(λ(0),Λ∗) +

1

2µT
∥v(0) −w∥2 + 1

2T

(
1

µ
+

1

η0

)
∥v∗ − v(0)∥2

+
η0N

2
+N

2
−B

2

2
+

θ0N+N
2
−

2

≤ N+N−√
IT

dist(λ(0),Λ∗) +
N+N−B

2
√
T

∥v∗ −w∥+ 1

2µT
∥v∗ −w∥2.

The conclusion is then proved given that vµf l(w) = v∗. □

D Proof of Theorem 1

We first present a technical lemma.

Lemma 6 Given two intervals [a, b] and [a′, b′] with max{|a− a′|, |b− b′|} ≤ δ. We have

dist(z, [a, b]) ≤ dist(z, [a′, b′]) + δ, ∀z ∈ R.

Proof. We will prove the result in three cases, z < a′, z > b′ and a′ ≤ z ≤ b′. Suppose z < a′ so that
dist(z, [a′, b′]) = |z−a′|. We have dist(z, [a, b]) ≤ |z−a| ≤ |z−a′|+ |a−a′| ≤ dist(z, [a′, b′])+δ.
The result when z > b′ can be proved similarly. Suppose a′ ≤ z ≤ b′ so that dist(z, [a′, b′]) = 0.
Note that z = z−a′

b′−a′ · b′ + b′−z
b′−a′ · a′. We define z′ = z−a′

b′−a′ · b + b′−z
b′−a′ · a ∈ [a, b]. Then

dist(z, [a, b]) ≤ |z − z′| ≤ z−a′

b′−a′ · |b− b′|+ b′−z
b′−a′ · |a− a′| ≤ dist(z, [a′, b′]) + δ. □

Under Assumption 1, we have ∥∇sij(v)∥ ≤ B for any v so that ∥ξ∥ ≤ lB for any ξ ∈ ∂f l(v) and
any v. By the definition of vµf l(w), we have µ−1(w − vµf l(w)) ∈ ∂f l(vµf l(w)), which implies

∥w − vµf l(w)∥ ≤ µlB for any w. (27)

We then provide the following proposition as an additional conclusion from the proof of Proposition 1.

Proposition 2 Suppose Assumption 1 holds. Algorithm 1 guarantees that

Edist(λ̄,Λ∗) ≤
N+∑
i=1

Edist(λ̄i,Λ
∗
i)

≤ N+N−√
IT

dist(λ(0),Λ∗) +
N+N−B

2
√
T

∥v∗ −w∥+ 1

2µT
∥v∗ −w∥2 + 1

2µ
∥v∗ −w∥2

+N+BE∥v̄ − v∗∥.

20

Proof. By (25), the last inequality in (26), and Lemma 5, we have

E

N+∑
i=1

dist(λ̄i,Λ
∗
i)−N+B∥v̄ − v∗∥ − 1

2µ
∥v∗ −w∥2


≤ E

(
gl(v̄, λ̄)− gl(v∗,λ∗) +

1

2µ
∥v̄ −w∥2 − 1

2µ
∥v∗ −w∥2

)
≤ N+N−√

IT
dist(λ(0),Λ∗) +

N+N−B

2
√
T

∥v∗ −w∥+ 1

2µT
∥v∗ −w∥2,

which implies the conclusion by reorganizing terms. □

Next we are ready to present the proof of of Theorem 1.

Proof.[of Theorem 1] Let ϵk = 1√
k+1

for k = 1, In the kth iteration of Algorithm 2, Algorithm 1
is applied to the subproblem

min
v,λ

{
gl(v,λ) +

1

2µ
∥v −w(k)∥2

}
. (28)

with initial solution (w(k), λ̄
(k)
l) and runs for Tk iterations. Let Λ∗

k be the set of optimal λ for (28).
We will prove by induction the following two inequalities for k = 0, 1,

E∥v̄(k)
l − vµf l(w(k))∥2 ≤ ϵ2k/4 (29)

Edist(λ̄(k)
l ,Λ∗

k) ≤ Dl, (30)

where Dl is defined in (16) for l = m and n.

