
Distributional Reinforcement Learning for
Risk-Sensitive Policies

Shiau Hong Lim
IBM Research, Singapore
shonglim@sg.ibm.com

Ilyas Malik
IBM Research, Singapore

malikilyas1996@gmail.com

Abstract

We address the problem of learning a risk-sensitive policy based on the CVaR risk
measure using distributional reinforcement learning. In particular, we show that
the standard action-selection strategy when applying the distributional Bellman
optimality operator can result in convergence to neither the dynamic, Markovian
CVaR nor the static, non-Markovian CVaR. We propose modifications to the
existing algorithms that include a new distributional Bellman operator and show
that the proposed strategy greatly expands the utility of distributional RL in learning
and representing CVaR-optimized policies. Our proposed approach is a simple
extension of standard distributional RL algorithms and can therefore take advantage
of many of the recent advances in deep RL. On both synthetic and real data,
we empirically show that our proposed algorithm is able to learn better CVaR-
optimized policies.

1 Introduction

In standard reinforcement learning (RL) (Sutton and Barto, 2018), one seeks to learn a policy that
maximizes an objective, usually the expected total discounted rewards or the long-term average
rewards. In stochastic domains, especially when the level of uncertainty involved is high, maximizing
the expectation may not be the most desirable since the solution may have high variance and
occasionally performs badly. In such scenarios one may choose to learn a policy that is more risk-
averse and avoids bad outcomes, even though the long-term average performance is slightly lower
than the optimal.

In this work we consider optimizing the conditional value-at-risk (CVaR) (Rockafellar and Uryasev,
2000), a popular risk measure, widely used in financial applications, and is increasingly being used
in RL. The CVaR objective focuses on the lower tail of the return and is therefore more sensitive to
rare but catastrophic outcomes. Various settings and RL approaches have been proposed to solve this
problem (Petrik and Subramanian, 2012; Chow and Ghavamzadeh, 2014; Chow and Pavone, 2014;
Tamar et al., 2015; Tamar et al., 2017; Huang and Haskell, 2020). Most of the proposed approaches,
however, involve more complicated algorithms than standard RL algorithms such as Q-learning
(Watkins and Dayan, 1992) and its deep variants, e.g. DQN (Mnih et al., 2015).

Recently, the distributional approach to RL (Bellemare et al., 2017; Morimura et al., 2010) has
received increased attention due to its ability to learn better policies than the standard approaches
in many challenging tasks (Dabney et al., 2018a,b; Yang et al., 2019). Instead of learning a value
function that provides the expected return of each state-action pair, the distributional approach learns
the entire return distribution of each state-action pair. The approach itself is a simple extension to
standard RL and is therefore easy to implement and able to leverage many of the advances in deep
RL.

Since the entire distribution is available, one naturally considers exploiting this information to
optimize for an objective other than the expectation. Dabney et al. (2018a) presented a simple way to

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

do so for a family of risk measures including the CVaR. The theoretical properties of such approach,
however, are not clear. In particular, it is not clear whether the algorithm converges to any particular
variant of CVaR-optimal policy. We address this issue in this work.

Our main contribution is to first show that the commonly-used action-selection strategy for CVaR
in distributional RL, proposed by (Dabney et al., 2018a) and (Keramati et al., 2020), among others,
converges to neither the dynamic, Markovian CVaR nor the static CVaR even if the optimal CVaR
policy is stationary and Markov. Secondly, we propose a new distributional Bellman operator and
show that for the class of stationary CVaR-optimal policies, the optimal value distribution is a fixed
point, and one can extract this optimal policy through distributional RL. Empirically, we show that
the proposed approach learns better policies in terms of the CVaR objective on both synthetic and
real-world problems.

We close the introduction section with some references to related works. We formally present our
problem setup as well as our main analytical results in Section 2. Section 3 describes our proposed
algorithm while Section 4 presents our empirical results. Finally, we conclude with a discussion on
future works.

1.1 Related Works

The literature on distributional RL has been greatly expanded recently (Morimura et al., 2010;
Bellemare et al., 2017; Barth-Maron et al., 2018; Dabney et al., 2018a,b; Yang et al., 2019). Most
of these works focus on the modeling aspects, such as the choice of representations for the value
distributions. The approach has been used to enhance exploration in RL (Mavrin et al., 2019) and in
risk-sensitive applications (Bernhard et al., 2019).

Solving Markov decision processes (MDP) with risk-sensitive objectives have been addressed in
many works (Howard and Matheson, 1972; Ruszczynski, 2010; Bäuerle and Ott, 2011), including RL
approaches (Borkar, 2001; Tamar et al., 2012; L.A. and Ghavamzadeh, 2013). In particular, Chow
and Ghavamzadeh (2014); Tamar et al. (2015) deal with the static CVaR objectives while Petrik and
Subramanian (2012); Chow and Pavone (2014) deal with the dynamic CVaR objectives. Tamar et al.
(2017) proposed a policy-gradient approach that deals with both the static and the dynamic CVaR
objectives. Closest to ours is the work by Stanko and Macek (2019), whose proposed approach also
makes use of distributional RL but their policy evaluation step uses Markov action-selection strategy.
It is not clear whether their overall approach properly optimizes either the static or the dynamic
CVaR.

