
Text Classification with Born’s Rule

Emanuele Guidotti
Institute of Financial Analysis

University of Neuchâtel, Switzerland
emanuele.guidotti@unine.ch

Alfio Ferrara
Department of Computer Science and Data Science Research Center

University of Milan, Italy
alfio.ferrara@unimi.it

Abstract

This paper presents a text classification algorithm inspired by the notion of superpo-
sition of states in quantum physics. By regarding text as a superposition of words,
we derive the wave function of a document and we compute the transition probabil-
ity of the document to a target class according to Born’s rule. Two complementary
implementations are presented. In the first one, wave functions are calculated
explicitly. The second implementation embeds the classifier in a neural network
architecture. Through analysis of three benchmark datasets, we illustrate several
aspects of the proposed method, such as classification performance, explainability,
and computational efficiency. These ideas are also applicable to non-textual data.

1 Introduction

In quantum physics, the superposition principle is the idea that a system can be in multiple states at
the same time (e.g., a cat is simultaneously alive and dead in Schrödinger’s thought experiment [22]).
Here we show that text can be formally treated as a quantum system in a superposition of words.
Our superposition-of-words model is a bag-of-words model where each word is treated as a quantum
state. By exploiting this representation, we develop a supervised classifier based on key postulates of
quantum mechanics, namely the Born rule [4].

The Born rule provides a link between the mathematical formalism of quantum theory and experiment,
and as such is almost single-handedly responsible for practically all predictions of quantum physics.1
In this paper, we represent documents and classes as quantum objects and we compute the probability
of a document to collapse in a target class by applying the Born rule.

The paper is structured as follows. Section 2 presents the motivation of this work. Section 3
introduces the notation and some preliminary notions in quantum mechanics. Section 4 develops our
classification algorithm. Section 5 embeds the classifier in a neural network architecture. Section 6
presents our empirical results. Finally, Section 7 gives our concluding remarks and discusses
extensions to semantics and non-textual data.

To simplify extensions to this work, we implement our classification algorithm in scikit-learn [17] and
we embed the classifier in a neural network architecture using pytorch [16]. All the code is available
at https://github.com/eguidotti/bornrule.

1We refer the reader to [14] for an introduction to the Born rule.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/eguidotti/bornrule


2 Motivation

In its most general form, the no-free-lunch theorem [23] implies that only prior knowledge makes it
possible to generalize from the training examples to novel test examples. As quantum mechanics
represents our understanding of nature at the deepest level [13], we wonder whether quantum-
inspired machine learning may incorporate a fundamental form of prior knowledge. Our hope
is that such knowledge results in more efficient algorithms, with better generalization ability and
shorter computational times. Such algorithms would be also beneficial in terms of explainability and
interpretability [8], as their interpretation is immediately inherited from the physical model [18].2

This work should not be confused with quantum computing, which harnesses the properties of
quantum states to perform calculations [1], or with quantum machine learning [3], which explores
how to devise and implement quantum software that could enable machine learning that is faster than
that of classical computers [6]. We refer to our work as quantum-inspired machine learning, in that
we use quantum theory to derive machine learning algorithms that can run on classical computers.
Although this is not the first time quantum theory is applied to machine learning (see e.g., [15]),
this is, to our knowledge, the first step to develop a new general-purpose algorithm for supervised
classification based on key postulates of quantum mechanics, namely the Born rule.

Here we focus on text classification, as the analogy with quantum systems is straightforward.3
However, the formalism we present is general and the implementations we derive can be used in
practice as general-purpose classifiers.

3 Notation

Let x be a feature vector with elements xj for j = 1; :::; J . Let y be a probability vector with
elements yk � 0 for k = 1; :::;K, and such that

P
k yk = 1. Our goal is to learn a function g such

that y = g(x). Then, given a test instance x0, we predict the probabilities y0 = g(x0) and select the
class k� = argmaxk y

0
k for classification.

We start by giving some preliminary notions in quantum mechanics.

Wave function. In quantum physics, a system is regarded as a superposition of states jsi and, using
Dirac’s notation [7], it is represented by a wave function j i:

j i =
X
s

 sjsi with  s 2 C: (1)

Born rule. In the Copenhagen interpretation, the modulus squared of the inner product is interpreted
as the (unnormalized) probability of the wave function j i collapsing to a new wave function j’i:

P ( ! ’) = jh’j ij2 =
���X
s

�’s s

���2; (2)

where �’s denotes the complex conjugate of ’s. This is known as the Born rule, and it is one of the
fundamental postulates of quantum mechanics.