Applying Proposition 1 to (28) and using (27), we have, for k = 0, 1, . . . ,

1

2

(
1

µ
− ρ

)
E∥v̄(k)

l − vµfl(w
(k))∥2

≤ N+N−√
ITk

Edist(λ̄(k)
l ,Λ∗

k) +
N+N−B

2
√
Tk

E∥vµfl(w
(k))−w(k)∥+ 1

2µTk
E∥vµfl(w

(k))−w(k)∥2

≤ N+N−√
ITk

Edist(λ̄(k)
l ,Λ∗

k) +
N+N−µlB

2

2
√
Tk

+
µ2l2B2

2µTk
. (31)

Moreover, applying Proposition 2 to (28) and using (27), we have

N+∑
i=1

Edist(λ̄(k+1)
l,i ,Λ∗

i) ≤ N+N−√
ITk

Edist(λ̄(k)
l ,Λ∗

k,i) +
N+N−µlB

2

2
√
Tk

+
µ2l2B2

2µTk
+

µl2B2

2

+N+BE∥v̄(k)
l − vµf l(w(k))∥. (32)

Suppose k = 0. By (31) and the choice of T0, we have E∥v̄(0)
l − vµf l(w(0))∥2 ≤ ϵ20/4, so (29)

holds for k = 0. In addition, (30) holds trivially for k = 0. Next, we assume (29) and (30) both hold
for k and prove they also hold for k + 1.

Since (29) and (30) hold for k, by (32) and the choice of Tk, we have

N+∑
i=1

Edist(λ̄(k+1)
l,i ,Λ∗

k,i) ≤ 1

2

(
1

µ
− ρ

)
ϵ2k/4 +

µl2B2

2
+N+BE∥v̄(k)

l − vµf l(w(k))∥

≤ 1

2

(
1

µ
− ρ

)
ϵ2k/4 +

µl2B2

2
+N+B

√
E∥v̄(k)

l − vµf l(w(k))∥2

≤ 1

2

(
1

µ
− ρ

)
+

µl2B2

2
+N+B. (33)

21

From the updating equation w(k+1) = w(k) − γµ−1(v̄
(k)
m − v̄

(k)
n) in Algorithm 2, we know that

E∥w(k+1) −w(k)∥ ≤ γµ−1E∥v̄(k)
m − v̄(k)

n ∥

≤ γµ−1

(
E∥v̄(k)

m − vµfm(w(k))∥+ E∥vµfm(w(k))−w(k)∥

+E∥v̄(k)
n − vµfn(w(k))∥+ E∥vµfn(w(k))−w(k)∥

)
≤ 2γϵk

µ
+ γnB + γmB, (34)

where the second inequality is by triangle inequality and the last inequality is by (27) and the fact
that (29) holds for k.

Let λ̄(k+1)
l,i denote the ith coordinate of λ̄(k+1)

l for i = 1, . . . , N+ and l = m and n. Recall that
si[j](v) be the jth largest coordinate of Si(v). By Assumption 1 and elementary argument, we
can show that si[j](v) is B-Lipschitz continuous for any i and j. Since vµf l(w) is 1

1−µρ -Lipschitz
continuous, we have

E
∣∣∣si[j](vµf l(w(k+1)))− si[j](vµf l(w(k)))

∣∣∣ ≤ BE∥vµf l(w(k+1))− vµf l(w(k))∥

≤ B

1− µρ
E∥w(k+1) −w(k)∥

≤ B

1− µρ

(
2γϵk
µ

+ γnB + γmB

)
(35)

for j = l and j = l + 1, where the last inequality is by (34). According to (19), (20), (35), and
Lemma 6, we can prove that, for i = 1, . . . , N+,

Edist
(
λ̄
(k+1)
l,i ,Λ∗

k+1,i

)
≤ Edist

(
λ̄
(k+1)
l,i ,Λ∗

k,i

)
+

B

1− µρ

(
2γ

µ
+ γnB + γmB

)
.

Combining this inequality with (33) yields (30) for case k + 1.