2 Problem Setup and Main Results

We consider a discrete-time MDPM with state space X and action space A. For simplicity we
assume that X and A are finite, although our results and algorithm can be readily extended to more
general state-action spaces. We assume that the rewards are bounded and drawn from a countable set
R ⊂ R. Given states xt, xt+1 ∈ X for any t ∈ {0, 1, . . .}, the probability of receiving reward rt ∈ R
and transitioning to xt+1 after executing at ∈ A in xt is given by p(rt, xt+1|xt, at). Without loss of
generality we assume a fixed initial state x0, unless stated otherwise. Given a policy π : H → P(A),
where H is the set of all histories so far ht := (x0, a0, r0, x1, a1, r1, . . . , xt) ∈ H, and P(A) the
space of distributions over A, its expected total discounted reward over time is given by

V π := Eπp

[∞∑
t=0

γtrt

]

where γ ∈ (0, 1) is a discount factor. The superscript π in the expectation indicates that the actions
at are drawn from π(ht). The subscript p indicates that the rewards and state transitions are induced
by p.

In standard RL, we aim to find a policy that maximizes V π. It is well-known that there exists
a deterministic stationary policy π : X → A whose decisions depend only on the current state,
that gives optimal V π, and therefore one typically works in the space of stationary deterministic
policies. Key to a dynamic-programming solution to the above problem is the use of a value function

2

Qπ(x, a) := Eπp [
∑∞
t=0 γ

trt|x0 = x, a0 = a], which satisfies the Bellman equation

∀x, a, Qπ(x, a) =
∑
r,x′

p(r, x′|x, a) [r + γQπ(x′, π(x′))] . (1)

The optimal value Q∗(x, a) := Qπ
∗
(x, a) for any optimal policy π∗ satisfies the Bellman optimality

equation

∀x, a, Q∗(x, a) =
∑
r,x′

p(r, x′|x, a)
[
r + γmax

a′
Q∗(x′, a′)

]
. (2)

Furthermore, for any Q-function Q ∈ Q := {q : X × A → R | q(x, a) < ∞,∀x, a}, one can
show that the operator T π defined by T πQ(x, a) :=

∑
r,x′ p(r, x

′|x, a)[r + γQ(x′, π(x′))] is a
γ-contraction in the sup-norm ‖Q‖∞ := maxx,a |Q(x, a)| with fixed-point satisfying (1). One can
therefore start with an arbitrary Q-function and repeatedly apply T π , or its stochastic approximation,
to learn Qπ. An analogous operator T can also be shown to be a γ-contraction with fixed-point
satisfying (2).

2.1 Static and Dynamic CVaR

The expected return V π is risk-neutral in the sense that it does not take into account the inherent
variability of the return. In many application scenarios, one may prefer a policy that is more risk-
averse, with better sensitivity to bad outcomes. In this work, we focus on the conditional value-at-risk
(CVaR), which is a popular risk measure that satisfies the properties of being coherent (Artzner et al.,
1999). The α-level CVaR for a real-valued random variable Z, for α ∈ (0, 1], is given by (Rockafellar
and Uryasev, 2000)

Cα(Z) := max
s∈R

s− 1

α
E[(s− Z)+]

where (x)+ = max{x, 0}. Note that we are concerned with Z that represents returns (the higher, the
better), so this particular version of CVaR focuses on the lower tail of the distribution. In particular,
the function s 7→ s − 1

αE[(s − Z)
+] is concave in s and the maximum is always attained at the

α-level quantile, defined as

qα(Z) := inf{s : Pr(Z ≤ s) ≥ α}.

For α = 1, Cα reduces to the standard expectation. In the case Z is absolutely continuous, we have
the intuitive Cα(Z) = E[Z|Z < qα(Z)].

Our target random variable is the total discounted return Zπ :=
∑∞
t=0 γ

trt of a policy π, and our
objective is to find a policy that maximizes Cα(Zπ), where the optimal CVaR is given by

max
π

max
s

s− 1

α
Eπp [(s− Zπ)+]. (3)

In the context where Z is accumulated over multiple time steps, the objective (3) corresponds to
maximizing the so-called static CVaR. This objective is time-inconsistent in the sense that the optimal
policy may be history-dependent and therefore non-Markov. This is, however, perfectly expected
since the optimal behavior in the later time steps may depend on how much rewards have been
accumulated thus far – more risky actions can be taken if one has already collected sufficiently large
total rewards, and vice versa. From the point of view of dynamic programming, an alternative, time-
consistent or Markovian version of CVaR may be more convenient. A class of such risk measures
was proposed by Ruszczynski (2010), and we shall refer to this version of CVaR as the dynamic
CVaR, defined recursively as1

∀π, x, a, Dπ
α,0(x, a) := Cα[rt|xt = x, at = a],

∀π, x, a, T > 0, Dπ
α,T (x, a) := Cα[rt + γDπ

α,T−1(xt+1, π(xt+1))|xt = x, at = a],

∀π, x, a, Dπ
α(x, a) := lim

T→∞
Dπ
α,T (x, a).

1We use a slightly different definition from that in (Ruszczynski, 2010), but conceptually they are essentially
the same.

