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Abstract

Deep neural networks often suffer from poor generalization caused by complex and
non-convex loss landscapes. One of the popular solutions is Sharpness-Aware Min-
imization (SAM), which smooths the loss landscape via minimizing the maximized
change of training loss when adding a perturbation to the weight. However, we find
the indiscriminate perturbation of SAM on all parameters is suboptimal, which also
results in excessive computation, i.e., double the overhead of common optimizers
like Stochastic Gradient Descent (SGD). In this paper, we propose an efficient
and effective training scheme coined as Sparse SAM (SSAM), which achieves
sparse perturbation by a binary mask. To obtain the sparse mask, we provide
two solutions which are based onFisher information and dynamic sparse training,
respectively. In addition, we theoretically prove that SSAM can converge at the
same rate as SAM, i.e., O(log T/+/T). Sparse SAM not only has the potential
for training acceleration but also smooths the loss landscape effectively. Exten-
sive experimental results on CIFAR10, CIFAR100, and ImageNet-1K confirm the
superior efficiency of our method to SAM, and the performance is preserved or
even better with a perturbation of merely 50% sparsity. Code is available at https:
//github.com/Mi-Peng/Sparse-Sharpness-Aware-Minimization.

1 Introduction

Over the past decade or so, the great success of deep learning has been due in great part to ever-larger
model parameter sizes [13, 56, 52, 10, 40, 5]. However, the excessive parameters also make the model
inclined to poor generalization. To overcome this problem, numerous efforts have been devoted to
training algorithm [24, 42, 50], data augmentation [1 1, 57, 55], and network design [26, 28].

One important finding in recent research is the connection between the geometry of loss landscape
and model generalization [31, 17, 27, 44, 53]. In general, the loss landscape of the model is complex
and non-convex, which makes model tend to converge to sharp minima. Recent endeavors [31, 27, 44]
show that the flatter the minima of convergence, the better the model generalization. This discovery
reveals the nature of previous approaches [24, 26, 11, 55, 57, 28] to improve generalization, i.e.,
smoothing the loss landscape.

*This work was done during an internship at JD Explore Academy.
TLi Shen is the corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://github.com/Mi-Peng/Sparse-Sharpness-Aware-Minimization
https://github.com/Mi-Peng/Sparse-Sharpness-Aware-Minimization

Based on this finding, Foret et al. [17] propose a novel approach to improve model generalization
called sharpness-aware minimization (SAM), which simultaneously minimizes loss value and loss
sharpness. SAM quantifies the landscape sharpness as the maximized difference of loss when a
perturbation is added to the weight. When the model reaches a sharp area, the perturbed gradients in
SAM help the model jump out of the sharp minima. In practice, SAM requires two forward-backward
computations for each optimization step, where the first computation is to obtain the perturbation and
the second one is for parameter update. Despite the remarkable performance [17, 34, 14, 7], This
property makes SAM double the computational cost of the conventional optimizer, e.g., SGD [3].

Since SAM calculates perturbations indiscriminately for all parameters, a question is arisen:
Do we need to calculate perturbations for all parameters?

Above all, we notice that in most deep neural networks, only about 5% of parameters are sharp and
rise steeply during optimization [31]. Then we explore the effect of SAM in different dimensions to
answer the above question and find out (i) little difference between SGD and SAM gradients in most
dimensions (see Fig. 1); (ii) more flatter without SAM in some dimensions (see Fig. 4 and Fig. 5).

Inspired by the above discoveries, we propose a novel scheme to improve the efficiency of SAM via
sparse perturbation, termed Sparse SAM (SSAM). SSAM, which plays the role of regularization, has
better generalization, and its sparse operation also ensures the efficiency of optimization. Specifically,
the perturbation in SSAM is multiplied by a binary sparse mask to determine which parameters
should be perturbed. To obtain the sparse mask, we provide two implementations. The first solution
is to use Fisher information [16] of the parameters to formulate the binary mask, dubbed SSAM-F.
The other one is to employ dynamic sparse training to jointly optimize model parameters and the
sparse mask, dubbed SSAM-D. The first solution is relatively more stable but a bit time-consuming,
while the latter is more efficient.

