
A Pseudo-codes

We present the pseudo-codes for the task upsampling network g(·) (Algorithm 1), and the meta-
training algorithm for the regression task (Algorithm 2) and the classification task (Algorithm 3) in
1-step MAML with ATU. For regression task, we randomly sample a batch of tasks as the ground-
truth task set Tg and construct the task patch by down-sampling (FPS sampling). For classification
tasks, we construct (Ks+Kq) tasks in one shot to obtain a task patch from a Ks-shot classification
task with Kq query samples. We assume the local task distribution to be smooth, and construct the
ground-truth tasks by perform mixup for each image in each task with a nearest image in KM images.
We name the set of KM images by memory bank and denote it by IM . The KM images are randomly
sampled from classes different from those in the input tasks. It worth note that ATU is only applied
in the meta-training phase and, therefore, the meta-testing phase remains the same as the original
1-step MAML. It is direct to extend 1-step MAML to multi-step MAML and extend MAML to ANIL,
Meta-SGD without modifying ATU.

Algorithm 1 Task Up-sampling Network g(·)
Require: up-sampling ratio r = rc × rd for the coarse generator and decoder, respectively

1: Input: a task patch Tp = {Ti}
Np

i=1
2: Extract the set feature for the input task patch hs = gs(Tp)
3: Generate a set of coarse tasks Tc = gc(Tp) with set size rcNp

4: Sample a set of perturbations Z in size rd
5: Generate the up-sampled task set Tup = gd(Tc,Z, hs)
6: Output: a set of up-sampled tasks Tup

Algorithm 2 Meta-training of 1-step MAML with ATU for regression tasks
Require: distribution over meta-training tasks p(T ); inner-loop and outer-loop learning rates α,β;

hyperparameters η1, η2, η3 in Eq. (4) and Eq. (6); batch size of tasks B; task patch size Np;
up-sampling ratio r = rc × rd for the task up-sampling network

1: Randomly initialize the parameters θ0 of the meta-model.
2: while not converge do
3: Randomly sample a batch of tasks as Tg with batch size rNp

4: Perform down-sampling (FPS sampling) on Tg to construct the local task patch Tp
5: Generate the augmented task set through our Task Up-sampling Network as Tup = g(Tp)
6: Randomly split the up-sampled task set Tup into n batches {Tbatch}, each with B tasks (i.e.,

n = |Tup|/B)
7: for each task batch Tbatch in Tup do
8: for each task Ti ∈ Tbatch do
9: Perform inner-loop update of MAML as ϕi = θ0 − α∇θ0L(fθ0 , Ds

i )
10: end for
11: Calculate L(fϕi , D

q
i ) and Ladv(θ0, D

s
i , D

q
i )

12: Update the meta-model parameter θ0 as θ0 ← θ0 − β 1
B

∑n
i=1∇θ0L(fϕi

, Dq
i )

13: end for
14: Calculate the objective function in Eq. (6) and perform backpropagation to update the Task

Up-sampling Network
15: end while

B Network Architecture of the Task Up-sampling Network

In this section, we provide the network architectures for the Task Up-sampling Network for both
regression and classification tasks. As shown in Fig. 8, the set encoder gs(·) of the Task Up-Sampling
Network for regression tasks consists of 2 convolution layers followed by a max-pooling layer to
extract the permutation-invariant feature for the input task patch. The dimension of the set feature
is 1024. The coarse task generator gc(·) consists of a set encoder to extract the set feature for the
input patch, followed by 3 linear layers to generate coarse tasks from the set feature. The set encoder
in coarse generator is the same as gs(·). The output of the last layers is reshaped into rcNp coarse
tasks. By concatenating the coarse task and a rd-dimension noise vector, we obtain the input of the
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Algorithm 3 Meta-training of 1-step MAML with ATU for classification tasks (N-way Ks-shot)
Require: distribution over meta-training tasks p(T ); inner-loop and outer-loop learning rates α, β;

hyperparameters η1, η2 in Eq. (4); batch size of tasks B; task patch size Np; Beta distribution
Beta(δ1, δ2); up-sampling ratio r (r = rc × rd, rc = 1)

1: Randomly initialize the parameters θ0 of the meta model
2: while not converge do
3: Randomly sample a batch of tasks Tbatch with B tasks.
4: for each task Ti ∈ Tbatch do
5: Reshape Ti as the task patch Tp
6: Randomly sample extra KM images which consists of images not belong to any class in Ti

7: Construct the Tg = (Ĉ0, ..., ĈN ) : Sample λ ∼ Beta(δ1, δ2). For the image in each class
Cj in Ti, generate a new image as Ĉj = λ× Cj + (1− λ)×Xj , where Xj is the nearest
image (measured by euclidean distance) to the image in the class Cj .