3

It can be shown (Ruszczynski, 2010) that there exists a stationary deterministic optimal policy π∗,
maximizing Dπ

α(x, a) for all x, a, whose dynamic CVaR is given by D∗α := Dπ∗

α . In particular, the
operator T Dα defined by

T Dα D(x, a) := Cα[rt + γmax
a′

D(xt+1, a
′)|xt = x, at = a] (4)

for D ∈ Q is a γ-contraction in sup-norm with fixed-point satisfying

∀x, a, D∗α(x, a) = Cα[rt + γmax
a′

D∗α(xt+1, a
′)|xt = x, at = a]. (5)

Despite its theoretical properties, the dynamic CVaR is hard to interpret. Moreover, from a practical
point of view, it can be overly optimistic in certain cases and overly conservative in other cases. We
illustrate with some examples in Section 2.2. In such cases it may be favorable to use the static
CVaR. Bäuerle and Ott (2011) suggest an iterative process that, in theory, can be used to solve for the
optimal static CVaR policy. The approach is based on (3):

1. For a fixed ŝ, one can solve for the optimal policy with respect to maxπ E[−(ŝ− Zπ)+].
2. For a fixed π, the optimal s is given by the α-level quantile of Zπ .
3. Repeat until convergence.

Step one above can be done by solving an augmented MDP M̃ with states x̃ = (x, s) ∈ X ×R, where
s is a moving threshold keeping track of the accumulated rewards so far. 2 In particular, this MDP has
no rewards (except in terminal states) and state transitions are given by p̃(0, (x′, s−rγ)|(x, s), a) :=
p(r, x′|x, a). Solving M̃ directly using model-free RL, however, can result in poor sample efficiency
since each example (x, a, r, x′) may need to be experienced many times under different threshold s.
Furthermore, there is a question of updating ŝ. In this work, we propose an alternative solution using
the approach of distributional RL.

2.2 Distributional RL

In standard RL, one typically learns the Qπ(x, a) value for each (x, a) through some form of
temporal-difference learning (Sutton and Barto, 2018). In distributional RL (Bellemare et al., 2017),
one instead tries to learn the entire distribution of possible future return Zπ(x, a) for each (x, a). The
Q-value can then be extracted by simply taking the expectation Qπ(x, a) = E[Zπ(x, a)].
The objects of learning are distribution functions U ∈ Z := {Z : X ×A → P(R) | E[|Z(x, a)|q] <
∞,∀x, a, q ≥ 1}. For any state-action pair (x, a), we use U(x, a) to denote a random variable with
the respective distribution. Let T̃ π be the distributional Bellman operator on Z such that

T̃ πU(x, a) :
D
= R+ γU(X ′, π(X ′))

where D
= denotes equality in distribution, generated by the random variables R,X ′ induced by

p(r, x′|x, a). We use the notation T̃ instead of T when referring to a distributional operator, where
T̃ πU(x, a) is a random variable. Bellemare et al. (2017) show that T̃ π is a γ-contraction in Z in the
following distance metric

d(U, V) := sup
x,a

ω(U(x, a), V (x, a))

where ω is the 1-Wasserstein distance between the distributions of U(x, a) and V (x, a). Furthermore,
the operator T̃ defined by

T̃ U(x, a) :
D
= R+ γU(X ′, A′), A′ = argmax

a′
E[U(X ′, a′)] (6)

can be shown to be a γ-contraction in Q (not necessarily in Z) in sup-norm under element-wise
expectation, i.e.,

‖ET̃ U − ET̃ V ‖∞ ≤ γ‖EU − EV ‖∞,
2The results by Bäuerle and Ott (2011) apply generally to any Borel state-action space, with mild technical

conditions. Our finite state-action setting is a special case where such conditions are trivially statisfied. Also,
since we assume a countable and bounded reward set, the resulting augmented MDP M̃ has countable state
space, which simplifies the technical presentation of our main ideas.

4

where ET̃ U ∈ Q such that ET̃ U(x, a) := E[T̃ U(x, a)], and EU , EV , ET̃ V all similarly defined.
In general, T̃ is not expected to be a contraction in the space of distributions Z for the obvious reason
that multiple optimal policies can have very different distributions of the total return even though
they all have the same expected total return.

Since one keeps the full distribution instead of just the expectation, a natural way to exploit this is to
extract more than just the expectation from each distribution. In particular, in (6), one can select the
action a′ based on Cα[U(x′, a′)] instead of E[U(x′, a′)] for a risk-averse strategy. This strategy is
proposed by Dabney et al. (2018a) and Keramati et al. (2020), among others, which we now refer to
as the Markov action-selection strategy:

T̃ Dα U(x, a) :
D
= R+ γU(X ′, A′), A′ = argmax

a′
Cα[U(X ′, a′)]. (7)

One may guess that this converges to the optimal dynamic CVaR policy satisfying (5). We now show
that in general this is not true.
Proposition 1. In general, the distributional Bellman operator with the Markov action-selection
strategy, T̃ Dα , converges to neither the optimal dynamic-CVaR nor the optimal static-CVaR policies,
even if the optimal CVaR policy is stationary and Markov.

