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Abstract

We develop Temporal Quantile Adjustment (TQA), a general method to construct
efficient and valid prediction intervals (PIs) for regression on cross-sectional time
series data. Such data is common in many domains, including econometrics and
healthcare. A canonical example in healthcare is predicting patient outcomes
using physiological time-series data, where a population of patients composes
a cross-section. Reliable PI estimators in this setting must address two distinct
notions of coverage: cross-sectional coverage across a cross-sectional slice, and
longitudinal coverage along the temporal dimension for each time series. Recent
works have explored adapting Conformal Prediction (CP) to obtain PIs in the time
series context. However, none handles both notions of coverage simultaneously.
CP methods typically query a pre-specified quantile from the distribution of non-
conformity scores on a calibration set. TQA adjusts the quantile to query in CP
at each time t, accounting for both cross-sectional and longitudinal coverage in a
theoretically-grounded manner. The post-hoc nature of TQA facilitates its use as
a general wrapper around any time series regression model. We validate TQA’s
performance through extensive experimentation: TQA generally obtains efficient
PIs and improves longitudinal coverage while preserving cross-sectional coverage.
Our code is available at https://github.com/zlin7/TQA.

1 Introduction

The impressive predictive performance of modern “black-box” machine learning methods has started
to make them critical ingredients in various high-stakes decision-making pipelines. It is thus increas-
ingly important to quantify the predictive uncertainty of such models reliably and efficiently, which
remains a fundamental challenge. Conformal Prediction (CP), pioneered by Vovk et al. [53], is a
powerful framework for quantifying uncertainty under mild assumptions. The model-agnostic and
distribution-free nature of CP makes it particularly suitable for large neural network models, and
has started to attract the attention of the deep learning community [2, 3, 6, 9, 12, 13, 33, 59]. The
primary assumption in most current CP methods is that of data exchangeability. For instance, only
assuming exchangeability of the calibration and test data, one can construct 1− α valid prediction
intervals by simply querying the corresponding quantile of nonconformity scores on the calibration
set. Recent works have started exploring the adaptation of CP in settings that go beyond the usual
exchangeability assumption [4, 17, 21, 38, 42, 43, 44, 50, 57], and to more complex data such as time
series [17, 48, 56, 58].

We study the adaptation of CP to the cross-sectional time series regression setting. More formally,
suppose our data comprises of N time series, denoted {Si}Ni=1, with each Si sampled from an
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Figure 1: PI estimators with different cross-sectional or longitudinal properties/validities. × denotes
the ground-truth y that is outside of the PI. (A) features PIs that are not valid in either sense: Y is
never covered. (B) is cross-sectionally valid: for any t, 90% of the Y·,t are covered. It is longitudinally
invalid, as 10% of the TS receive no coverage at all. (C) exhibits both cross-sectional and longitudinal
validity, which is ideal.
arbitrary distribution PS . Further, each time series Si is a sequence of temporally-dependent random
variables [Zi,1 . . . , Zi,t, . . . , Zi,T ] , with Zi,t = (Xi,t, Yi,t) consisting of covariates X·,· ∈ Rd and
the response Y·,· ∈ R. Given data until time t ({ZN+1,j}tj=1) and XN+1,t+1 for a new time series
SN+1, the time series regression problem entails predicting the response YN+1,t+1 at (an unknown)
time t+ 1. We are interested in quantifying the uncertainty of each prediction by constructing valid
prediction intervals (PI). That is, given a confidence level 1− α, we are interested in constructing a
prediction interval, Ĉα,N+1,t+1, that will cover YN+1,t+1 with probability of at least 1− α.

A crucial requirement in cross-sectional time series regression is to distinguish two notions of validity,
longitudinal and cross-sectional, to ensure reliable performance. Longitudinal validity is concerned
with validity along the temporal axis for each time series. On the other hand, cross-sectional validity
is concerned with validity across the populational cross-section of the time series data. Figure 1
illustrates both notions of validity and a standard real-world occurrence of such a problem setting.
Recently, several research groups have explored adapting CP to the time series setting. Some of such
works [17, 58, 56] focus only on longitudinal validity, which is extremely difficult without strong
distributional assumptions [4]. Furthermore, such methods cannot leverage rich information inherent
in the cross-section. The only work which addresses cross-sectional validity is to due to Stankevičiūtė
et al. [48], but it ignores the temporal dependence. Accounting for both notions of coverage is critical
to obtain reliable performance.