8: Generate up-sampling task set through Task Up-sampling Network as Tup = g(Tp)
9: Randomly sample one task T̂i from Tup

10: Perform inner-loop update of MAML as ϕi = θ0 − α∇θ0L(fθ0 , D̂s
i )

11: end for
12: Calculate L(fϕi , D

q
i ) and Ladv(θ0, D

s
i , D

q
i )

13: Update the meta model parameter θ0 as θ0 ← θ0 − β 1
B

∑n
i=1∇θ0L(fϕi

, D̂q
i )

14: Calculate the objective function in Eq. (5) and perform backpropagation to update the Task
Up-sampling Network

15: end while
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Figure 8: The up-sampling network of the regression task.

decoder gd(·). The decoder consists of 3 convolution layers. We then use the output of the last layer
as residual added to the coarse tasks to obtain the up-sampling tasks.

The network structure of Task Up-sampling Network for classification tasks is presented in Fig. 9.
We directly use the input task patch as the coarse tasks and, therefore, the coarse task generator gc(·)
is an identity function. The set encoder gs(·) consists of 2 convolution layers, each followed by a
Batch Norm layer. We use the KM images in the memory bank as the perturbation, concatenating
with a (Np×KM )-dimension noise vector to obtain the input to the decoder. The decoder consists of
a attention module and a mapping module. The attention module is constructed by 3 convolution
layers, followed by 3 linear layers. The attention block generates the attention scores. The mapping
module, which consists of 3 convolution layers with xxx filters, maps the KM perturbation to KM

residual features. We perform weighted sum of the KM residual features with the attention scores to
generate r final residual features and add them to the coarse tasks to obtain the up-sampling 1-shot
tasks. We then construct r augmented tasks by stacking Ks +Kq 1-shot tasks.

C Setups and Additional Experiment Results for Regression Tasks

C.1 Setups of Hyperparameter

The hyperparameters of the ATU are listed in Table 8.
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Figure 9: The up-sampling network of the classification task.

C.2 Effect of Augmentation Ratio

In the regression task, we assume the combination of the augmented and original tasks will better
approximate the real task distribution and, therefore, update the meta-model not only with the
augmented tasks generated by the Task Up-sampled Network, but also with the original meta-training
tasks. We define the augmentation ratio as the proportion of augmented tasks among all the tasks.
Note that the experiment results shown in Table 2 are obtained by setting the augmented ratio as
0.2. We present the results with other ratios in Table 7. It can be observed that the performance with
positive ratio is better than the performance with ratio= 0, which means the meta-model is trained
without augmented tasks. These results indicates that the augmented tasks are more informative than
the original tasks in training a better meta-model.

Table 7: Ablation study on the augmentation
ratio of the sine regression task.

Augmentation ratio TU performance (10-shot)

0 0.93± 0.18
0.2 0.84± 0.16
0.4 0.89± 0.17
0.6 0.91± 0.18

Table 8: Hyperparameters of the sine regres-
sion task in Table 2.

Hyperparameters ATU

maximum training iterations 3750
up-sampling ratio r (rc, rd) 8 (2, 4)

loss weights (η1, η2, η3) (8e−3, 4e−3, 3e−1)
size of Tg 64

D Setups and Additional Experiment Results for Classification Tasks

D.1 Introduction and Hyperparameters of the Four Datasets

We provide the detailed information of the datasets and hyperparameters of the classification tasks
for obtaining the results in Tabel 4 in this section. We construct the 4 datasets following the settings
in MLTI [43].

miniImagenet-S. Compared with miniImagenet, miniImagenet-S has fewer meta-training classes so
as to limit the task number. The specific meta-training classes of miniImagenet-S include:

n03017168, n07697537, n02108915, n02113712, n02120079, n04509417,n02089867, n03888605,
n04258138, n03347037, n02606052, n06794110

We use four convolutional blocks and a classifier as the base learner [43, 9], and each convolutional
block contains a convolutional layer, a batch normalization layer and a ReLU activation layer. In
order to analyze the effect of the number of meta-training tasks, we add more classes for meta-training
according to the following sequence:

n03476684, n02966193, n13133613, n03337140, n03220513, n03908618,n01532829, n04067472,
n02074367, n03400231, n02108089, n01910747, n02747177, n02795169, n04389033, n04435653,
n02111277, n02108551,n04443257, n02101006, n02823428, n03047690, n04275548, n04604644,
n02091831, n01843383, n02165456, n03676483, n04243546, n03527444, n01770081, n02687172,
n09246464, n03998194, n02105505, n01749939, n04251144, n07584110, n07747607, n04612504,
n01558993, n03062245, n04296562, n04596742, n03838899, n02457408, n13054560, n03924679,
n03854065, n01704323, n04515003, n03207743
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ISIC. ISIC skin dataset [18] was provided by ISIC2018 Challenge, in which 7 disease classes and
10015 dermoscopic images are included. Following [43, 14], Nevus, Malanoma, Benign Keratoses,
Basal Cell Carcinoma, the four categories with the largest number of images, are as meta-training
classes; the rest Dermatofibroma, Pigmented Bowen’s, Benign Keratoses are as meta-testing classes.
We re-scale the size of each medical image to 84× 84× 3 and adopt the same 4-layer convolutional
as the base model like miniImagenet-S.