Wave coefficients. From (1) and (2), we notice that the coefficient j sj2 represents the (unnormal-
ized) probability of the wave function j i to collapse in state jsi:

P ( ! s) = jhsj ij2 = j sj2: (3)

4 Classification Algorithm

Let the feature vector x contain only non-negative elements such that xj � 0 for all j (e.g., word
counts or tf-idf weights). We regard xj as the (unnormalized) probability of the data instance (e.g.,
document) to collapse in the j-th feature (e.g., word). We represent the j-th feature as a quantum state

2We refer the reader to [19] for an introduction to quantum mechanics and its interpretation.
3We refer the reader to [2, 5, 21, 27, 28] for quantum language models.

2



jj i , and we represent the data instance with a superposition of statesj i =
P

j  j jj i . According
to (3) we havex j = P( ! j ) = j j j2, which implies the natural choice j = p x j .

j i =
X

j

 j jj i =
X

j

p
x j jj i (4)

In a similar way, we represent thek-th class with a wave functionj' (k ) i =
P

j ' (k )
j jj i , and we

obtain the coef�cients' (k )
j by setting the transition probability fromj' (k ) i to jj i equal to the

conditional probability of featurej given classk, which we write asPj j k . According to(3) we have

Pj j k = P(' (k ) ! j ) = j' (k )
j j2, which implies the natural choice' (k )

j =
p

Pj j k .

j' (k ) i =
X

j

' (k )
j jj i =

X

j

q
Pj j k jj i (5)

Finally, we obtain the classi�cation probabilityyk by computing the probability ofj i to collapse in
j' (k ) i . By substituting (4) and (5) in (2), the unnormalized probabilities are:

uk = P( ! ' (k ) ) = jh' (k ) j ij 2 =
�
�
�
X

j

�' (k )
j  j

�
�
�
2
=

� X

j

q
Pj j k x j

� 2
; (6)

and the normalized probabilities areyk = uk =
P

k uk .

4.1 Training

To obtain the conditional probabilityPj j k in (6) we proceed as follows. Given a training set
f (x (n ) ; y (n ) )gn =1 ;:::;N , we normalize each feature vectorx (n ) such that it sums up to 1:

z(n )
j =

x (n )
j

P
j 0 x (n )

j 0

: (7)

Then, we compute the conditional probabilityPj j k from the (unnormalized) joint probabilityPjk :

Pjk =
X

n

z(n )
j y(n )

k ; Pj j k =
PjkP
j 0 Pj 0k

: (8)

4.2 Regularization

We observe that ifPj j k is constant fork = 1 ; :::; K , then thej -th addend increases the summation
in (6) by the same value for all classes. Asuk is a monotonic transformation of the summation,
the j -th addend does not alter the ranking of the probabilitiesuk , thus being irrelevant for the
�nal classi�cation k� = argmax k yk = argmax k uk . To regularize the predictions, we shrink the
contribution of irrelevant addends towards zero by re-weighting the summation in (6).

Let us rewrite, for ease of notation, the probabilitiesPj j k as some weightsWjk � 0. Then,j is
irrelevant ifWjk is constant for allk. We normalizeWjk such that the weights of the classesk sum
up to 1 for eachj , that is:

Wk j j =
WjkP
k 0 Wjk 0

: (9)

An irrelevantj maximizes the entropyH j = �
P

k Wk j j ln (Wk j j ), asWk j j is uniformly distributed
across the classesk. Thus, we introduce the following weights that range between 0 (irrelevantj
with maximum entropy) and 1 (relevantj with null entropy):

H j = 1 �
H j

H max
= 1 +

P
k Wk j j ln(Wk j j )

ln(
P

k 1)
: (10)

Finally, we useH j in (10) to re-weight the summation in (6), which becomes:

uk =
� X

j

H j

q
Pj j k x j

� 2
: (11)

3



4.3 Generalization

To simplify ablation studies, we generalize (11) as follows:

uk =
� X

j

H h
j W a

jk xa
j

� 1
a

with Wjk =
Pjk

(
P

j 0 Pj 0k )b(
P

k 0 Pjk 0)1� b ; (12)

whereH j is given in(9)–(10), Pjk is given in(8), anda > 0, b � 0, andh � 0 are the model
hyper-parameters. Here, we are mainly interested in the choicea = 1

2 , b = 1 , andh = 1 , which
corresponds to the original model in(11). Another special con�guration isa = 1 , b = 0 , andh = 0 ,
which corresponds touk =

P
j Pk j j x j wherePk j j is the conditional probability ofk givenj . This

con�guration offers a natural benchmark for our quantum approach in that it computesuk according
to classical probability theory.