To remedy the above situation, we propose Temporal Quantile Adjustment (TQA) for CP in the
cross-sectional time series regression setting. TQA is the first method that can account for both cross-
sectional and longitudinal validity simultaneously. Although TQA can be used as a wrapper around
any time series regression model, we focus on neural networks, as our main inspiration comes from
complicated time series regression problems in healthcare2. Neural networks are particularly suited
for such tasks, which can involve modeling the evolution of heterogeneous entities such as diagnostic
and drug codes, patient and physician embeddings and regressing over a target of interest. Taking
inspiration from [17], TQA adjusts the quantile to query at each time step in a theoretically-grounded
manner. Based on the nature of quantile adjustment, we also propose two variants of TQA, which
further shed light on the generality of our method. The ability of TQA to handle both cross-sectional
and longitudinal validity is borne out in extensive experimentation, where it significantly outperforms
competing methods.

2 Related Work

Our work falls squarely within the Conformal Prediction (CP) framework. The original formulation
of CP was in a purely transductive setting [46, 47, 53], and was computationally inefficient. More

2We include results for other models in the Appendix.
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efficient variants dubbed as Inductive Conformal Prediction (ICP) [39, 40, 52] were proposed soon
after and were more broadly popularized by followup works in Statistics [29, 31, 32]. A similar idea,
often referred to as Split Conformal [30], is now more or less used interchangeably with ICP, and is
fundamental to our paper. The model-agnostic and distribution-free nature of split conformal makes
it suitable for large black-box models, and thus it has seen adoption in deep learning-based pipelines
(e.g. [2, 11, 26, 33, 36, 13, 48]).

One of the mainstays of the CP framework is the assumption of exchangeability between calibration
and test data. Extensions of CP “beyond exchangeability” have attracted relatively little attention
until recently. A key publication in the area is [50] which used the notion of weighted exchangeability
to handle covariate shift. Several notable works that address various aspects of the covariate shift
problem include [21, 42, 57, 44]. More recent work [4, 17] handles gradual distribution drifts. [4]
additionally proposes an extension of CP when the data-points cannot be treated in a symmetric
manner. Extensions of the split conformal method to a broad class of dependent processes such as sta-
tionary β-mixing processes was proposed by [38]. These works provide some general methodological
insights to model temporal dependence in our case, but are otherwise not directly related. In particular,
the online adaptive method of [17], served as a major source of inspiration for the development of a
variant of TQA (dubbed TQA-E). The most related works have a focus on generating valid intervals
in time series regression [17, 58, 4, 56]. These works end up ignoring cross-sectional aspects, which
is understandable given the tasks they study. On the other extreme is [48], which focuses only on
cross-sectional coverage, ignoring the temporal dimension in constructing PIs.

Various other techniques, outside the ambit of CP, have also been extended to quantify uncertainty in
time series forecasting as well. For instance, approximate Bayesian methods [8, 54, 37, 35, 25, 15, 28]
are quite popular for uncertainty quantification, and have been extended to RNNs [14, 7]. Finally,
one may also use the idea of directly predicting the quantiles (as opposed to the point estimate) in
regression tasks [49, 27], and applying it to time series forecasting [55, 16]. However, such methods
usually require changing the base model and typically do not come with coverage guarantees.

3 Preliminaries

This section builds foundation for our exposition of TQA. We begin by expounding further on
longitudinal and cross-sectional validity, followed by presenting the exchangeability assumption.
Finally, we discuss the use of split conformal prediction to construct (cross-sectionally) valid PIs.

3.1 Cross-sectional Validity vs Longitudinal Validity

Cross-sectional validity is the more common type of validity encountered in CP, being the only type
of validity in non-time-series settings. More formally:

Definition 1. Prediction interval Ĉ·,· is 1− α cross-sectionally valid if, for any t,

PSN+1
{YN+1,t ∈ ĈN+1,t} ≥ 1− α. (1)

PSN+1
means the probability is taken over the randomness of SN+1. If ĈN+1,t is random (e.g.

depends on {Si}Ni=1) then the probability is taken over the randomness of ĈN+1,t as well. Note that
if we consider the case where every time series only consists of one step (T = 1), then we recover
the usual definition of marginal validity. Cross-sectional validity translates to high-probability in
coverage for a randomly drawn time series. As we will see later, cross-sectional validity is easier to
achieve, since we can assume inter-time-series exchangeability.