DermNet-S. Dermnet-S are part of the public Dermnet Skin Disease Altas, in which 625 different
fine-grained categories are included. Dermnet-S chooses the top-30 classes for meta-training. The
concrete meta-training classes and meta-testing classes are:

• Meta-training classes: Seborrheic Keratoses Ruff, Herpes Zoster, Atopic Dermatitis Adult
Phase, Psoriasis Chronic Plaque, Eczema Hand, Seborrheic Dermatitis, Keratoacanthoma,
Lichen Planus, Epidermal Cyst, Eczema Nummular, Tinea (Ringworm) Versicolor, Tinea
(Ringworm) Body, Lichen Simplex Chronicus, Scabies, Psoriasis Palms Soles, Malignant
Melanoma, Candidiasis large Skin Folds, Pityriasis Rosea, Granuloma Annulare, Erythema
Multiforme, Seborrheic Keratosis Irritated, Stasis Dermatitis and Ulcers, Distal Subungual
Onychomycosis, Allergic Contact Dermatitis, Psoriasis, Molluscum Contagiosum, Acne
Cystic, Perioral Dermatitis, Vasculitis, Eczema Fingertips.

• Meta-testing classes: Warts, Ichthyosis Sex Linked, Atypical Nevi, Venous Lake, Ery-
thema Nodosum, Granulation Tissue, Basal Cell Carcinoma Face, Acne Closed Comedo,
Scleroderma, Crest Syndrome, Ichthyosis Other Forms, Psoriasis Inversus, Kaposi Sar-
coma, Trauma, Polymorphous Light Eruption, Dermagraphism, Lichen Sclerosis Vulva,
Pseudomonas, Cutaneous Larva Migrans, Psoriasis Nails, Corns, Lichen Sclerosus Penis,
Staphylococcal Folliculitis, Chilblains Perniosis, Psoriasis Erythrodermic, Squamous Cell
Carcinoma Ear, Basal Cell Carcinoma Ear, Ichthyosis Dominant, Erythema Infectiosum, Ac-
tinic Keratosis Hand, Basal Cell Carcinoma Lid, Amyloidosis, Spiders, Erosio Interdigitalis
Blastomycetica, Scarlet Fever, Pompholyx, Melasma, Eczema Trunk Generalized, Metastasis,
Warts Cryotherapy, Nevus Spilus, Basal Cell Carcinoma Lip, Enterovirus, Pseudomonas
Cellulitis, Benign Familial Chronic Pemphigus, Pressure Urticaria, Halo Nevus, Pityriasis
Alba, Pemphigus Foliaceous, Cherry Angioma, Chapped Fissured Feet, Herpes Buttocks,
Ridging Beading.

Tabular Murris. The Tabular Murris is a gene dataset (i.e., 2866-dim features) including
105,960 cells of 124 cell types extracted from 23 organs. Following [43, 5], the concrete train-
ing/validation/testing split is:

• Meta-training classes: BAT, MAT,Limb Muscle, Trachea, Heart, Spleen, GAT, SCAT,
Mammary Gland, Liver, Kidney, Bladder, Brain Myeloid, Brain Non-Myeloid, Diaphragm.

• Meta-validation classes: Skin, Lung, Thymus, Aorta

• Meta-testing organs: Large Intestine, Marrow, Pancreas, Tongue

Unlike the base model for the other 3 datasets, we use two fully connected blocks and a linear layer as
the backbone network, where each fully connected block includes a linear layer, a batch normalization
layer, a ReLu activation layer, and a dropout layer. The dropout ratio and the feature channels of the
linear layer are set 0.2, 64, which is the same as the settings of [43, 5].