4.4 Explainability

The contribution of thej -th feature to the total probabilityuk (local explanation) is given by the
addendH h

j W a
jk xa

j in (12). Therefore, the most in�uential feature for the classi�cationk� is given
by j � = argmax j H h

j W a
jk � xa

j . In general, we useH h
j W a

jk � xa
j to rank the features by the degree in

which they contribute to the classi�cationk� .

The explanation at the class level (global explanation) is obtained by investigating the productH h
j W a

jk
in (12), regardless of the vectorx. The global most in�uential feature for each classk is given by
j �

k = argmax j H h
j W a

jk . In general, we useH h
j W a

jk to rank the features by their global importance
with respect to classk.

4.5 Computational Complexity

In the training phase, the algorithm in(11), and more generally(12), learns the joint probabilityPjk

in (8) by multiplying theJ � N matrix of elementsz(n )
j with theN � K matrix of elementsy(n )

k .
EntryPjk is given by the inner product of thej -th row of the left matrix (which hasN entries) and
thek-th column of the right matrix (which hasN entries), so computing it takes timeO(N ). We do
this once per element. Since the output matrix has dimensionJ � K , there areO(JK ) elements to
consider and the total work is done inO(NJK ). That is, the training time is at most linear in the
number of samples (N ), in the number of features (J ), and in the number of classes (K ).

In the prediction phase, we computeuk (andyk ) in (11), and more generally(12). As these are all
elementwise operations on theJ � K matrix of elementsPjk , the total work is done in timeO(JK ).
That is, the prediction time is at most linear in the number of features (J ), and in the number of
classes (K ), and it does not depend on the number of training samples (N ).

Finally, we notice that the computational complexity can be further improved by using sparse matrices,
and all the operations involved in the training and prediction phases can be easily parallelized (e.g.,
on GPUs). Thus, we expect the method to be highly scalable.

5 Neural Architecture

A major limitation of the algorithm presented in Section 4 is that it can be applied only whenx j � 0.
Here we embed the method in a more �exible architecture that admitsx j 2 C.

Let us assume that a data instance (e.g., document) can be represented as a superposition of some
hidden statesjsi for s = 1 ; :::; S (e.g., word embeddings). Then, we write its wave function
j i =

P
s  s jsi where the coef�cients s generally depend on the feature vectorx (e.g., words).

We represent such coef�cients with a neural network s =  s(x) that maps the feature vector
x 2 CJ to the vector of wave coef�cients 2 CS . Then, we write the wave function of classk as
j' (k ) i =

P
s ' (k )

s jsi where the coef�cients' (k )
s depend onk ands, but not on the feature vectorx.

Finally, we use the Born rule in (2) to compute the probability ofj i to collapse inj' (k ) i :

uk = P( ! ' (k ) ) = jh' (k ) j ij 2 =
�
�
�
X

s

�' (k )
s  s(x)

�
�
�
2
: (13)

4



Equation(13) is read as a neural networku = � (�v ) where� is a matrix of elements� ks = �' (k )
s ,

v =  (x) is the output of the previous layer,�v denotes the matrix product
P

s � ks vs, and the
activation function� (�) = j � j 2 is the modulus squared. Finally, we apply a normalization layer to
obtain the probabilitiesyk = uk =

P
k uk 2 [0; 1]. An illustration is given in Figure 1.

Figure 1:Born Layer (BL) architecture.

Our method is similar to the usual approach where the �rst part of a network is assumed to learn
log-probabilities, and the �nal classi�cation layer converts them into probabilities by applying the
softmax function. Here, the �rst part of the network is assumed to learn the coef�cients of a wave
function, and the �nal classi�cation layer converts them into probabilities by applying the Born rule.

5.1 Initialization

We initialize the weights� ks such that the wave functionj' (k ) i has an equal probability to collapse
in any statejsi . To this end, let us write the complex-valued weights� ks = � ks ei� ks , wherei
is the imaginary unit,� ks � 0, and� ks 2 [0; 2� ). We recall from(3) that the probability of
j' (k ) i to collapse injsi is P(' (k ) ! s) = j' (k )

s j2 = j� ks j2 = � 2
ks . We set� 2

ks = � 2 so that
the (unnormalized) probability is constant for allk ands. To normalize the probability, we set
S� 2 = 1 , whereS is the number of states (input dimension of the layer). We obtain� = 1=

p
S,

which resembles the initialization in [9] and [10]. Finally, we sample� ks from a uniform distribution
in the interval[0; 2� ), such that the weights� ks are uniformly distributed in the complex circle
(isotropy).