Longitudinal validity, on the other hand, is concerned with coverage along the temporal axis for a
particular TS. We use the following definition:

Definition 2. Prediction interval Ĉ·,· is 1 − α longitudinally valid if for almost every time-series
SN+1 ∼ PS there exists a T0 such that:

t > T0 =⇒ PYN+1,t|SN+1,:t−1
{YN+1,t ∈ ĈN+1,t} ≥ 1− α. (2)

Here, the qualifier “almost every” means that the set of time series’ for which such coverage may fail
is of measure zero (under PS). The threshold T0 allows some “time” for Ĉ to potentially adapt to the
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temporal information in a particular TS. It should be clear that longitudinal validity is harder to attain,
because we can no longer marginalize the probability over randomly drawn time series.

3.2 Conformal Prediction for Cross-sectionally Valid PI

In this section we explain how to use conformal prediction to construct cross-sectionally valid PIs. We
first introduce exchangeability assumption, which is the central assumption in conformal prediction,
and slightly weaker than the standard i.i.d assumption. More formally:
Definition 3. (Exchangeability [53]) A sequence of random variables, Z1, Z2, . . . , Zn ∈ Z are
exchangeable if for any permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}, and every measurable set
E ⊆ Zn, we have

P{(Z1, Z2, . . . , Zn) ∈ E} = P{(Zπ(1), Zπ(2), . . . , Zπ(n)) ∈ E} (3)

Definition 3 can naturally be extended to a sequence of randomly drawn time series:
Definition 4. (Exchangeable Time Series) Given time series S1,S2, . . . ,Sn where Si =
[Zi,1, . . . , Zi,T , . . .], denote Zi,{tj}m

j=1
as the concatenated random variable of (Zi,t1 , . . . , Zi,tm).

Time series S1,S2, . . . ,Sn are exchangeable if, for any finitely many t1 < · · · < tm, the random
variables Z1,{tj}m

j=1
, . . . , Zn,{tj}m

j=1
are exchangeable.

As a concrete example, suppose we randomly pick 100 patients from a hospital’s EHR database for
predicting readmission risk. It is fairly reasonable to assume that these time series are exchangeable,
despite the obvious strong temporal dependence within each time series. Throughout this paper, we
will assume S1, . . . ,SN+1 are exchangeable time series.

We now explain how to construct cross-sectionally valid PIs. To construct a PI for Yi,t, we first
split our data {Si}Ni=1 into a proper training set and a calibration set [41]. The training set is
used to train models for the nonconformity score function, and the calibration set is used to collect
such nonconformity scores (denoted as V (·)). For example, one may train a mean estimator µ̂
(e.g. an RNN) on the training set, and use the absolute residual vi,t ← |yi,t − ŷi,t|, where ŷi,t =
µ̂(Xi,t;Si,:t−1), as the nonconformity score. Here Si,:t−1 denotes [Zi,1, . . . , Zi,t−1]. The idea
behind the split conformal method is that the scoring function (e.g. µ̂) is only fit on the proper training
set, implying that nonconformity scores on the calibration set and vN+1,t are also exchangeable.
Here on, for the sake of simplicity of notation, we will use {Si}Ni=1 to denote the calibration set only,
assuming all necessary models have already been trained.

Given a nonconformity score V (·) (possibly using some trained model µ̂) and a set of exchangeable
time series {Si}N+1

i=1 , the split conformal method can be used to generate the following 1 − α
cross-sectionally valid prediction interval:

Ĉsplit
N+1,t+1 =

{
y : VN+1,t+1(ŷ, y) ≤ Q

(
1− α; {vj,t+1}Nj=1 ∪ {VN+1,t+1(ŷ, y)}

)}
. (4)

Here, Q(β;A) means the β-quantile for the set A. As a concrete example, if we let vi,t = |yi,t− ŷi,t|,
and employ the standard trick that replaces vN+1,t+1 with∞ to avoid plugging in (uncountably)
many values for y [4], the prediction interval for YN+1,t+1 becomes:

Ĉsplit
N+1,t+1 := [ŷ − v̂, ŷ + v̂] where v̂ := Q

(
1− α; {|yi,t+1 − ŷi,t+1|}Ni=1 ∪ {∞}}

)
(5)

Assuming exchangeability, we can easily show the cross-sectional validity of Ĉsplit:

Theorem 3.1. ([4, 53]) Ĉsplit is 1− α cross-sectionally valid (Def. 1).