For a fair comparison with MLTI, we adopt the same MetaMix strategy as MLTI to augment the
query set for the four datasets. We set the augmentation ratio as 1 in classification tasks and do not
use the original sampled tasks in meta-training because we empirically find that ATU obtains better
performance with higher augmentation ratio. The other settings are the same with MLTI. More details
about the hyperparameters are listed in Table 9.
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Table 9: Hyperparameters of Tabel 4
Hyperparameters(ATU) miniImagenet-S ISIC Dermnet-S Tabular Murris

inner-loop learning rate 0.01 0.01 0.01 0.01
outer-loop learning rate 0.001 0.001 0.001 0.001
Beta(δ1, δ2) (3,5) (2,2) (2,2) (2,2)
Number of steps in inner loop 5 5 5 5
batch size 4 4 4 4
query size in meta-training tasks 15 15 15 15
maximum training iterations 50,000 50,000 50,000 50,000
adversarial loss weights η (η1 = η2) 3 3 0.5 0.5
up-sampling ratio r 2 2 2 2

Table 10: Ablation study on the memory bank
size KM in the classification task.

KM TU (mini-S 1-shot)

3 42.16 ± 0.73%
5 42.20 ± 0.76%
7 42.28 ± 0.72%

Table 11: Sensitivity analysis of the adversar-
ial loss weights on the classification task.

Adversarial weights ATU (mini-S 1-shot)

η1 = η2 = 1 42.38 ±0.82%
η1 = η2 = 3 42.60 ±0.84%
η1 = η2 = 5 41.67 ±0.79%

D.2 Ablation Study

Effect of KM . As shown in Table 10, the classification performance increases as the memory bank
size KM increases. But the performance gain is not very significant for a large KM . Considering the
training efficiency, we set KM = 3 in all classification experiments.

Table 12: The averaged accuracy with 95% confidence intervals of various interpolation task augmen-
tation methods and our task up-sampling method on miniImagenet-s (5-shot).

Task generation method miniImagenet-S (5-shot)

Naive Baseline1 53.49± 0.74%
Naive Baseline2 50.25± 0.71%
Naive Baseline3 53.91± 0.78%

TU 56.33± 0.79%

Effect of η1,η2. We choose different (η1,η2) to explore the sensitivity of model performance to
adversarial loss weights. It can be observed from the results in Table 11 that the adversarial loss
weights have a large influence on the performance of the model and it achieves the best performance
when setting η1 = η2 = 3.

Effect of Augmented Task Generation Strategies. Due to the high complexity of the classification
tasks’ distribution, we assume its latent task distribution is smooth and construct the ground-truth
task manifold Tg via mixing all image in each class of Ti with its corresponding nearest image in
the memory bank (the sampled KM images) (see Algorithm 3). Under this assumption, one naive
method is to generate augmented tasks in the same way as the generation of ground-truth tasks where
we can directly mix the images in the tasks with the KM images in the memory bank. To verify the
effectiveness and necessity of training a Task Up-sampling Network, we compare TU with 3 naive
methods in Table 12: (1) Naive Baseline1:for each image of task Ti, we randomly choose one image
in the memory bank to mix; (2) Naive Baseline2: for all images in a class of task Ti, we randomly
choose one image in the memory bank to mix; (3) Naive Baseline3: for all images in a class of task
Ti, we choose the nearest image in the memory bank to mix. The Naive Baseline3 is the method
that we used to construct Tg . The results in Table 12 show that TU outperforms the other 3 baselines
by a large margin. TU outperforms Naive Baseline3 because the tasks generated by TU match the
local task distribution better than those generated by just mixing with the images in the memory bank.
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Moreover, the tasks generated by TU is more diverse and informative. Taking this into consideration,
we set the augmentation ratio to be 1 and do not use the original tasks in the meta-training.

D.3 Visualization of the generated Classification tasks of Tp.

We visualize part of the images in a generated classification task in Fig. 10. The three images in the
top row are the selected extra KM images and T̂1, T̂2, T̂3 are three 5-way 1-shot tasks generated by
ATU.

�𝑇𝑇1

�𝑇𝑇2

�𝑇𝑇3

𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5

𝐾𝐾𝑀𝑀 images

Figure 10: Visualization of part up-sampled classification tasks (i.e., Tup) generated by ATU.

Table 13: Complete results of Table 6 with 95% confidence interval under the cross-domain setting.

Model miniImagenet-S→ DermNet-S DermNet-S→ miniImagenet-S
1-shot 5-shot 1-shot 5-shot

MAML [9] 34.46± 0.63% 50.36± 0.64% 28.78± 0.55% 41.29± 0.64%
MAML+ATU 36.86± 0.64% 51.98± 0.62% 30.68± 0.68% 46.72± 0.73%
MetaSGD [15] 31.07± 0.57% 49.07± 0.59% 28.17± 0.53% 41.83± 0.67%
MetaSGD+ATU 37.75± 0.65% 54.60± 0.58% 30.78± 0.58% 44.01± 0.68%

D.4 Complete Results with Confidence Interval

We list the complete results with 95% confidence interval in Table 14,15,13, which are corresponding
to the Tabel 4, 5, 6 in Section 6.2.

E Proof of Property 1.