Proof. We prove by counterexamples. We use the notation {(p1; r1), (p2; r2), . . .} to denote a
random variable that takes value r1 with probability p1, r2 with probability p2 and so on. For
simplicity we assume γ = 1, but the examples work for any γ by simple scaling of the rewards. Let
p, ε such that 0 < ε� p < 1− ε. Assume that the chosen CVaR level α is such that p2 + ε < α < p.
We only consider deterministic policies since both dynamic and static CVaR admit deterministic
optimal policies.

For the MDP in Fig.1 (a), let X1 be the initial state. There are only two possible policies: choosing
either action A1 or A2 in state X1. It is easy to see that for α < p, D∗α(X2) = 0 and D∗α(X1) = 0,
and therefore the optimal dynamic-CVaR policy is A2. However, T̃ Dα U for any U ∈ Z converges to
U∗(X1, A1) = {(p2; 0), (1− p2; 1)} so Cα[U∗(X1, A1)] > ε for α > p2 + ε and therefore A1 will
be selected policy.

For the MDP in Fig.1 (c), again let X1 be the initial state. The only possible policies correspond
to choosing either A1 or A2 in X2. It is easy to see that T̃ Dα U for any U ∈ Z converges to
U∗(X2, A1) = {(p; 0), (1 − p; 1)} and U∗(X2, A2) = {(1; ε)} respectively and therefore A2 will
be the chosen action for X2 whenever α < p. By (7), this in turn means that U∗(X1) = {(p; ε), (1−
p; 1)}, thus Cα[(U∗(X1)] = ε. The optimal static-CVaR policy, however, is to always choose A1 in
X2 (i.e. stationary and Markov), and will result in C∗α > ε for α > p2 + ε.

𝑋1

𝑋2

𝑋3

𝑝; 0

1 − 𝑝; 0

1 − 𝑝; 1

𝑝; 0

1; 1

1; 0

1; 𝜖

(a)

𝑋1

𝑋2

𝑋3

𝑝; 0

1 − 𝑝; 0

1 − 𝑝; 0

𝑝; 1

1; 0

1; 0

1; 𝜖

(b) 𝑋2 1 − 𝑝; 1
1; 0

1; 𝜖

𝐴1
𝐴2

𝐴1, 𝐴2

Probability; Reward

𝑋1

1 − 𝑝; 1

𝑝; 0 𝑝; 0

(c)

Figure 1: MDPs with actions A1, A2 and initial state X1, and consider p2 < α < p. (a) Example
where D∗α underestimates the true CVaR. (b) Example where D∗α overestimates the true CVaR. (c)
Example where the Markov action-selection strategy results in underestimating the true CVaR.

2.3 Distributional RL for CVaR

It is now natural to ask whether we can properly optimize for the static CVaR while still staying
within the framework of distributional RL. Recall that it is possible to optimize for the static CVaR
by solving an augmented MDP M̃ as part of an iterative process. We recall some results regarding
M̃. Let π̃ be a policy in M̃ and W π̃(x, s, a) be the Q-value of π̃ in M̃. Let Z π̃(x, s, a) be the

5

random variable representing the total return
∑∞
t=0 γ

trt in the original MDPM when following π̃
after executing a at x (assuming the threshold s). Let Z π̃(x, s) = Z π̃(x, s, π̃(x, s)). Note that π̃ is a
non-Markov policy inM and executing it inM requires keeping track of the reward history with
st+1 = st−rt

γ . From (Bäuerle and Ott, 2011), we have that:

W π̃(x, s, a) = Ez∼Zπ̃(x,s,a)
[
−(s− z)+

]
. (8)

The key observation here is that we can extract theQ-value of M̃ from the distribution Z π̃ through (8).
The problem, however, is that in general the distribution Z π̃(x, s, a) for a fixed (x, a) may vary
depending on s. This means that keeping only a single value distribution for each (x, a) precludes
the extraction of the optimal CVaR policy in general. However, for the special case where there exists
a stationary Markov optimal CVaR policy, we now show that this is possible.

Let π̃∗ be an optimal α-CVaR policy that is stationary and Markov inM. By definition of being
stationary and Markov, there exists π∗ such that π̃∗(x, s) = π∗(x) for every (x, s) pair encountered
when running π̃∗ starting from (x0, s

∗) with s∗ = qα(Z
π̃∗(x0, s

∗)). Let S∗(x) be the set {s : ∃t ≥
0,Prπ̃

∗
[x̃t = (x, s)|x̃0 = (x0, s

∗)] > 0}. In words, S∗(x) is the set of all possible thresholds s that
one could encounter at state x, when following π̃∗ from x0. Since we assume that the set of rewards
R is countable, the set of possible s is also countable so the probability in the definition of S∗(x)
is well-defined. It follows that Z π̃

∗
(x, s)

D
= Zπ

∗
(x, π∗(x)) for all (x, s) where s ∈ S∗(x). We call

S∗(x) the active set of x under π̃∗.

For any distribution function U ∈ Z , let

WU (x, s, a) := Ez∼U(x,a)[−(s− z)+]. (9)

Suppose that we are given U ∈ Z such that U(x, a)
D
= Zπ

∗
(x, a) for all (x, a) ∈ X ×A. We then

execute a policy based on U using Algorithm 1.