Stating (31) for case k + 1 gives

1

2

(
1

µ
− ρ

)
E∥v̄(k+1)

l − vµfl(w
(k+1))∥2 ≤ N+N−√

ITk+1

Edist(λ̄(k+1)
l ,Λ∗

k+1) +
N+N−µlB

2

2
√
Tk+1

+
µ2l2B2

2µTk+1
. (36)

By (36), (30) for case k+1, and the choice of Tk+1, we have E∥v̄(k+1)
l −vµf l(w(k+1))∥2 ≤ ϵ2k+1/4,

which means (29) holds for case k + 1. By induction, we have proved that (29) and (30) holds for
k = 0, 1,

Because ∇Fµ(w) = µ−1(vµfm(w)− vµfn(w)) is Lµ-Lipschitz continuous, we have

Fµ(w(k))− Fµ(w(k+1))

≥⟨−∇Fµ(w(k)),w(k+1) −w(k)⟩ − Lµ

2
∥w(k+1) −w(k)∥2

=
〈
µ−1(vµfm(w(k))− vµfn(w(k))), γµ−1(v̄(k)

m − v̄(k)
n)

〉
− γ2Lµ

2µ2

∥∥∥v̄(k)
m − v̄(k)

n

∥∥∥2

=
γ

µ2

〈
vµfm(w(k))− vµfn(w(k)), v̄(k)

m − v̄(k)
n − vµfm(w(k)) + vµfn(w(k)) + vµfm(w(k))− vµfn(w(k))

〉
− γ2Lµ

2µ2

∥∥∥v̄(k)
m − v̄(k)

n − vµfm(w(k)) + vµfn(w(k)) + vµfm(w(k))− vµfn(w(k))
∥∥∥2

≥ γ

µ2

〈
vµfm(w(k))− vµfn(w(k)), v̄(k)

m − v̄(k)
n − vµfm(w(k)) + vµfn(w(k))

〉
+

(
γ

µ2
− γ2Lµ

µ2

)
∥vµfm(w(k))− vµfn(w(k))∥2 − γ2Lµ

µ2

∥∥∥v̄(k)
m − v̄(k)

n − vµfm(w(k)) + vµfn(w(k))
∥∥∥2

.

22

Applying Young’s inequality to the first term on the right-hand side of the last inequality above gives

E
[
Fµ(w(k))− Fµ(w(k+1))

]
≥− γ

µ2

(
1

2
E∥v̄(k)

m − v̄(k)
n − vµfm(w(k)) + vµfn(w(k))∥2 + 1

2
E∥vµfm(w(k))− vµfn(w(k))∥2

)
+

(
γ

µ2
− γ2Lµ

µ2

)
E∥vµfm(w(k))− vµfn(w(k))∥2

− γ2Lµ

µ2
E
∥∥∥v̄(k)

m − v̄(k)
n − vµfm(w(k)) + vµfn(w(k))

∥∥∥2
≥γ − 2γ2Lµ

2µ2
E∥vµfm(w(k))− vµfn(w(k))∥2 −

(
γ

µ2
+

2γ2Lµ

µ2

)
ϵ2k

≥ γ

4µ2
E∥vµfm(w(k))− vµfn(w(k))∥2 − 3γ

2µ2
ϵ2k,

where the second inequality is because of (30) for l = m and n and the last because of γ ≤ 1
Lµ

.

Summing the above inequality over k = 0, · · · ,K − 1, we have

1

K

K−1∑
k=0

E∥vµfm(w(k))− vµfn(w(k))∥2 ≤ 4µ2

γK
E(Fµ(w(0))− Fµ(w(K))) +

6

K

K−1∑
k=0

ϵ2k

≤ 4µ2

γK

(
F (vµfn(w(0)))− F ∗

)
+

6 logK

K
,

where the second inequality is because F ∗ ≤ F (vµfn(w(K))) ≤ Fµ(w(K)) and Fµ(w(0)) ≤
F (vµfm(w(0))) (see Lemma 1 in [52]). Let k̄ be randomly sampled from {0, . . . ,K − 1}, then it
holds

E∥∇Fµ(w(k̄))∥2 = µ−2E∥vµfm(w(k̄))− vµfn(w(k̄))∥2 ≤ µ−2 min{1, µ2}ϵ2 = min{1, µ−2}ϵ2

by the definition of K. On the other hands, by (29), we have for l = m and n that