Property 1 (Task-awareness Maximization). Consider Nu = 2, g(θ1, θ2) = (1 − λ)θ1 + λθ2,
fθ1(·) = W1, and fθ2(·) = W2. The proposed ATU algorithm that pursues an up-sampled task
Tu = {Xu,Yu} via minimizing the EMD loss between T1 and T2 maximizes the task-awareness,
i.e., minimizing the distance between Yu and fθu(Xu).

Proof. According to the definition of EMD (Eq. (2)), it solves: ϕ∗ = argminϕ∈Φ

∑
j∥x1,j −

x2,ϕ(j)∥2, where Φ = {{1, · · · , n} 7→ {1, · · · , n}} denotes the set containing all possible bijective
assignments, each of which gives one-to-one correspondence between T1 and T2. Based on the
optimal assignments ϕ∗, the EMD is known to be defined as dEMD = 1

n

∑
j ∥x1,j − x2,ϕ∗(j)∥2.

In light of the difficulty in mathematically formulating a possible up-sampled task T̃u that lies
in the local manifold of {T1, T2}, we reasonably assume a simplified way of characterizing an
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Table 14: Complete classification results of Table 4 with 95% confidence interval.

Setting Model miniImagenet-S ISIC DermNet-S Tabular Murris

1-shot

MAML [9] 38.27± 0.74% 57.59± 0.79% 43.47± 0.83% 79.08± 0.91%
Meta-Reg [44] 38.35± 0.76% 58.57± 0.94% 45.01± 0.83% 79.18± 0.87%
TAML [11] 38.70± 0.77% 58.39± 1.00% 45.73± 0.84% 79.82± 0.87%
Meta-Dropout [13] 38.32± 0.75% 58.40± 1.02% 44.30± 0.84% 78.18± 0.93%
MetaMix [40] 39.43± 0.77% 60.34± 1.03% 46.81± 0.81% 81.06± 0.86%
Meta-Maxup [20] 39.28± 0.77% 58.68± 0.86% 46.10± 0.82% 79.56± 0.89%
MLTI [43] 41.58± 0.72% 61.79± 1.00% 48.03± 0.79% 81.73± 0.89%
TU 42.16± 0.76% 62.03± 0.95% 48.07± 0.83% 81.88± 0.90%
ATU 42.60± 0.77% 62.84± 0.98% 48.33± 0.81% 82.04± 0.94%

5-shot

MAML [9] 52.14± 0.65% 65.24± 0.77% 60.56± 0.74% 88.55± 0.60%
Meta-Reg [44] 51.74± 0.68% 68.45± 0.81% 60.92± 0.69% 89.08± 0.61%
TAML [11] 52.75± 0.70% 66.09± 0.71% 61.14± 0.72% 89.11± 0.59%
Meta-Dropout [13] 52.53± 0.69% 67.32± 0.92% 60.86± 0.73% 89.25± 0.59%
MetaMix [40] 54.14± 0.73% 69.47± 0.60% 63.52± 0.73% 89.75± 0.58%
Meta-Maxup [20] 53.02± 0.72% 69.16± 0.61% 62.64± 0.72% 88.88± 0.57%
MLTI [43] 55.22± 0.76% 70.69± 0.68% 64.55± 0.74% 91.08± 0.54%
TU 56.33± 0.69% 73.97± 0.70% 64.81± 0.72% 91.15± 0.60%
ATU 56.78± 0.73% 74.50± 0.90% 65.16± 0.75% 91.42± 0.61%

Table 15: Complete results of Table 5 with 95% confidence interval under different backbones.

Method miniImagenet-S ISIC DermNet-S Tabular Muris

MetaSGD [15] 37.88± 0.74% 58.79± 0.82% 42.07± 0.83% 81.55± 0.91%
MetaSGD+MLTI 39.58± 0.76% 61.57± 1.10% 45.49± 0.83% 83.31± 0.87%
MetaSGD+ATU 40.52± 0.78% 62.84± 1.01% 46.78± 0.84% 83.84± 0.90%
ANIL [22] 38.02± 0.75% 59.48± 1.00% 44.58± 0.85% 75.67± 0.99%
ANIL+MLTI 39.15± 0.73% 61.78± 1.24% 46.79± 0.77% 77.11± 1.00%
ANIL+ATU 39.27± 0.76% 62.12± 0.98% 47.03± 0.85% 77.23± 0.99%

up-sampled task T̃u to be ỹu,j = αT
1,jY1 + αT

2,jY2, x̃u,j = αT
1,jX1 + αT

2,jX2, ∀j, where each
sample is a convex combination of samples from both T1 from T2. The combination coefficients
αT