The intuition behind the proof is that the exchangeability of the time series translates to the exchange-
ability of the nonconformity scores, which means the rank of vN+1,t+1 among {vi,t+1}N+1

i=1 follows
a uniform distribution. The coverage guarantee in Theorem 3.1 then follows. Note that with a finite
calibration set, the 1 − α-quantile could be ambiguously defined, and in practice one would use
⌈(1−α)(N+1)⌉

N+1 to get a slightly more conservative PI, or “flip a (biased) coin” to choose between
⌈(1−α)(N+1)⌉

N+1 and ⌊(1−α)(N+1)⌋
N+1 for a precise 1−α coverage (e.g. the “smoothed” ICP in [53] or the

tie-breaking trick in [2]). In Section 4, we assume the precise coverage PI for the ease of discussion.
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While cross-sectionally valid, Ĉsplit ignores the temporal dependence in the nonconformity scores
completely. We will explain in Section 4 how to adapt to the temporal dependence by “quantile
adjustment”, thus improving longitudinal coverage as well.

4 Temporal Quantile Adjustment (TQA)

In Section 3 we discussed a classical conformal prediction method and also highlighted its inherent
limitations in the time series setting. In this section we will formally introduce Temporal Quantile
Adjustment (TQA), which queries quantiles differently than in the aforementioned split conformal
procedures. We first explicate the goals and motivations of TQA in Section 4.1. Then, in Section 4.2
and 4.3 we propose two principled adjustment methods along with theoretical analyses.

4.1 Improving Longitudinal Coverage

Although it is tempting to directly pursue distribution-free finite-sample PI estimator that achieves
longitudinal coverage guarantee (Def. 2), it is likely too optimistic due to the fact that [Zi,1, . . . , Zi,T ]
are not exchangeable and we cannot characterize them meaningfully without imposing (strong)
distributional assumptions. For example, in [4], the bound for coverage gap—which captures the loss
in coverage compared to what is achievable under exchangeability—essentially becomes 1 as the
data becomes time-dependent. In fact, a concurrent work [34] proves that longitudinal validity as
specified in Def 2 is impossible to achieve unless trivially, following similar proof techniques for the
impossibility of distribution-free finite-sample conditional validity [5, 32].

Nevertheless, longitudinal coverage may still be empirically improved if we can adapt to the temporal
dependence. From our EHR example, suppose µ̂ has been giving high-error predictions for a patient
for 8 out of the past 10 days, we might suspect high error going forward for this patient as well. If
this is indeed the case, then naively applying Ĉsplit can only attain low coverage for this patient, no
matter how long a history we observe. To address this, we propose to query different quantiles based
on the partially observed time series.

From now on, we use Ĉai,t,i,t to denote a PI for Yi,t with a pre-specified target coverage of 1− ai,t,
in order to emphasize dependence on the “quantile to query”. We let ai,t = α− δ̂i,t, where δ̂i,t is the
quantile adjustment. Classical split conformal PIs (e.g. [48]) entail a special case: ∀i,∀t, δ̂i,t ≡ 0.
We refer to this method as Temporal Quantile Adjustment (TQA).

Now, denote the random variable Ri,t as the rank/quantile of Vi,t among {Vj,t}N+1
j=1 :

ri,t := Q−1(vi,t; {vj,t}N+1
j=1 ) :=

|{j : vj,t < vi,t}|
N + 1

. (6)

For example, if vi,t is the smallest among {vj,t}N+1
j=1 , then ri,t = 0. Intuitively, we would like to use

a more conservative (smaller) aN+1,t when we believe SN+1 as a whole is less “conformal” and
RN+1,t is likely high. A crucial observation is that if there is no actual temporal dependence between
the nonconformity scores (i.e. we are just adjusting at based on some “noise”), then we do not lose
any coverage as long as the expected adjustment is zero.

Theorem 4.1. If the nonconformity score’s rank (RN+1,t) is independent of the quantile adjustment
(δ̂N+1,t), then PSN+1

{YN+1,t ∈ ĈaN+1,t,N+1,t} ≥ 1− α+ E[δ̂N+1,t].

All proofs are deferred to the Appendix.

Remark: The assumption in Theorem 4.1 is not that SN+1 itself is not temporally dependent, nor is
it the slightly weaker assumption, that of the temporal independence of either {R·,t}Tt=1 or {V·,t}Tt=1.
The assumption in Theorem 4.1 only suggests that there is no temporal pattern in the prediction errors
that δ̂ can capture. This could happen, for example, when the RNN captures the underlying data
generating process fully, but only misses the random noise (aleatoric uncertainty). This could also
happen if our quantile adjustments (δ̂) are pure noise.

Unfortunately, although it can be tempting to conclude that E[δ̂N+1,t] = 0 implies finite-sample cross-
sectional validity, this conclusion would be incorrect, because it ignores the dependence between
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Figure 2: Coverage profiles with hypothetical realized rank r condition on prediction r̂, with α = 0.2

for readability. (Yi,t ∈ Ĉi,t ⇔ ri,t ≤ 1− ai,t.) As r̂ follows a uniform distribution, the proportion
of dots below the red line represents the cross-sectional coverage probability. TQA-B generally
improves coverage if r̂ is correlated with the realized r (middle), and does not lose coverage otherwise
(right). “Budgeting” refers to the constraint that sacrificed and gained have equal areas.