E∥v̄(k̄)
l − vµf l(w(k̄))∥2 ≤ 1

K

K−1∑
k=0

ϵ2k ≤ logK

K
≤ min{1, µ2}ϵ2

48
≤ ϵ2

4
,

where the last inequality is because of the value of K. Hence, by the second claim in Lemma 2
(with w = w(k̄) and v̄ = v̄

(k̄)
n), v̄(k̄)

n is an nearly ϵ-critical point of (5) with f l defined in (6). This
completes the proof. □

E Additional Materials for Numerical Experiments

In this section, we present some additional details of our numerical experiments in Section 6 which
we are not able to show due to the limit of space.

E.1 Details of SoRR Loss Minimization Experiment

For SoRR loss minimization, we compare with the baseline DCA. We focus on learning a linear
model hw(x) = wTx with four benchmark datasets from the UCI [15] data repository preprocessed
by Libsvm [9]: a9a, w8a, ijcnn1 and covtype. The statistics of these datasets are summarized in
Table 4.We use logistic loss l(hw(x), y) = −y log(hw(x))− (1− y) log(1− hw(x)) where label
y ∈ {0, 1}. Due to the limit space, we present the process of tuning hyperparameters and the
convergence curves (Figure 2). From the curves, we notice that our algorithm reduce SoRR loss faster
than DCAs for all of these four datasets. In this section, we first present some summary statistics on
the datasets.

For AGD-SBCD, we fix the J = 100, m = 103 and n = 2× 104. In the spirit of Corollary 1, within
Algorithm 3 called in the kth main iteration, ηt and θt are both set to c

(k+1)N for any t with c tuned in

23

Table 4: Statistics of the UCI datasets.

DATASETS # SAMPLES # FEATURES

A9A 32,561 123
W8A 49,749 300
IJCNN1 49,990 22
COVTYPE 581,012 54

the range of {0.1, 2, 5, 10, 1} and Tk is set to C(k+1)2 with C selected from {30, 50, 100}. Parameter
µ is chosen from {2×102, 103}/N and γ is tuned from {2×102, 5×102, 8×102, 4×103, 2×104}/N .

According to the experiments in [24], when solving (37), we first use the same step size and the
same number of iterations for all k’s. We choose the step size from {0.01, 0.1, 0.5, 1} and the
iteration number from {2000, 3000}. However, we find that the performance of DCA improves if
we let the step size and the number of iterations vary with k. Hence, we apply the same process
as in AGD-SBCD to select θt, ηt, and T in Algorithm 4 in the kth main iteration of DCA. We
report the performances of DCA under both settings (named DCA.Constant.lr and DCA.Changing.lr,
respectively). The changes of the SoRR loss with the number of epochs are shown in Figure 2. From
the curves, we notice that our algorithm reduce SoRR loss faster than DCAs for all of these four
datasets.

0 20 40 60 80 100

of epoch

10
0T

ra
in

in
g

 L
o

s
s

a9a

AGD-SGD

DCA.Constant.lr

DCA.Changing.lr

20 40 60 80 100
0.4

0.405

0.41

0 20 40 60 80 100 120

of epoch

10
-4

10
-2

10
0

10
2

T
ra

in
in

g
 L

o
s

s

w8a

AGD-SGD

DCA.Constant.lr

DCA.Changing.lr

0 20 40 60 80 100

of epoch

0.4

0.6

0.8

1

1.2

1.4
1.6
1.8

T
ra

in
in

g
 L

o
s

s
ijcnn1

AGD-SGD

DCA.Constant.lr

DCA.Changing.lr

0 5 10 15 20 25 30

of epoch

1

2

3

4

5

T
ra

in
in

g
 L

o
s

s

covtype

AGD-SGD

DCA.Constant.lr

DCA.Changing.lr

5 10 15

0.7

0.72

0.74

Figure 2: Results for SoRR Loss Minimization

E.2 Process of Tuning Hyperparameters

For AGD-SBCD, we fix the I = J = 100, m = 104 and n = 105. In the spirit of Theorem 1,
within Algorithm 3 called in the kth main iteration, ηt is set to c