In addition to these solutions, we provide the theoretical convergence analysis of SAM and SSAM in
non-convex stochastic setting, proving that our SSAM can converge at the same rate as SAM, i.e.,
O(log T/v/T). At last, we evaluate the performance and effectiveness of SSAM on CIFAR10 [33],
CIFAR100 [33] and ImageNet [8] with various models. The experiments confirm that SSAM
contributes to a flatter landscape than SAM, and its performance is on par with or even better than
SAM with only about 50% perturbation. These results coincide with our motivations and findings.

To sum up, the contribution of this paper is three-fold:

* We rethink the role of perturbation in SAM and find that the indiscriminate perturbations
are suboptimal and computationally inefficient.

* We propose a sparsified perturbation approach called Sparse SAM (SSAM) with two
variants, i.e., Fisher SSAM (SSAM-F) and Dynamic SSAM (SSAM-D), both of which enjoy
better efficiency and effectiveness than SAM. We also theoretically prove that SSAM can
converge at the same rate as SAM, i.e., O(log T//T).

e We evaluate SSAM with various models on CIFAR and ImageNet, showing WideResNet
with SSAM of a high sparsity outperforms SAM on CIFAR; SSAM can achieve competitive
performance with a high sparsity; SSAM has a comparable convergence rate to SAM.

2 Related Work

In this section, we briefly review the studies on sharpness-aware minimum optimization (SAM),
Fisher information in deep learning, and dynamic sparse training.

SAM and flat minima. Hochreiter er al. [27] first reveal that there is a strong correlation between the
generalization of a model and the flat minima. After that, there is a growing amount of research based
on this finding. Keskar et al. [31] conduct experiments with a larger batch size, and in consequence
observe the degradation of model generalization capability. They [31] also confirm the essence of this
phenomenon, which is that the model tends to converge to the sharp minima. Keskar et al. [31] and
Dinh et al. [12] state that the sharpness can be evaluated by the eigenvalues of the Hessian. However,
they fail to find the flat minima due to the notorious computational cost of Hessian.

Inspired by this, Foret et al. [17] introduce a sharpness-aware optimization (SAM) to find a flat
minimum for improving generalization capability, which is achieved by solving a mini-max problem.



Zhang et al. [58] make a point that SAM [17] is equivalent to adding the regularization of the gradient
norm by approximating Hessian matrix. Kwon et al. [34] propose a scale-invariant SAM scheme
with adaptive radius to improve training stability. Zhang et al. [59] redefine the landscape sharpness
from an intuitive and theoretical perspective based on SAM. To reduce the computational cost in
SAM, Du et al. [ 14] proposed Efficient SAM (ESAM) to randomly calculate perturbation. However,
ESAM randomly select the samples every steps, which may lead to optimization bias. Instead of the
perturbations for all parameters, i.e., SAM, we compute a sparse perturbation, i.e., SSAM, which
learns important but sparse dimensions for perturbation.

Fisher information (FI). Fisher information [16] was proposed to measure the information that
an observable random variable carries about an unknown parameter of a distribution. In machine
learning, Fisher information is widely used to measure the importance of the model parameters [32]
and decide which parameter to be pruned [49, 51]. For proposed SSAM-F, Fisher information is used
to determine whether a weight should be perturbed for flat minima.

Dynamic sparse training. Finding the sparse network via pruning unimportant weights is a popular
solution in network compression, which can be traced back to decades [35]. The widely used
training scheme, i.e., pretraining-pruning-fine-tuning, is presented by Han et.al. [23]. Limited by the
requirement for the pre-trained model, some recent research [15, 2, 9, 30, 43, 37, 38] attempts to
discover a sparse network directly from the training process. Dynamic Sparse Training (DST) finds
the sparse structure by dynamic parameter reallocation. The criterion of pruning could be weight
magnitude [18], gradient [15] and Hessian [35, 48], efc. We claim that different from the existing
DST methods that prune neurons, our target is to obtain a binary mask for sparse perturbation.

3 Rethinking the Perturbation in SAM

In this section, we first review how SAM converges at the flat minimum of a loss landscape. Then,
we rethink the role of perturbation in SAM.