1{YN+1,t ∈ ĈaN+1,t,N+1,t} and aN+1,t. However, we will next discuss how to perform quantile
adjustment, and why it typically improves coverage.

4.2 Quantile Budgeting (TQA-B)

Theorem 4.1 provides an interesting constraint that we should consider while designing δ̂. That is,
we should let E[δ̂] = 0 so as to keep the same coverage when we cannot predict the quantiles, but
hopefully improving coverage when we can. This suggests a design of δ̂ that we refer to as a type
of “budgeting”. Although it is possible to directly predict a good δ̂i,t+1, we adopt a more principled
two-step approach:

(i) We predict quantile r̂i,t+1 which estimates ri,t+1.
(ii) We use a pre-defined mapping g to define the quantile adjustment δ̂i,t+1 ← g(r̂i,t+1;α).

This also permits research to improve each component independently. We introduce one alternative
for each step in the Appendix.

(i) Quantile Prediction: The quantile prediction r̂i,t+1 is estimated by a function of the form
f(Si,:t; {Sj,:t}N+1

j=1 ). Since r̂i,t+1 is supposed to predict ri,t+1, the rank of the nonconformity score,
we impose the constraint that r̂i,t+1 should follow a uniform distribution over { j

N }
N
j=0. We will

focus on a simple rank prediction method stated below:

r̂ms
i,t+1 := Q−1(ϵi,t; {ϵj,t}N+1

j=1 ) where ϵi,t :=
t∑

t′=1

|yi,t′ − ŷi,t′ |
t

β(t−t′). (7)

Here, ϵi,t is the exponentially decayed mean residual of time series i up to time t, and we use
β = 0.8. Note that taking the rank with Q−1 achieves the uniformity requirement, and ϵ·,t could be
replaced by any scoring function that takes into account the temporal information.

(ii) Budgeting: Given prediction r̂i,t, we propose the following adjustment δ̂i,t := gB(r̂i,t;α):

gB(r;α) :=

{
C(r − (1− α)) (r < 1− α)

(r − (1− α)) (r ≥ 1− α)
where C =

(2αN − ⌊αN⌋)(⌊αN⌋+ 1)

⌈(1− α)N⌉((1− 2α)N + 1 + ⌊αN⌋) . (8)

Denote aTQA−B
N+1,t as the quantile to query by TQA-B. Our particular coefficient design ensures that:

Theorem 4.2. Using r̂ms
·,· and gB , ∀t,ESN+1

[aTQA−B
N+1,t ] = α. (Recall aTQA−B

N+1,t = α− gB(·))

Thus, by Theorem 4.1, TQA-B will not lose coverage if r̂ and r are independent. The following
theorem provides a worst-case cross-sectional coverage guarantee, regardless of how “bad” r̂ is:

Theorem 4.3. PSN+1∼PS
{YN+1,t+1 ∈ ĈTQA−B

α,N+1,t+1} ≥ 1− α−
( α+ 1

2N

1− α+ 1
2N

)2
(1− α)︸ ︷︷ ︸

worst-case loss

.
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The worst-case loss term is typically small: about 0.012 for α = 0.1 and N = 100, although it can
also be also be high for a large α like 0.5. In practice, it is unlikely that r̂ is worse than a random
guess; the coverage is typically greater than 1−α, as we will see in the experiments and illustrated in
Figure 2. In the Appendix, we present a more aggressive quantile adjustment function g that provides
a weaker guarantee than Theorem 4.3, but empirically performs better.

Implementation Details To avoid creating infinitely-wide PIs, we could also let δ̂ = λg(r̂;α) so
at is bounded away from 0 (In our experiments we choose λ such that at ≥ 0.01). Moreover, the
specific form of C presented in this section depends on the concrete distribution of r̂. For example,
C would take a different form if r̂ is defined to be uniform over { j

N+1}
N+1
j=1 rather than { j

N }
N
j=0.

Practically, we can simply let C = α2(1−α)−2 regardless of N . The additional loss in Theorem 4.3
will become α2/(1− α), and the change in Theorem 4.2 is negligible for a reasonable value of N .