(k+1)N+N− , θt is set to c
(k+1)N−

for any t with c tuned in {0.1, 1, 5, 10, 20, 30} and Tk is set to 50(k + 1)2. Parameters µ is chosen
from {102, 103}/(N+N−) and γ is tuned from {2 × 103, 5 × 103}/(N+N−). For DCA, we only
implement the setting of DCA.Changing.lr (see Appendix E.1 for descriptions). In Algorithm 4 called
in the kth main iteration, ηt and θt are selected following the same process as in AGD-SBCD and T
is set to C(k + 1)2 with C chosen from {100, 200, 500}. For the SVMpAUC-tight method, we use
their MATLAB code in [42] and tune hyper-parameter C from {10−3, 10−2, 10−1, 100}.

E.3 Additional Plots of Partial AUC Maximization Experiment

The results for partial AUC maximization of diseases D3∼D5 are shown in Figure 3.

We plot the ROC curves of three algorithms with linear model on the CheXpert testing set in Figure
4. The range of false positive rate for the pAUC is set as [0.05, 0.5].

We plot the convergence curves of patial AUC on the CheXpert testing set of our algorithm AGD-
SBCD and baseline MB in Figure 5.

E.4 DCA and Algorithm for its Subproblem

Although DCA is originally only studied for SoRR loss minimization in [24], it can also be applied to
pAUC maximization. Hence, we only describe DCA for pAUC maximization which cover SoRR loss
minimization as a special case. At the kth iteration of DCA, it computes a deterministic subgradient
of fm(w) =

∑N+

i=1 ϕm(Si(w
(k))) at iterate w(k), denoted by ξ(k). Then DCA updates w(k) by

24

0 50 100 150

of epoch

1

1.5

2

2.5

3

3.5

T
ra

in
in

g
 L

o
s

s

CheXpert_D3

AGD-SBCD

DCA

Proximal DCA

20 40 60 80

0.72

0.74

0.76

0 50 100 150

of epoch

1

1.5

2

2.5

3

3.5

T
ra

in
in

g
 L

o
s

s

CheXpert_D4

AGD-SBCD

DCA

Proximal DCA

50 100 150

0.7

0.75

0.8

0 50 100 150

of epoch

0.5

1

1.5

2

2.5

3

3.5

T
ra

in
in

g
 L

o
s

s

CheXpert_D5

AGD-SBCD

DCA

Proximal DCA

20 40 60 80 100 120 140

0.4

0.41

0.42

0 50 100 150

of epoch

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D3

AGD-SBCD

DCA

Proximal DCA

SVM
pAUC

-tight

Random Classifier

0 50 100 150

of epoch

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D4

AGD-SBCD

DCA

Proximal DCA

SVM
pAUC

-tight

Random Classifier

0 50 100 150

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D5

AGD-SBCD

DCA

Proximal DCA

SVM
pAUC

-tight

Random Classifier

Figure 3: Results for Patial AUC Maximization of D3, D4 and D5.

0.05 0.2 0.4 0.5 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

AUC of CheXpert_D1

AGD-SBCD

SVM
pAUC

-tight

DCA

0.05 0.2 0.4 0.5 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

AUC of CheXpert_D2

AGD-SBCD

SVM
pAUC

-tight

DCA

0.05 0.2 0.4 0.5 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

AUC of CheXpert_D3

AGD-SBCD

SVM
pAUC

-tight

DCA

0.05 0.2 0.4 0.5 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

AUC of CheXpert_D4

AGD-SBCD

SVM
pAUC

-tight

DCA

0.05 0.2 0.4 0.5 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P

R

AUC of CheXpert_D5

AGD-SBCD

SVM
pAUC

-tight

DCA

Figure 4: ROC Curves of CheXpert Testing Set.

approximately solving the following subproblem using a SBCD method similar to Algorithm 1 by
sampling indexes i and j (see Algorithm 4 for details).