3.1 Preliminary

In this paper, we consider the weights of a deep neural network as w = (w1, wa, ...,wq) € W € R?
and denote a binary mask as m € {0,1}%, which satisfies 17m = (1 — s) - d to restrict the
computational cost. Given a training dataset as S = {(x;,y;)}", i.i.d. drawn from the distribution D,
the per-data-point loss function is defined by f(w), x;, y,). For the classification task in this paper, we
use cross-entropy as loss function. The population loss is defined by fp = E(w“yi)pr('w, Ti,Y;)s

while the empirical training loss function is fs £ £ 3" | f(w, z;,y,).

Sharpness-aware minimization (SAM) [17] aims to simultaneously minimize the loss value and
smooth the loss landscape, which is achieved by solving the min-max problem:

min max fs(w + €). (D
w|le]|2<p

SAM first obtains the perturbation € in a neighborhood ball area with a radius denoted as p. The
optimization tries to minimize the loss of the perturbed weight w + €. Intuitively, the goal of SAM is
that small perturbations to the weight will not significantly rise the empirical loss, which indicates that
SAM tends to converge to a flat minimum. To solve the mini-max optimization, SAM approximately
calculates the perturbations € using Taylor expansion around w:

€= aHrgHm<axf5(w +e€) = a|1|rg“‘m<ax fs(w)+ €V fw) =p Vi f(w)/||Vwf(w)]. (2
€ll2>p €ll2xp

In this way, the objective function can be rewritten as min, fs(w + pV f(w) /|| Ve f(w)]]2),
which could be implemented by a two-step gradient descent framework in Pytorch or TensorFlow:

* In the first step, the gradient at w is used to calculate the perturbation € by Eq. 2. Then the
weight of model will be added to w + €.

* In the second step, the gradient at w + € is used to solve min,, fs(w + €), i.e., update the
weight w by this gradient.



3.2 Rethinking the Perturbation Step of SAM

How does SAM work in flat subspace? SAM perturbs all parameters indiscriminately, but the
fact is that merely about 5% parameter space is sharp while the rest is flat [31]. We are curious
whether perturbing the parameters in those already flat dimensions would lead to the instability of the
optimization and impair the improvement of generalization. To answer this question, we quantitatively
and qualitatively analyze the loss landscapes with different training schemes in Section 5, as shown
in Fig. 4 and Fig. 5. The results confirm our conjecture that optimizing some dimensions without
perturbation can help the model generalize better.

What is the difference between the gradients of SGD and SAM? We investigate various neural
networks optimized with SAM and SGD on CIFAR10/100 and ImageNet, whose statistics are given
in Fig. 1. We use the relative difference ratio r, defined as r = log|(9san — 9sep)/9sapl, to
measure the difference between the gradients of SAM and SGD. As showin in Fig. 1, the parameters
with 7 less than 0 account for the vast majority of all parameters, indicating that most SAM gradients
are not significantly different from SGD gradients. These results show that most parameters of the
model require no perturbations for achieving the flat minima, which well confirms our the motivation.
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Figure 1: The distribution of relative difference ratio » among various models and datasets. There is
little difference between SAM and SGD gradients for most parameters, i.e., the ratio r is less than 0.

Inspired by the above observation and the promising hardware acceleration for sparse operation
modern GPUs, we further propose Sparse SAM, a novel sparse perturbation approach, as an implicit
regularization to improve the efficiency and effectiveness of SAM.

4 Methodology

In this section, we first define the proposed Sparse SAM (SSAM), which strengths SAM via sparse
perturbation. Afterwards, we introduce the instantiations of the sparse mask used in SSAM via Fisher
information and dynamic sparse training, dubbed SSAM-F and SSAM-D, respectively.

4.1 Sparse SAM

Motivated by the finding discussed in the introduction, Sparse SAM (SSAM) employs a sparse
binary mask to decide which parameters should be perturbed, thereby improving the efficiency of
sharpness-aware minimization. Specifically, the perturbation € will be multiplied by a sparse binary

mask m, and the objective function is then rewritten as min, fs (’w +p- % ® m) To

stable the optimization, the sparse binary mask m is updated at regular intervals during training. We
provide two solutions to obtain the sparse mask m, namely Fisher information based Sparse SAM
(SSAM-F) and dynamic sparse training based Sparse SAM (SSAM-D). The overall algorithms of
SSAM and sparse mask generations are shown in Algorithm | and Algorithm 2, respectively.