4.3 Error-based adjustment (TQA-E)

Another simple quantile adjustment approach is using a heuristic that depends on the past “errors”: De-
fine errt = 1{Yt ̸∈ Ĉat}, and increase δt+1 (conservative) if we see too many errors in {errt′}t′<t+1
compared with α, and vice versa. Since this approach does not depend on the cross-section, we drop
the subscript ·N+1 for simplicity. We use the following update rule (with δ̂0 = 0) inspired by [17]3:

δ̂t+1 ←

{
δ̂t + γ(errt − α) (δ̂t ≥ α− 1)

(1− γ)δ̂t (otherwise)
. (9)

Note that we do not explicitly impose the restriction that α− δ̂t = at ∈ [0, 1], which means the PI
could have infinite width. However, infinite-wide PI means no error, so δ̂t+1 will decrease and we
resume to a finite PI gradually.

As δ̂t depends on the entire error history, it is not immediately clear whether TQA-E is still valid with
the assumption in Theorem 4.1. Below we state a “no-worse” type theorem for TQA-E:

Theorem 4.4. If we assume the nonconformity score’s rank has no temporal dependence, then

∀t,ESN+1∼PS
[aTQA−E

N+1,t ] ≤ α. (10)

Thus, ĈTQA−E is finite-sample cross-sectional 1− α valid following Theorem 4.1.

Finally, an asymptotic longitudinal validity result can also be shown for long time series4:

Theorem 4.5. (Asymptotic Longitudinal Coverage) For any time series S, limT→∞

∑T−1
t=0 errt

T ≤ α.

Remarks: Although Theorem 4.5 seems to suggest some sort of longitudinal validity, it does not
contradict the hardness claim in Section 4.1, because TQA-E achieves this via infinitely-wide PIs. We
also refer interested readers to [58] as an example of an different heuristic based on errors of a single
time series. However, it will require further modifications for finite-sample cross-sectional validity.

5 Experiments

In this section, our goal is to to verify the following empirically:

1. TQA maintains cross-sectional coverage and achieves competitive PI efficiency.
2. Ignoring temporal dependence in naive split conformal prediction leads to low longitudinal

coverage for some TS.
3. TQA improves longitudinal coverage.

3Despite the similarity on the surface, [17] has no notion of cross-section.
4The update rule as shown in Eq. 9 creates an asymmetry to accommodate for the asymptotic guarantee in
Theorem 4.5, which is why the expectation in Theorem 4.4 is not an equality but an inequality. If asymptotic
coverage is not a concern (because T is small), one could use (1 − γ)δ̂t when α − δ̂t = at < 0 as well, in
which case Theorem 4.4 becomes an equality, as we discuss in the proof for Theorem 4.4 in the Appendix. In
practice (as we observe in our experiments), the difference in behavior is negligible.
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Baselines: We use the following state-of-the-art baselines for PI construction: Conformal forecasting
RNN (CFRNN (Split)) [48]), a direct application of split-conformal prediction [53]5; Quantile RNN
(QRNN) [55], which directly predicts the two endpoints (represented by two quantiles) of the PI;
RNN with Monte-Carlo Dropout (DP-RNN) [15]; Conformalized Quantile Regression with QRNN
(CQRNN) [45], which, as the name suggests is a conformalized version of quantile regression;
Locally adaptive split conformal prediction (LASplit) [29], which uses a normalized absolute error as
the nonconformity score (we follow the implementation in [45]).

Table 1: Number of TSs in each dataset along with the length.
Properties MIMIC CLAIM COVID EEG GEFCom/GEFCom-R

# train/cal/test 192/100/100 2393/500/500 200/100/80 300/100/200 1198/200/700
T (length) 30 30 30 63 24
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0.0
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TQA-B
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CFRNN
CQRNN
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Figure 3: Coverage rate (Y-axis) vs the
percentile among all test TS (X-axis, with
zero meaning the least-covered TS) for
the 10% least-covered TS in CLAIM. The
bands denote the center 80% realizations.
TQA-E has an natural advantage by using
infinitely-wide PIs. However, even TQA-B
still significantly improves the longitudinal
coverage rate over all baselines.
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Figure 4: Sorted absolute residuals (|y −
ŷ|) for t = T −10. Each dataset is normal-
ized so the mean of the residuals is 1. To
cover extreme values, even if allowed to
“sacrifice” some less extreme values, the PI
on average is expected to get much wider.
It is thus surprising that TQA-B could im-
prove both efficiency and the tail coverage.