(w(k+1),λ(k+1)) ≈ argmin
w,λ

n1⊤λ+

N+∑
i=1

N−∑
j=1

[sij(w)− λi]+ −w⊤ξ(k) (37)

Algorithm 4 is used to solve the subproblem (37) in the kth main iteration of DCA. It is similar to the
SBCD method in Algorithm 1.

E.5 Details about Proximal DCA

At the kth iteration of proximal DCA, it computes a deterministic subgradient of fm(w) =∑N+

i=1 ϕm(Si(w
(k))) at iterate w(k), denoted by ξ(k). Then proximal DCA updates w(k) by ap-

proximately solving the subproblem

(w(k+1),λ(k+1)) ≈ argmin
w,λ

n1⊤λ+

N+∑
i=1

N−∑
j=1

[sij(w)− λi]+ +
L

2
∥w −w(k)∥2 −w⊤ξ(k) (38)

25

0 10 20 30 40

of epoch

0.3

0.4

0.5

0.6

0.7

0.8

T
e

s
t

p
A

U
C

CheXpert_D1

AGD-SBCD

MB

0 10 20 30 40

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e

s
t

p
A

U
C

CheXpert_D2

AGD-SBCD

MB

0 10 20 30 40

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e

s
t

p
A

U
C

CheXpert_D3

AGD-SBCD

MB

0 10 20 30 40

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
e

s
t

p
A

U
C

CheXpert_D4

AGD-SBCD

MB

0 10 20 30 40

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e

s
t

p
A

U
C

CheXpert_D5

AGD-SBCD

MB

Figure 5: Convergence Curves of Partial AUC on the CheXpert Testing Set.

Algorithm 4 Stochastic Block Coordinate Descent for (37): (w̄, λ̄) =SBCD(w,λ, T, ξ(k))

1: Input: Initial solution (w,λ), the number of iterations T , sample sizes I and J and a determin-
istic subgradient ξ(k).

2: Set (w(0),λ(0)) = (w,λ) and choose (ηt, θt)
T−1
t=0 .

3: for t = 0 to T − 1 do
4: Sample It ⊂ {1, . . . , N+} with |It| = I .
5: Sample Jt ⊂ {1, . . . , N−} with |Jt| = J .
6: Compute stochastic subgradient w.r.t. w:

G(t)
w =

N+N−

IJ

∑
i∈It

∑
j∈Jt

∇sij(w
(t))1

(
sij(w

(t)) > λ
(t)
i

)
− ξ(k)

7: Stochastic subgradient update on w:

w(t+1) = w(t) − ηtG
(t)
w

8: Compute stochastic subgradient w.r.t. λi for i ∈ It:

G
(t)
λi

= n− N−

J

∑
j∈Jt

1
(
sij(w

(t)) > λ
(t)
i

)
for i ∈ It

9: Stochastic block subgradient update on λi for i ∈ It:

λ
(t+1)
i =

{
λ
(t)
i − θtG

(t)
λi

i ∈ It,

λ
(t)
i i /∈ It.

10: end for
11: Output: (w̄, λ̄) = (w(T),λ(T)).

using a SBCD method similar to Algorithm 1 by sampling indexes i and j. In proximal DCA, L is
tuned from {10−5 ∼ 100} and other hyper-parameters are tuned from the same range as DCA.

E.6 Details about CIFAR-10-LT and Tiny-Imagenet-200-LT Datasets

Binary CIFAR-10-LT Dataset. To construct a binary classification, we set labels of category ’cats’
to 1 and labels of other categories to 0. We split the training data in train/val = 9:1 and use the
validation dataset as the testing set. More details are provided in Table 5.

26

Binary Tiny-Imagenet-200-LT Dataset. To construct a binary classification, we set labels of
category ’birds’ to 1 and labels of other categories to 0. We split the training data in train/val = 9:1
and use the validation dataset as the testing set. More details are provided in Table 5.

Table 5: Statistics of the Long-Tailed Datesets.

Dataset Pos. Class ID Pos. Class Name # Pos. Samples # Neg. Samples

CIFAR-10-LT 3 cats 1077 11329
Tiny-Imagenet-200-LT 11,20,21,22 birds 1308 20241

E.7 Convergence Curves and Testing Performance of AGD-SBCD on Different µ

Table 6: The pAUCs with FPRs between 0.05 and 0.5 on the testing sets from the CheXpert data of
AGD-SBCD on different µ.