� ks =
ei� ks

p
S

with � ks � U (0; 2� ): (14)

When the feature vectorx is a (unnormalized) probability vector as in Section 4, then(11) can be
written as the neural network in(13) where we useS = J and s(x) =

p
xs. In this case, it is

interesting to initialize the weights in(13)with the corresponding weights developed in(11), that is
� ks = H s

p
Psjk .4

5.2 Explainability

We notice that the probabilitiesyk are invariant under scaling and rotation of the coef�cients�' (k )
s

in (13). To show that, we multiply�' (k )
s by a scaling factor� and a phase factorei� . Then, we

substitute�' (k )
s ! �e i� �' (k )

s in (13). The phase factorei� vanishes when computing the modulus and
the scaling factor� vanishes when the probabilities are normalized.

The invariance by scaling and rotation implies that the weights� ks have no absolute meaning, and
they become meaningful only in relation with each other. To inspect the relations among statess, for
a given classk, it is interesting to visualize the weights� ks in the complex plane (with unlabelled
axes). Here, the length of the vectors can be used to rank the states by importance, while the direction
of the vectors produce constructive or destructive interference among the states (see Figure 5 for an
illustration). For local explanations,� ks vs is used instead of� ks .

4More precisely, we scale the weights by dividing them by their mean and by the square root of the number
of features to mimic(14). This does not alter the model, which is invariant under scaling (see Section 5.2), but it
helps to prevent vanishing or exploding gradients during backpropagation.

5



6 Empirical Results

We illustrate several aspects of our classi�er using three well-established text classi�cation bench-
marks:20Newsgroup5, and theR8 andR52 subsets of Reuters 215786. We perform tokenization
using the functionnltk.word_tokenize7 and vectorize the text withT�dfVectorizer 8. No other text trans-
formation or cleaning procedure is performed. The �nal datasets are composed by (20Newsgroup)
20 classes, 204 817 words, 11 314 training documents, and 7 532 test documents; (R8) 8 classes,
33 593 words, 5 485 training documents, 2 189 test documents; (R52) 52 classes, 38 132 words,
6 532 training documents, and 2 568 test documents.

All the results are obtained using Python 3.9 on a Google Cloud Virtual Machine equipped with
CentOS 7, 12 vCPU Intel Cascade Lake 85 GB RAM, 1 GPU NVIDIA Tesla A100, and CUDA 11.5.

6.1 Training time, prediction time, and accuracy score

We compare our methodology against a baseline of six classi�ers on the20Newsgroup dataset. With
Born Classi�er (BC), we refer to the algorithm presented in Section 4, where weights are computed
as in equation(8) and classi�cation probabilities are calculated as in equation(11). The baseline is
composed by the algorithmsDecision Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF),
Support Vector Machine (SVM), Multinomial Naive Bayes (MNB), andLogistic Regression (LR). For
all the algorithms in the baseline, we use the corresponding implementation inscikit-learn. All the
classi�ers are executed on CPU with default parameters.

Figure 2: From left to right: training time, prediction time, and accuracy score on the20Newsgroup
dataset (y-axis) for several classi�ers, in function of the fraction of data used for training (x-axis).

The comparison betweenBC and the baseline is reported in Figure 2, where we show the training
time, prediction time, and accuracy score in function of the fraction of data used for training in 10
independent executions. Figure 2 shows thatBC is fast to train, is fast to predict, can be accelerated
on GPU, and it achieves the highest accuracy regardless of the size of the dataset. Moreover, as the
amount of training data decreases, the accuracy gap betweenBC and the other classi�ers widens.

6.2 Imbalanced data

While 20Newsgroup is almost balanced in terms of documents per class,R8 andR52 are not. In
particular, the most frequent class inR52 contains 2 840 training samples, while the least frequent
class contains only 1 document in the training set. Figure 3 reports the F1-macro score forBC and
the baseline on the three datasets, which are increasingly imbalanced.BC outperforms the baseline
models and the performance gap widens for more imbalanced data. The native capability ofBC to
work with imbalanced data can be traced back to(8), which computes the conditional probability of
the features given the classes. Dividing the joint probability by the marginal effectively normalizes
by the class imbalance.

5http://qwone.com/~jason/20Newsgroups
6http://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld
7See https://www.nltk.org/book/
8See https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.T�dfVectorizer.html

6




	Introduction
	Motivation
	Notation
	Classification Algorithm
	Training
	Regularization
	Generalization
	Explainability
	Computational Complexity

	Neural Architecture
	Initialization
	Explainability

	Empirical Results
	Training time, prediction time, and accuracy score
	Imbalanced data
	Hyper-parameters and ablation study
	Embedding in a neural network architecture
	Explanation

	Conclusion