1,j ,α
T
2,j ∈R(Ks+Kq)×1,

∑Ks+Kq

k α1,jk = 1, and
∑Ks+Kq

k α2,jk = 1. Different combination
coefficients lead to a set of up-sampled task candidates {T̃u}. We evaluate the task-awareness property
of each candidate T̃u, i.e., the distance between Ỹu and fθu(X̃u), to be

∥Ỹu − fθu(X̃u)∥2 =
∑

j ∥ỹu,j − fθu(x̃u,j)∥2

=
∑

j ∥αT
1,jY1 +αT

2,jY2 − [(1− λ)W1 + λW2][α
T
1,jX1 +αT

2,jX2]∥2
=

∑
j ∥αT

1,jX1W1 +αT
2,jX2W2 − [(1− λ)W1 + λW2][α

T
1,jX1 +αT

2,jX2]∥2
=

∑
j ∥(W1 −W2)[λα

T
1,jX1 − (1− λ)αT

2,jX2]∥2 = LHS

Note that

LHS =
∑
j

∥(W1 −W2)[λx̃u,j − αT
2,jX2]∥2

=
∑
j

∥W1 −W2[λx̃u,j − λx2,ϕ2(j) + λx2,ϕ2(j) − αT
2,jX2]∥2

≤
∑
j

∥W1 −W2∥2(λ∥x̃u,j − x2,ϕ2(j)∥2 + ∥X2∥2),
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where the last inequality follows the triangle inequality and the fact that 0 ≤ λ ≤ 1. Similarly, we
have

LHS =
∑
j

∥(W1 −W2)[α
T
1,jX1 − (1− λ)x̃u,j ]∥2

=
∑
j

∥W1 −W2[α
T
1,jX1 − (1− λ)x1,ϕ1(j) + (1− λ)x1,ϕ1(j) − (1− λ)x̃u,j ]∥2

≤
∑
j

∥W1 −W2∥2((1− λ)∥x1,ϕ1(j) − x̃u,j∥2 + ∥X1∥2).

In practice, it is easy to normalize all the tasks in the feature space, which leads to ∥X1∥2=∥X2∥2
Therefore, by minimizing the EMD loss

dEMD= min{min
ϕ2

∑
j

∥x̃u,j − x2,ϕ2(j)∥2,min
ϕ1

∑
j

∥x̃u,j − x1,ϕ1(j)∥2},

the proposed task up-sampling network identifies from the candidate set {T̃u} the task Tu that has
the minimal distance between Yu and fθu(Xu); in other words, the task-awareness is maximized.

Previous task augmentation approaches directly mix up two tasks without minimizing the EMD loss,
i.e., yu,j = (1 − λ)y1,j + λy2,j ,xu,j = (1 − λ)x1,j + λx2,j . In this case, the task-awareness is
unwarranted as we have illustrated in Section 1, provided that ∥Yu−fθu(Xu)∥2 =

∑
j ∥(1−λ)y1,j+

λy2,j− [(1−λ)W1+λW2][(1−λ)x1,j+λx2,j ]∥2 =
∑

j λ
2(1−λ)2∥(W1−W2)(x1,j−x2,j)∥2.

Table 16: 1-shot meta-training on MiniImangenet-S and meta-testing on various meta-datasets.

mini-S→ Derm-S CUB Aircraft Fungi Texture

MAML 34.46% 39.81% 27.92% 30.06% 26.29%

MAML+ATU 36.86%(↑2.40%)40.67%(↑0.86%)30.11%(↑2.19%)32.81%(↑2.75%)27.28%(↑2.40%)

MetaSGD 31.07% 39.94% 28.71% 30.96% 25.75%

MetaSGD+ATU37.75%(↑6.68%)42.52%(↑2.58%)30.22%(↑1.51%)32.52%(↑1.56%)28.61%(↑2.86%)

Table 17: 5-shot meta-training on MiniImangenet-S and meta-testing on various meta-datasets.

mini-S→ Derm-S CUB Aircraft Fungi Texture

MAML 50.36% 57.02% 36.63% 40.96% 36.61%

MAML+ATU 51.98%(↑1.62%)61.04%(↑4.02%)40.19%(↑3.56%)43.59%(↑2.63%)37.60%(↑0.99%)

MetaSGD 49.07% 55.87% 37.94% 39.76% 33.84%

MetaSGD+ATU54.60%(↑5.53%)60.37%(↑4.50%)39.11%(↑1.17%)42.77%(↑3.01%)36.59%(↑2.75%)

Table 18: 1-shot meta-training on DermNet-S and meta-testing on various meta-datasets.