µ D1 D2 D3 D4 D5

AGD-
SBCD

103/N+N− 0.6721±0.0081 0.8257±0.0025 0.8016±0.0075 0.6340±0.0165 0.8500±0.0017
108/N+N− 0.6617±0.0073 0.8242±0.0057 0.8272±0.0070 0.6323±0.0028 0.8463±0.0003
1010/N+N− 0.6636±0.0056 0.8242±0.0057 0.8237±0.0077 0.6332±0.0072 0.8463±0.0002

E.8 Convergence Curves of Training pAUC over GPU Time

27

0 50 100 150

of epoch

1

1.5

2

2.5

3

T
ra

in
in

g
 L

o
s
s

CheXpert_D1

=10
3
/N

+
N

-

=10
10

/N
+
N

-

20 40 60 80
0.56

0.57

0.58

0.59

0 50 100 150

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D1

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150

0.698

0.7

0.702

0.704

0 50 100 150

of epoch

1

1.5

2

2.5

3

T
ra

in
in

g
 L

o
s
s

CheXpert_D2

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150
0.54

0.55

0.56

0.57

0 50 100 150

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D2

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150

0.715

0.72

0.725

0.73

0 50 100 150

of epoch

1

1.5

2

2.5

3

3.5

T
ra

in
in

g
 L

o
s
s

CheXpert_D3

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150
0.7

0.72

0.74

0.76

0 50 100 150

of epoch

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D3

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150
0.485

0.49

0.495

0 50 100 150

of epoch

1

1.5

2

2.5

3

3.5

T
ra

in
in

g
 L

o
s
s

CheXpert_D4

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150

0.698

0.7

0.702

0.704

0 50 100 150

of epoch

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D4

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150
0.46

0.465

0.47

0 50 100 150

of epoch

0.5

1

1.5

2

2.5

3

3.5

T
ra

in
in

g
 L

o
s
s

CheXpert_D5

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150
0.39

0.395

0.4

0.405

0 50 100 150

of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D5

=10
3
/N

+
N

-

=10
10

/N
+
N

-

50 100 150
0.8265

0.827

0.8275

0.828

Figure 6: Convergence curves of training loss and training pAUC of AGD-SBCD on different µ.

28

0 500 1000 1500

GPU Time (in seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D1

AGD-SBCD

DCA

SVM
pAUC

-tight

0 500 1000 1500

GPU Time (in seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D2

AGD-SBCD

DCA

SVM
pAUC

-tight

0 500 1000 1500

GPU Time (in seconds)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D3

AGD-SBCD

DCA

SVM
pAUC

-tight

0 500 1000 1500

GPU Time (in seconds)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D4

AGD-SBCD

DCA

SVM
pAUC

-tight

0 500 1000 1500

GPU Time (in seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
A

U
C

 o
n

 T
ra

in
in

g
 s

e
t

CheXpert_D5

AGD-SBCD

DCA

SVM
pAUC

-tight

Figure 7: Convergence curves of training pAUC over GPU time. (The dashed line of SVMpAUC -tight
does not reflect its convergence with GPU time. It is only reported for reference since we use the
authors’ MATLAB implementation which does not support GPU.)

29

	Introduction
	Related Works
	Preliminary
	Nearly Critical Point and Moreau Envelope Smoothing
	Algorithm for pAUC Optimization
	Numerical Experiments
	Partial AUC Maximization

	Conclusion
	Algorithm for Sum of Range Optimization
	Proofs of Lemmas
	Proof of Proposition 1
	Proof of Theorem 1
	Additional Materials for Numerical Experiments
	Details of SoRR Loss Minimization Experiment
	Process of Tuning Hyperparameters
	Additional Plots of Partial AUC Maximization Experiment
	DCA and Algorithm for its Subproblem
	Details about Proximal DCA
	Details about CIFAR-10-LT and Tiny-Imagenet-200-LT Datasets
	Convergence Curves and Testing Performance of AGD-SBCD on Different
	Convergence Curves of Training pAUC over GPU Time