Algorithm 1 Policy execution for static CVaR for one episode
Input: γ ∈ (0, 1), α ∈ (0, 1], U ∈ Z

1. x← x0

2. a← argmaxa′ Cα[U(x, a′)]

3. s← qα(U(x, a))

4. While x not terminal state,
(a) Execute a in x, observe reward r and next state x′

(b) x← x′

(c) s← s−r
γ

(d) a← argmaxa′W
U (x, s, a′)

Proposition 2. Let π∗ be a (stationary and Markov) α-CVaR optimal policy inM. Assume that
π∗ is unique in M. Running Algorithm 1 with U ∈ Z such that U(x, a)

D
= Zπ

∗
(x, a) for all

(x, a) ∈ X ×A results in executing π∗.

Proof. We show by induction that for every state xt, Algorithm 1 executes π∗(xt). At x0, action is
selected by the α-level CVaR of U(x, a′)

D
= Zπ

∗
(x, a′). By the optimality and uniqueness of π∗,

π∗(x0) will be selected.

Suppose that Algorithm 1 executes π∗(xt) for t = 0, 1, . . . , (T −1). In M̃, the state (xT , sT) is such
that sT ∈ S∗(xT) so π̃∗(xT , sT) = π∗(xT) and Z π̃

∗
(xT , sT , π̃

∗(xT , sT))
D
= Zπ

∗
(xT , π

∗(xT)).
We have that for each a ∈ A,

WU (xT , sT , a) = Ez∼U(xT ,a)[−(sT − z)
+]

(a)

≤ Ez∼Zπ̃∗ (xT ,sT ,a)[−(sT − z)
+]

=W π̃∗(xT , sT , a)
(b)

≤ W π̃∗(xT , sT , π̃
∗(xT , sT))

(c)
= WU (xT , sT , π

∗(xT))

6

where the inequality (a) is due to π̃∗ being the optimal policy in M̃, and (c) is due to the observation
that sT ∈ S∗(xT) above. By the uniqueness of π∗, only π∗(xT) can achieve equality at both (a) and
(b) and therefore it will be the selected action at T .

Proposition 2 establishes the fact that one can execute a CVaR-optimal policy from a distribution
function U ∈ Z by tracking the states in the augmented MDP M̃. Our objective is to learn such
a distribution function using distributional RL. Figure 1(c) and Proposition 1 show that even for
an MDP with stationary Markov optimal-CVaR policy, T̃ Dα as defined in (7) will not converge to
the optimal CVaR policy. We now propose an alternative distributional Bellman operator for CVaR.
Given a mapping ψ : X → R, define

T̃ψU(x, a) :
D
= R+ γU(X ′, A′), A′ = argmax

a′
WU

(
X ′,

ψ(x)−R
γ

, a′
)

(10)

where WU (x, s, a) is as defined in (9). Note that A′ is a function of random variables X ′ and R,
induced by p(r, x′|x, a). We have the following result on T̃ψ:
Proposition 3. Let π̃∗ be a unique, optimal α-CVaR policy that is stationary and Markov inM.
Choose ψ : X → R such that ψ(x) ∈ S∗(x) for all x, where S∗(x) is the active set of x under
π̃∗. Let π∗ be the policy inM such that π̃∗(x, s) = π∗(x) for all (x, s) where s ∈ S∗(x). Then

T̃ψZπ
∗
(x, π∗(x))

D
= Zπ

∗
(x, π∗(x)).

Proof. The action-selection strategy in Algorithm 1 is exactly that of T̃ψ. Proposition 2 shows that
applying T̃ψ on Zπ

∗
(x, π∗(x)) will always select the same mixture of distributions since ψ(x)−r

γ ∈
S∗(x′) for all x, r, x′ with p(r, x′|x, π∗(x)) > 0.

Proposition 3 says nothing about T̃ψZπ
∗
(x, a) if a 6= π∗(x). We need a stronger condition for this.

Proposition 4. Let π̃∗ and ψ be as defined in Proposition 3. Let S∗∗(x) = {ψ(x
′)−r
γ :

∃x′, a, p(r, x|x′, a) > 0}. If there exists π∗ inM such that π̃∗(x, s) = π∗(x) for all (x, s) where
s ∈ S∗∗(x), then Zπ

∗
is a fixed-point of T̃ψ .

Proof. With the same reasoning as in the proof of Proposition 2 and 3, it can be seen that T̃ψ = T̃ π∗ .
It follows that T̃ψZπ

∗
= T̃ π∗Zπ∗ = Zπ

∗
.

Even if Zπ
∗

is a fixed-point of T̃ψ, it is an open question whether T̃ψU will converge to Zπ
∗

for
all U ∈ Z . On simple MDPs with known optimal policies, we have observed that T̃ψ not only
converges, but can extract both stationary and even non-stationary CVaR-optimal policies. Some of
these examples are included in the supplementary material.

3 Algorithm

Our proposed algorithm is based on distributional Q-learning using quantile regression (Dabney
et al., 2018b). It can be readily adapted to other variants of distributional RL. In this approach,
each distribution U(x, a) is approximated by N quantiles θi(x, a), i = 1 . . . N , each corresponds
to a quantile level τ̂i = i−0.5

N . The quantile function qα(U(x, a)) for any (x, a) can therefore be
conveniently extracted from θ(x, a). Similarly, WU (x, s, a) can be computed by 1

N

∑N
i=1[−(s −

θi(x, a))
+]. Given θ, one can then execute Algorithm 1.