Derm-S→ mini-S CUB Aircraft Fungi Texture

MAML 28.78% 35.10% 28.03% 26.71% 26.17%

MAML+ATU 30.68%(↑1.90%)36.37%(↑1.27%)29.31%(↑1.28%)27.16%(↑0.45%)27.11%(↑0.94%)

MetaSGD 28.17% 32.69% 26.07% 25.19% 25.02%

MetaSGD+ATU30.78%(↑2.61%)35.86%(↑3.17%)31.56%(↑5.49%)28.07%(↑2.88%)28.04%(↑3.02%)
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Table 19: 5-shot meta-training on DermNet-S and meta-testing on various meta-datasets.

Derm-S→ mini-S CUB Aircraft Fungi Texture

MAML 41.29% 53.44% 38.30% 35.04% 37.01%

MAML+ATU 46.27%(↑4.98%)54.99%(↑1.55%)41.22%(↑2.92%)35.45%(↑0.41%)39.04%(↑2.03%)

MetaSGD 41.83% 52.32% 37.27% 36.74% 35.27%

MetaSGD+ATU44.01%(↑2.18%)58.52%(↑6.20%)43.28%(↑6.01%)38.28%(↑1.54%)38.28%(↑3.01%)

Table 20: Computational cost analysis.

Pre-train Ordinary training Total

MAML – 35,936 s 35,936 s

Ours 13,512 s 45,926 s 59,438 s

F More experiments under the cross-domain setting.

For a more detailed analysis of how the model behaves in a cross-domain setting, we conduct more
experiments meta-tested on meta-datasets, as shown in Table 16, 17, 18, 19.

G Computational cost for the method

The tasks are generated on the fly during meta-training. Our method includes two stages: (1) pre-
training the augmentation network and (2) meta-training of the meta-learner and the augmentation
network jointly. For fair comparison with MAML which trains for 50k iterations, we pre-train the
augmentation network for 10k iterations, and meta-train for 40k iterations.

In summary, our method’s (TU) computation cost is 1.65x of the vanilla MAML. The breakdown of
the computation cost is listed in Table 20.

H Experiments on the limited meta-datasets.

In order to further valid the effectiveness of the proposed method, we have conducted experiments to
evaluate the three suggested baselines (including Baseline++ [7], RFS [30], and ProtoNet [27]) on the
setting of limited tasks, and show the comparison results in Table 21. We construct the dataset CUB-S,
Fungi-S, Aircraft-S, and Texture-S similarly to miniImagenet-S. The details of their construction are
listed as follows.

CUB-S. CUB [34] is a bird image dataset including 11,788 photos of 200 bird species. In this
paper, we randomly select 48 species with 60 images in each species. We devide them into meta-
training/meta-validation/meta-testing sets as 12/16/20 species.

• Meta-training classes: Savannah Sparrow, Dark eyed Junco, Black footed Albatross,
Henslow Sparrow, Cape Glossy Starling, Black throated Sparrow, Northern Waterthrush,
Hooded Warbler, Baltimore Oriole, Scarlet Tanager, Cerulean Warbler, Downy Woodpecker.

• Meta-validation classes: Mockingbird, Vermilion Flycatcher, Cape May Warbler, Prothono-
tary Warbler, White crowned Sparrow, Ovenbird, Pomarine Jaeger, Indigo Bunting, Blue
winged Warbler, Chipping Sparrow, Horned Grebe, Fox Sparrow, Green Violetear, Nashville
Warbler, Least Tern, Marsh Wren.

• Meta-testing classes: Rose breasted Grosbeak, Nighthawk, Long tailed Jaeger, Bronzed
Cowbird, California Gull, Ivory Gull, Northern Fulmar, Brown Pelican, Ring billed Gull,
Great Grey Shrike, White breasted Nuthatch, Mourning Warbler, Sage Thrasher, Horned
Puffin, Pied Kingfisher, Shiny Cowbird, Scott Oriole, Red eyed Vireo, Song Sparrow, Winter
Wren.
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Table 21: Complete classification results of Table 4 with 95% confidence interval.

Setting Model CUB-S Fungi-S Aircraft-S Texture-S

1-shot

Protonet [27] 35.35± 0.70% 26.01± 0.51% 30.26± 0.56% 26.52± 0.53%
Protonet+MLTI 36.17± 0.72% 28.80± 0.57% 33.26± 0.68% 28.28± 0.56%
Protonet+TU 38.35± 0.71% 30.91± 0.59% 34.87± 0.70% 29.02± 0.57%
Baseline++ [7] 43.98± 0.84% 32.97± 0.74% 36.28± 0.79% 31.36± 0.58%
RFS [30] 43.96± 0.82% 33.05± 0.70% 33.68± 0.80% 31.47± 0.59%
MAML 41.58± 0.90% 29.63± 0.64% 34.54± 0.72% 33.79± 0.69%
MAML+MLTI 44.77± 0.88% 31.34± 0.65% 37.76± 0.73% 34.51± 0.69%
MAML+TU 47.23± 0.96% 33.21± 0.68% 39.79± 0.80% 34.82± 0.67%
MAML+ATU 48.33± 0.96% 33.66± 0.70% 41.31± 0.82% 35.26± 0.73%