Datasets We test our methods and baselines on
the following datasets: Electronic health records
data for white blood cell counts (WBCC) prediction
(MIMIC [23, 18, 22]), COVID-19 cases prediction
(COVID [10]), Electroencephalography trajectory pre-
diction after visual stimuli (EEG [51]), energy load fore-
casting (GEFCom [20]), and healthcare claim amount
prediction (CLAIM) using data from a large American
healthcare data provider. Among these, we mostly fol-
low [48] in preparing MIMIC, COVID and EEG. Note that
GEFCom is originally a single time series (hourly obser-
vations for years). Therefore, we treat each day as a
single TS, and perform a strict temporal splitting (test
data is preceded by calibration data, which is preceded
by the training data), which means exchangeability is
broken. We also include a GEFCom-R (andom) version
that preserves the exchangeability by ignoring the tem-
poral order in data splitting. Table 1 provides a brief
summary of the data. Due to space constraints, the
details for each dataset are relegated to the Appendix.

Evaluation Metrics and Experiment Setup We use
RNN as the base point estimator due to its flexibility
and for comparison with [48]. We use α = 0.1, and
a LSTM ([19]) similar to that in [48] (full implemen-
tation details in the Appendix). For TQA-E, we use
γ = 0.005 following [17]. For each dataset, we repeat
the prediction task 50 times, and report the mean and
standard deviation of the average coverage rate, tail
coverage rate, and inverse coverage efficiency for the
last 20 time-steps. Here, tail coverage rate means the
average coverage rate of the least-covered 10% of the
time series. A high tail coverage rate thus implies bet-
ter longitudinal coverage. Inverse coverage efficiency
is measured by the average PI width divided by the
marginal coverage rate (the smaller the better). Since
TQA-E could create infinite PIs, we replace∞ with 2x

the widest finite PI. We also include in the Appendix results on full time series, and with Linear
Regression instead of LSTM to show the model-agnostic nature of TQA.

Note that although we use equal-length time series in these experiments, for data with variable lengths
(such as CLAIM or MIMIC), one could filter the calibration set before querying the quantile. As long
as we assume exchangeability conditioning on length, all theoretical analysis still holds.

5[48] suggests performing Bonferroni correction to jointly cover the entire horizon (all T steps). We explain in
the Appendix why this is problematic.
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Results The results are presented in Tables 2, 3, and 4. In Table 2, we verify that conformal prediction
methods - CFRNN (Split), CQRNN, LASplit and TQA- are empirically cross-sectionally valid. The
non-conformal methods (QRNN and DPRNN) have unreliable coverage. In Table 3, we show that
TQA can greatly improve the (longitudinal) average coverage rate for the worst TS. (TQA-E is
consistently better than TQA-B due to the presence of infinitely-wide PIs.) This is also visualized in
Figure 3. Note that although CQRNN and LASplit do not perform quantile adjustment, they model
uncertainty directly, which also helps improve the longitudinal coverage but is less robust. In Table 4,
we verify that TQA did not achieve better coverage simply by using very wide PIs (which is however
the case for DPRNN on GEFCom). This is somewhat surprising because from Figure 4, the marginal
gain in coverage decreases fast as at decreases. The PIs for TQA-B should be wider due to the slight
over-coverage, and the convexity (with any quantile adjustment). This suggests that TQA-B performs
the budgeting very efficiently to cancel out both effects. The efficiency of TQA-E seems low due to
the infinitely-wide PIs (replaced by 2x maximum finite width in this computation), but we will see
that it generates mostly finite PIs, and the median width is still competitive.

Finally, we would like to also emphasize that any nonconformity scores could theoretically be
combined with TQA. In this paper, and in our experiments, we mostly tried to combine the simplest
nonconformity scores used in CFRNN (Split) with TQA. The question of how to combine TQA with
other nonconformity scores (such as those used in CQRNN or LASplit) is left for future research.

Table 2: Average coverage rate. Empirically valid methods are in bold (at p = 0.01). As expected,
conformal baselines are valid, while others (QRNN and DPRNN) are not. Note that GEFCom does
not satisfy the exchangeability assumption, causing invalid coverage for most conformal methods.
However, TQA still outperforms all conformal baselines, with TQA-E still valid.