For training, one typically represents θ by a neural-network that maps input x to output θi(x, a) for
each i and a. The neural-network is updated based on gradients computed using sampled mini-batches
from a buffer that stores actual transition examples during training runs. In our proposed approach,
each stored example includes xk, sk, ak, rk and x′k. The gradients are computed with respect to a
quantile-regression loss function ρτ (u) = u(τ − δu<0) where δu<0 = 1 if u < 0 and 0 otherwise.
Algorithm 2 shows the main algorithm for computing the loss over a mini-batch containing m
transition samples. Notice that Algorithm 2 employs the standard practice of using a target network

7

0.5 0.6 0.7 0.8 0.9
alpha level

1.8

2.0

2.2

2.4

2.6

CV
aR

Optimal stationary
Markov action-selection
Proposed algorithm

0.0 0.2 0.4 0.6 0.8 1.0
alpha level

1

0

1

2

CV
aR

[0 0 0]
[0 0 1]
[0 1 0]
[0 1 1]
[1 0 0]
[1 0 1]
[1 1 0]
[1 1 1]

0.0 0.2 0.4 0.6 0.8 1.0
alpha level

1.5

1.0

0.5

0.0

0.5

1.0

CV
aR

[0 0 0]
[0 0 1]

Figure 2: Left: Comparison with optimal stationary policies. Middle: Ground truth CVaR at x0.
Right: Ground truth CVaR at x2.

θ′ which is periodically updated from θ. The key difference from the ordinary quantile-regression
distributional Q-learning is our target action selection strategy for choosing a′k (Step 1(a)). For other
implementation details, we refer the reader to (Dabney et al., 2018b).

Algorithm 2 Quantile Regression Distributional Q-Learning for static CVaR
Input: γ, θ, θ′, mini-batch (xk, sk, ak, rk, x

′
k) for k = 1 . . .m

1. For each k = 1 . . .m,
(a) a′k ← argmaxa′W

θ′(x′k,
sk−rk
γ , a′)

(b) T̃ψθj(xk, ak)← rk + γθ′j(x
′
k, a
′
k) , j = 1 . . . N

2. L ← 1
m

∑m
k=1

1
N2

∑
i,j ρτ̂i(T̃ψθj(xk, ak)− θi(xk, ak))

3. Output ∇L.

4 Empirical Results

Unless otherwise stated, we implement Algorithm 1 and 2 and represent our policies using a neural
network with two hidden layers, with ReLU activation. All our experiments use Adam as the
stochastic gradient optimizer. For each action, the output consists of N = 100 quantile values.
Additional details and results, as well as the complete code to reproduce our results can be found in
the supplementary material. 3

4.1 Synthetic Data

We first evaluate our proposed algorithm in a simple task where we know the optimal stationary
policy for any CVaR level. The MDP has 4 states x0, x1, x2, x3 where state x0 is the initial state
and x3 is a terminal state. Each state has two actions a0 and a1. Action a0 generates an immediate
reward following a Gaussian N (1, 1) and action a1 has immediate reward N (0.8, 0.42). Clearly, a0
gives a better expected reward but with higher variance. Each action always moves the state from xi
to xi+1. We use γ = 0.9 for this task. For α > 0.63, the optimal stationary policy is to choose action
a0 in all states, while for α < 0.62, the optimal stationary policy is to choose action a1 in all states.
We compare our proposed algorithm with the optimal stationary policy at various levels of CVaR.
Figure 2 (left) shows the results.

The Markov action-selection strategy corresponds to T̃ Dα , which is the strategy proposed by Dabney
et al. (2018a). Our proposed strategy corresponds to Algorithm 1 and 2. We clearly see that the
proposed strategy outperforms the Markov strategy at all tested CVaR levels. Further insights are
revealed in Figure 2 (middle and right). These are the ground truth CVaR values for all the stationary
policies, where [1 0 0] means always choosing action a1 in x0 and a0 in the next two states. Notice
the switching point around α = 0.625 in the middle plot and around α = 0.83 in the right plot. The
Markov action-selection strategy will choose action a1 in x2 for α < 0.83 since this is the better

3We omit any comparison with policy-gradient methods for CVaR, whose gradient estimation involves the
use of the Lagrangian. A discussion of the pros and cons of value-based vs policy-gradient methods would
distract too much from our main focus here.

8

action if one ignores the rewards collected since the beginning. However, this results in a rather
conservative strategy since the optimal strategy should still favor a0 in x2 for α > 0.625.

4.2 Option Trading

0.2 0.4 0.6 0.8 1.0
alpha level

0.00

0.01

0.02

0.03

0.04

0.05

CV
aR

Risk-neutral
Markov action-selection
Proposed algorithm

0.2 0.4 0.6 0.8 1.0
alpha level

0.00

0.01

0.02

0.03

CV
aR

Risk-neutral
Markov action-selection
Proposed algorithm

Figure 3: Test results on synthetic (Left) and real (Right) prices.