According to the previous work [54] and Ampere architecture equipped with sparse tensor cores [47,

, 45], currently there exists technical support for matrix multiplication with 50% fine-grained
sparsity [54]°. Therefore, SSAM of 50% sparse perturbation has great potential to achieve true
training acceleration via sparse back-propagation.

3For instance, 2:4 sparsity for A100 GPU.



Algorithm 1 Sparse SAM (SSAM) Algorithm 2 Sparse Mask Generation

Input: sparse ratio s, dense model w, binary

1:
2:

LRRADNR®

10:
11:
12:
13:

: Option I:(Fisher Information Mask)
: Sample N data from S: Br

: Compute Fisher Fu by Eq. (5)

mask m, update interval 7,,, number of sam-
ples N, learning rate 7, training set S.

1
2
es IV 3
Initialize w and m randomly. 4: mi={mi;=1/m; em} + ArgTopK(Fy, s - |w|)
for epoch t = _1,_2 e T (_10 5: mo={m;=0m;em} < {mi|m;¢m.}
for each training iteration do 6: M < mo Um
Sample a batch from S: B 7: Option I1:(Dynamic Sparse Mask)
Compute perturbation € by Eq. (2) 8: Nurop = faccay(t; ) - (1 —s) - |w]
if t mod T, = 0 then 9 Nurowth = Niro
Generate mask m via Option Tor IT (). mi = {m; = 1|pmi e m} « {m; = 1jm; € m} —
end if ArgTopK , erm, (=|V f ()], Narop)
fi;._ eEOm 11: m1<—{mi:1|mi€m}—&—Randommiml(Ngmwm)
end lor 12: mo={m;=0m; em} < {m;|m; ¢m}
w<—w—77Vf('w—|—e) 13: m <+ moUm,
end for

14: reti S k
return Final weight of model w Fetir Sparse mask m

4.2 SSAM-F: Fisher information based Sparse SAM

Inspired by the connection between Fisher information and Hessian [16], which can directly measure
the flatness of the loss landscape, we apply Fisher information to achieve sparse perturbation, denoted
as SSAM-F. The Fisher information is defined by

Fy = E;Np(a,) [Eywpw(y\x)vw 1ng'w (y‘x)vw 1ngw (y‘x)T] ) (3)
where pq, (y|z) is the output distribution predicted by the model. In over-parameterized networks, the
computation of Fisher information matrix is also intractable, i.e., |w| x |w|. Following [49, 19,41, 22],

we approximate F, as a diagonal matrix, which is included in a vector in RI*!. Note that there are
the two expectation in Eq. (3). The first one is that the original data distribution p(z) is often not
available. Therefore, we approximate it by sampling N data @1, o, ..., &N, from z ~ p(z):

1
Fy = FEy~pw(y|mi)(vw Ingw(y|wi))2' @)
F

For the second expectation over p,, (y|x), it is not necessary to compute its explicit expectation, since
the ground-truth y; for each training sample x; is available in supervised learning. Therefore we
rewrite the Eq. (4) as "empirical Fisher":

1
Py = 5—(Vu 10g pu (yi|x:))?. (5)
F

We emphasize that the empirical Fisher is a |w|-dimension vector, which is the same as the mask m.
To obtain the mask m, we calculate the empirical Fisher by Eq. (5) over N training data randomly
sampled from training set S. Then we sort the elements of empirical Fisher in descending, and the
parameters corresponding to the the top k Fisher values will be perturbed:

where ArgTopK(v, N) returns the index of the top N largest values among v, m is the set of
values that are 1 in m. k is the number of perturbed parameters, which is equal to (1 — s) - |w| for
sparsity s. After setting the rest values of the mask to 0, i.e., mo = {m; = 0|m; ¢ mg }, we get the
final mask m = mg U my. The algorithm of SSAM-F is shown in Algorithm 2.