5-shot

Protonet [27] 55.30± 0.75% 34.06± 0.63% 50.49± 0.66% 33.37± 0.58%
Protonet+MLTI 56.69± 0.77% 34.44± 0.56% 51.77± 0.64% 35.34± 0.56%
Protonet+TU 58.32± 0.76% 35.56± 0.62% 52.24± 0.66% 37.20± 0.59%
Baseline++ [7] 54.41± 0.75% 44.49± 0.75% 45.84± 0.77% 40.31± 0.61%
RFS [30] 55.40± 0.74% 46.55± 0.77% 47.05± 0.78% 40.91± 0.60%
MAML 57.97± 0.85% 37.10± 0.65% 43.62± 0.69% 39.47± 0.63%
MAML+MLTI 63.89± 0.81% 45.64± 0.74% 55.05± 0.72% 40.62± 0.67%
MAML+TU 64.41± 0.82% 46.99± 0.83% 55.85± 0.70% 41.38± 0.65%
MAML+ATU 65.56± 0.80% 47.91± 0.80% 56.90± 0.71% 42.52± 0.62%

Fungi-S. Fungi [2] dataset contains 1,500 wild mushroom species with over 100,000 fungi images.
We select the sepcies with greater than 150 images and then randomly choose 100 species, where
each species contains 150 images. We split them into meta-training/meta-validation/meta-testing sets
with 12/16/20 species.

• Meta-training classes: Suillus granulatus, Phaeolus schweinitzii, Cystoderma amianthinum,
Pycnoporellus fulgens, Psathyrella candolleana, Meripilus giganteus, Phellinus pomaceus,
Laccaria laccata, Laccaria proxima, Amanita excelsa, Ganoderma pfeifferi, Clitopilus
prunulus.

• Meta-validation classes: Agaricus impudicus, Daedaleopsis confragosa, Fomitopsis pini-
cola, Cortinarius anserinus, Mucidula mucida, Trametes versicolor, Stropharia cyanea,
Ramaria stricta, Radulomyces confluens, Gliophorus psittacinus, Psathyrella spadiceogrisea,
Coprinopsis lagopus, Daedalea quercina, Amanita muscaria, Armillaria lutea, Vuilleminia
comedens.

• Meta-testing classes: Hygrocybe ceracea, Trametes hirsuta, Polyporus tuberaster, Lacry-
maria lacrymabunda, Fistulina hepatica, Gymnopus dryophilus, Amanita rubescens, Fus-
coporia ferrea, Craterellus undulatus, Tricholoma scalpturatum, Mycena pura, Russula
depallens, Bjerkandera adusta, Trametes gibbosa, Tremella mesenterica, Cerioporus varius,
Amanita fulva, Xylodon paradoxus, Cuphophyllus virgineus, Cortinarius flexipes.

Aircraft-S. Aircraft [17] is a fine-grained image dataset that contains 102 categories of aircraft. We
randomly choose 100 variants with 100 images in each variant and split them into meta-training/meta-
validation/meta-testing with 12/16/20 categories respectively.

• Meta-training classes: MD-90, 737-600, A310, An-12, DR-400, Falcon-900, DC-3,
Challenger-600, Fokker-70, Cessna-172, 747-400, ERJ-145.

• Meta-validation classes: 737-900, A340-600, 737-800, 737-400, L-1011, A330-200,
Gulfstream-V, 737-500, A340-200, ATR-72, MD-11, CRJ-700, EMB-120, Fokker-100, DC-6,
737-700.

• Meta-testing classes: 707-320, PA-28, Cessna-208, F-A-18, DHC-8-300, ERJ-135, Tornado,
BAE-146-200, A321, ATR-42, Saab-2000, Tu-134, Fokker-50, A380, MD-80, Gulfstream-IV,
Yak-42, 747-100, 767-400, Embraer-Legacy-600.
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Texture-S. Texture [8] dataset contains 47 classes with 5640 images in total, where each class has
120 images. We randomly split them into meta-training/meta-validation/meta-testing with 12/7/10
classes respectively.

• Meta-training classes: pitted, woven, crosshatched, crystalline, sprinkled, lacelike, bubbly,
marbled, dotted, bumpy, striped, zigzagged.

• Meta-validation classes: wrinkled, grid, perforated, cobwebbed, honeycombed, cracked,
blotchy.

• Meta-testing classes: fibrous, matted, scaly, chequered, flecked, paisley, braided, polka-
dotted, interlaced, meshed.
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