We evaluate our proposed algorithm on the non-trivial real-world task of option trading, commonly
used as a test domain for risk-sensitive RL (Li et al., 2009; Chow and Ghavamzadeh, 2014; Tamar
et al., 2017). In particular, we tackle the task of learning an exercise policy for American options.
This can be formulated as a discounted finite-horizon MDP with continuous states and two actions.
The state xt includes the price of a stock at time t, as well as the number of steps to the maturity
date, which we set to T = 100. The first action, “hold”, will always move the state one time step
forward with zero reward, while the second action, “execute”, will generate an immediate reward
max{0,K − xt} and enter a terminal state. K is the strike price. In our experiments, we use K = 1
and always normalize the prices such that x0 = 1. At t = T − 1, all actions will be interpreted as
“execute”. We set γ = 0.999, which corresponds to a non-zero daily risk-free interest rate.

We use actual daily closing prices for the top 10 Dow components from 2005 to 2019. Prices from
2005-2015 are used for training and prices from 2016-2019 for testing. To allow training on unlimited
data, we follow (Li et al., 2009) and create a stock price simulator using the geometric Brownian
motion (GBM) model. The GBM model assumes that the log-ratio of prices follows a Gaussian
distribution log xt+1

xt
∼ N (µ− σ2/2, σ2) with parameters µ and σ, which we estimate from the real

training data.

For each algorithm, each stock and each CVaR level, we trained 3 policies using different random
seeds. The policies are then tested on the synthetic data (generated using the same training model)
for 1000 episodes. The policies are further tested on the real data, using 10 episodes, each with 100
consecutive days of closing prices, covering the 4 years of test period. All results are averaged over
the 3 policies and over the 10 stocks.

Figure 3 shows the test results on synthetic (Left) as well as real data (Right). The proposed strategy
clearly performs better across various CVaR levels. The gap is significant at lower α levels. Also
included are the results from the risk-neutral strategy, trained using α = 1, and tested on all α
values. This corresponds to the standard action-selection strategy based on the expected return, which
performs badly at low α levels.

4.3 Atari Games

Atari games have been a popular domain for benchmarking deep RL algorithms. Dabney et al.
(2018a) evaluated risk-sensitive approaches on several games but acknowledged that qualitatively the
outcome did not always match their expectations. We believe that the difficulty in interpreting the
results is due to the many confounding factors at play, e.g. total training time, exploration strategies,
learning rate etc. Here, we compare the effect of our proposed approach with that of the Markov
action-selection strategy in terms of the total discounted return starting from the initial state. This
means that for discount factor γ < 1, the initial stage of the game plays a much more significant role
than later stages.

We use the same implicit quantile networks architecture as in (Dabney et al., 2018a). We use the
implementation by Fujita et al. (2021) and made the slight modifications needed for Algorithms 1

9

200 250 300 350 400 450
0

2

4

6

C
ou

nt

Random seed 1, 30Mil steps
Risk-neutral

200 250 300 350 400 450
0

5

10

C
ou

nt

Markov

200 250 300 350 400 450
Total discounted return

0

20

40

C
ou

nt

Proposed

100 200 300 400 500
0

5

10
Random seed 2, 30Mil steps

Risk-neutral

100 200 300 400 500
0

5

10 Markov

100 200 300 400 500
Total discounted return

0

10

20

30 Proposed

200 250 300 350 400
0

2

4

6

Random seed 3, 30Mil steps
Risk-neutral

200 250 300 350 400
0

5

10

15 Markov

200 250 300 350 400
Total discounted return

0

10

20

30 Proposed

Figure 4: Results on Atari game Asterix after 30-million training steps. Each plot is a histogram of
the discounted returns over 100 evaluation episodes.

and 2. We optimize for 0.25-CVaR for both risk-averse strategies, with γ = 0.99. Figure 4 shows the
performance of the learned policies after going through 30 million steps of the game Asterix, across
3 random seeds. Each plot is a histogram of the returns over 100 evaluation runs. We can clearly see
that the proposed approach achieves a more concentrated distribution of returns compared to both the
risk-neutral and the Markov strategies, and overall with better 0.25-CVaR. In this particular example,
we observe that the Markov strategy actually performs worse than the risk-neutral strategy, both in
terms of the mean and the 0.25-CVaR, although the resulting policies still have more concentrated
distribution of returns in the test runs. The outcomes may change if we train for a larger number of
steps, but we leave it to future work for more extensive empirical investigations. Additional results
can be found in the supplementary material.

5 Conclusion and Future Work

This work points out a problem that arises in existing methods that extend distributional RL to the
CVaR risk measure, and proposes an approach with better theoretical properties. We have shown
that the proposed approach for learning a CVaR-optimized policy works in a variety of task domains
and can produce better risk-averse policies. Furthermore, the proposed algorithms can be easily
incorporated into existing distributional RL frameworks.

On simple tasks for which we know the optimal CVaR policies, we have shown empirically that our
approach managed to converge to these optimal policies. Theoretically, however, the convergence
properties of the proposed T̃ψ operator remain unknown in the general settings and we believe this
is an interesting problem for future works. In terms of the practical use of the proposed algorithms,
one open problem is regarding the repeated use of the stored threshold s in the replay buffer after a
significant change in the return distribution of the policy. We believe that a more adaptive way of
utilizing s during training can lead to improvement in the learning efficiency in terms of speed and
stability. In terms of exploration, an optimistic bias such as that proposed by Keramati et al. (2020)
may also be beneficial to our approach.