Coverage TQA-B TQA-E CFRNN (Split) CQRNN LASplit QRNN DPRNN

MIMIC 91.31±1.32 91.19±0.48 90.06±1.73 90.15±1.24 90.33±1.54 86.90±1.22 46.30±3.84
CLAIM 91.19±0.49 91.56±0.35 90.21±0.56 90.15±0.68 90.20±0.64 85.90±0.78 24.79±0.85
COVID 90.79±1.45 91.73±0.85 90.25±1.69 90.08±1.62 90.18±1.46 89.19±1.54 67.51±3.76
EEG 90.73±1.21 90.63±0.75 89.92±1.44 89.99±1.76 89.80±1.15 87.96±0.82 39.24±1.30
GEFCom 89.58±0.25 90.94±0.14 88.61±0.16 89.16±0.17 88.96±0.18 80.40±1.36 89.50±0.73
GEFCom-R 90.56±0.64 90.72±0.45 89.92±0.78 90.07±0.63 89.95±0.72 85.49±1.08 91.03±0.76

Table 3: The tail coverage rate (mean longitudinal coverage for the least-covered 10% TS), the higher
the better. The best method is in bold, and the best method without using any infinitely-wide PI is
underscored. Both versions of TQA consistently outperform all baselines.

Tail Coverage Rate ↑ TQA-B TQA-E CFRNN (Split) CQRNN LASplit QRNN DPRNN

MIMIC 71.59±4.03 80.68±1.74 62.22±7.09 68.60±3.84 65.05±6.12 61.80±3.91 17.24±5.38
CLAIM 74.16±1.22 81.53±0.77 65.95±1.88 66.45±3.19 68.08±2.44 53.89±3.59 1.65±0.54
COVID 70.01±4.45 82.39±1.28 64.41±6.11 66.41±5.99 67.38±4.63 65.16±6.15 36.65±5.63
EEG 70.99±2.18 79.03±1.22 64.14±3.42 61.95±4.71 67.13±2.32 57.82±2.78 12.99±1.32
GEFCom 68.96±1.70 81.77±0.36 58.49±1.38 61.63±1.56 60.46±1.66 47.56±2.27 67.45±1.69
GEFCom-R 75.28±1.28 81.80±0.69 68.76±2.18 71.95±1.66 70.79±2.12 64.99±1.92 71.86±1.75

Table 4: Inverse Efficiency, measured by the mean PI width divided by the coverage rate. Since
TQA-E can create infinite PI, the width is computed by replacing∞ with 2x the maximum finite PI
width. The most efficient (and valid) method is in bold (p-value=0.01). As we can see, TQA-B is
highly competitive in efficiency.

Inverse Efficiency ↓ TQA-B TQA-E CFRNN (Split) CQRNN LASplit QRNN DPRNN

MIMIC 1.990±0.165 2.382±0.265 1.964±0.170 1.738±0.145 2.072±0.223 1.623±0.146 1.258±0.132
CLAIM 3.020±0.045 3.279±0.074 3.003±0.052 2.902±0.044 3.009±0.064 2.691±0.035 2.401±0.205
COVID 0.831±0.032 1.167±0.337 0.826±0.034 0.908±0.091 0.826±0.037 0.888±0.096 0.744±0.050
EEG 1.449±0.025 1.749±0.125 1.445±0.031 1.586±0.052 1.448±0.025 1.497±0.042 1.061±0.027
GEFCom 0.238±0.005 0.280±0.013 0.235±0.005 0.242±0.005 0.238±0.005 0.211±0.005 0.636±0.009
GEFCom-R 0.200±0.004 0.222±0.010 0.198±0.004 0.207±0.004 0.201±0.004 0.193±0.004 0.590±0.009

6 Conclusions

In this paper, we proposed Temporal Quantile Adjustment, or TQA, to quantify uncertainty (create
prediction intervals) in time series forecasting with a cross-section. TQA belongs to the framework of
conformal prediction, and the main idea is to adjust the quantile to query using temporal information
collected so far. This allows TQA to work with any model and any nonconformity score design.
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TQA theoretically is “no-worse” in cross-sectional coverage than vanilla split conformal as long as
the expected value of adjustment is zero, and empirically improves the coverage. We also proposed
two variants, TQA-B and TQA-E, both of which significantly outperform baselines in improving
temporal/longitudinal coverage across many real world datasets. We hope that this work will serve as
a foundation for the future design of PIs with both high cross-sectional and temporal coverage.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section...
• Did you include the license to the code and datasets? [No] The code and the data are proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] TQA could theoretically lead to worse

(although empirically better) coverage, as discussed in Section 4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do not

foresee any potential negative societal impact of this work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Apart from exchange-
ability of time series (which we assume throughout this paper), any assumption is stated right
before the relevant theorem.

(b) Did you include complete proofs of all theoretical results? [Yes] In the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] In the supplemental material
and will be published if accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] In the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] We repeat all experiments 50 times.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] In Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] In Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Most datasets are publicly available, except for CLAIM which is
proprietary and provided to us by a company.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] They have been de-identified if applicable.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applica-

ble? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on

participant compensation? [N/A]
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