References
Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathematical

Finance, 9(3):203–228.

Barth-Maron, G., Hoffman, M., Budden, D., Dabney, W., Horgan, D., TB, D., Muldal, A., Heess, N.,
and Lillicrap, T. (2018). Distributed distributional deterministic policy gradients.

10

Bäuerle, N. and Ott, J. (2011). Markov decision processes with average-value-at-risk criteria.
Mathematical Methods of Operations Research, 74(3):361–379.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pages 449–458.

Bernhard, J., Pollok, S., and Knoll, A. (2019). Addressing inherent uncertainty: Risk-sensitive
behavior generation for automated driving using distributional reinforcement learning. In IEEE
Intelligent Vehicles Symposium.

Borkar, V. (2001). A sensitivity formula for risk-sensitive cost and the actor–critic algorithm. Systems
& Control Letters, 44(5):339 – 346.

Chow, Y. and Ghavamzadeh, M. (2014). Algorithms for cvar optimization in mdps. In Advances in
Neural Information Processing Systems 27, pages 3509–3517.

Chow, Y. and Pavone, M. (2014). A framework for time-consistent, risk-averse model predictive
control: Theory and algorithms. In 2014 American Control Conference, pages 4204–4211.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018a). Implicit quantile networks for
distributional reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2018b). Distributional reinforcement
learning with quantile regression. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), pages 2892–2901.

Fujita, Y., Nagarajan, P., Kataoka, T., and Ishikawa, T. (2021). Chainerrl: A deep reinforcement
learning library. Journal of Machine Learning Research, 22(77):1–14.

Howard, R. A. and Matheson, J. E. (1972). Risk-sensitive markov decision processes. Management
Science, 18(7):356–369.

Huang, W. and Haskell, W. B. (2020). Stochastic approximation for risk-aware markov decision
processes. IEEE Transactions on Automatic Control, pages 1–1.

Keramati, R., Dann, C., Tamkin, A., and Brunskill, E. (2020). Being optimistic to be conservative:
Quickly learning a cvar policy. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04):4436–4443.

L.A., P. and Ghavamzadeh, M. (2013). Actor-critic algorithms for risk-sensitive mdps. In Burges, C.
J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 26, pages 252–260.

Li, Y., Szepesvari, C., and Schuurmans, D. (2009). Learning exercise policies for american options.
In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics,
pages 352–359.

Mavrin, B., Yao, H., Kong, L., Wu, K., and Yu, Y. (2019). Distributional reinforcement learning for
efficient exploration. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pages 4424–4434.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

Morimura, T., Sugiyama, M., Kashima, H., Hachiya, H., and Tanaka, T. (2010). Parametric return
density estimation for reinforcement learning. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, UAI’10, page 368–375.

Petrik, M. and Subramanian, D. (2012). An approximate solution method for large risk-averse markov
decision processes. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence,
UAI’12, page 805–814.

11

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk,
2:21–41.

Ruszczynski, A. (2010). Risk-averse dynamic programming for markov decision processes. Math.
Program., 125(2):235–261.

Stanko, S. and Macek, K. (2019). Risk-averse distributional reinforcement learning: A cvar opti-
mization approach. In Proceedings of the 11th International Joint Conference on Computational
Intelligence (IJCCI), pages 412–423.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT Press,
second edition.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. (2017). Sequential decision making with
coherent risk. IEEE Transactions on Automatic Control, 62(7):3323–3338.

Tamar, A., Di Castro, D., and Mannor, S. (2012). Policy gradients with variance related risk criteria.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, ICML’12, page 1651–1658, Madison, WI, USA. Omnipress.

Tamar, A., Glassner, Y., and Mannor, S. (2015). Optimizing the cvar via sampling. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, page 2993–2999. AAAI
Press.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.

Yang, D., Zhao, L., Lin, Z., Qin, T., Bian, J., and Liu, T.-Y. (2019). Fully parameterized quantile
function for distributional reinforcement learning. In Advances in Neural Information Processing
Systems 32.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] Our theoretical contributions are presented as
Propositions in Section 2 and our empirical contributions are presented in Section 3.

(b) Did you describe the limitations of your work? [Yes] The problem setup and the
assumptions are carefully stated before presenting the theoretical results. In particular,
the results in Section 2.3 remain open for settings that violate our assumptions.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our results
improves one’s ability to learn risk-sensitive policies, any direct societal impact would
be minimal.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Supplemental
material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Supplemental material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Supplemental material

12

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Works

	Problem Setup and Main Results
	Static and Dynamic CVaR
	Distributional RL
	Distributional RL for CVaR

	Algorithm
	Empirical Results
	Synthetic Data
	Option Trading
	Atari Games

	Conclusion and Future Work
	MDP with stationary and Markov CVaR-optimal policy
	MDP with non-stationary CVaR-optimal policy
	Modified Puddle World
	Lunar Lander with Noisy Observation
	Additional Results on Atari Games