4.3 SSAM-D: Dynamic sparse training mask based sparse SAM

Considering the computation of empirical Fisher is still relatively high, we also resort to dynamic
sparse training for efficient binary mask generation. The mask generation includes the perturbation
dropping and the perturbation growth steps. At the perturbation dropping phase, the flattest dimensions
of the perturbed parameters will be dropped, i.e., the gradients of lower absolute values, which means
that they require no perturbations. The update of the sparse mask follows

my = {m; = 1lm; € m} < my — ArgTopK,, .., (=|V f(w)], Narop), 7



where Ny, is the number of perturbations to be dropped. At the perturbation growth phase, for
the purpose of exploring the perturbation combinations as many as possible, several unperturbed
dimensions grow, which means these dimensions need to compute perturbations. The update of the
sparse mask for perturbation growth follows

my = {m; = 1lm; € m} < my + Random ¢, (Nyrowth), (8)

where Randomgs (V) randomly returns NV indexes in S, and Nyyou¢h i the number of perturbation
growths. To keep the sparsity constant during training, the number of growths is equal to the number
of dropping, i.e., Ngrowth = Narop. Afterwards, we set the rest values of the mask to 0, i.e.,
mo={m; =0|m; ¢ m1}, and get the final mask m =mg U my. The drop ratio « represents the
proportion of dropped perturbations in the total perturbations s - |w|, i.e., @ = Ngrop/(s - |w|). In
particular, a larger drop rate means that more combinations of binary mask can be explored during
optimization, which, however, may slightly interfere the optimization process. Following [15, 9], we
apply a cosine decay scheduler to alleviate this problem:

Fuecay(t; ) = % (1 + cos (tr/T)) 9)

where T denotes number of training epochs. The algorithm of SSAM-D is depicted in Algorithm 2.

4.4 Theoretical analysis of Sparse SAM

In the following, we analyze the convergence of SAM and SSAM in non-convex stochastic setting.
Before introducing the main theorem, we first describe the following assumptions that are commonly
used for characterizing the convergence of nonconvex stochastic optimization [39, 59, 1, 6, 4, 20].

Assumption 1. (Bounded Gradient.) It exists G > 0 s.t. ||V f(w)|| < G.

Assumption 2. (Bounded Variance.) It exists o > 0 s.t. E[||g(w) — V f(w)||?] < o2
Assumption 3. (L-smoothness.) It exists L > 0 s.t. ||V f(w) — Vf(v)|| < L||w
Theorem 1. Consider function f(w) satisfying the Assumptions 1-3 optimized by SAM. Let n, = 12

NG
and perturbation amplitude p decay with square root of t, e.g., py = %. With pg < Gng, we have

logT
= E||Vf(w 2<C’—+C’
; IV 7ol < Ch + G

where Cy = n%(f(wo) — Ef(wr)) and Cy = 2(Lo®n9 + LGpy).

(10)

Theorem 2. Consider function f(w) satisfying the Assumptions 1-3 optimized by SSAM. Let )y = %

and perturbation amplitude p decay with square root of t, e.g., p; = %. With po < Gno/2, we have:

logT
VT

) and Cy = 2(Lo®no + LGpo).

+Cy

—ZEHVf (wy)|]? < Cs (11)

3\

m"\“

where Gy = 35 (f(wo) — Bf (wr) +moL2p*(1 + L)

For non-convex stochastic optimization, Theorems 1&2 imply that our SSAM could converge the
same rate as SAM, i.e., O(log T//+/T). Detailed proofs of the two theorems are given in Appendix.

S Experiments

In this section, we evaluate the effectiveness of SSAM through extensive experiments on CIFAR10,
CIFAR100 [33] and ImageNet-1K [8]. The base models include ResNet [25] and WideResNet [56].
We report the main results on CIFAR datasets in Tables 1&2 and ImageNet-1K in Table 3. Then, we
visualize the landscapes and Hessian spectra to verify that the proposed SSAM can help the model
generalize better. More experimental results are placed in Appendix due to page limit.



5.1 Implementation details

Datasets. We use CIFAR10/CIFAR100 [33] and ImageNet-1K [8] as the benchmarks of our method.
Specifically, CIFAR10 and CIFAR100 have 50,000 images of 32x32 resolution for training, while
10,000 images for test. ImageNet-1K [&] is the most widely used benchmark for image classification,
which has 1,281,167 images of 1000 classes and 50,000 images for validation.

Hyper-parameter setting. For small resolution datasets, i.e., CIFAR10 and CIFAR100, we replace
the first convolution layer in ResNet and WideResNet with the one of 3x 3 kernel size, 1 stride and 1
padding. The models on CIFAR10/CIFAR100 are trained with 128 batch size for 200 epochs. We
apply the random crop, random horizontal flip, normalization and cutout [ 1] for data augmentation,
and the initial learning rate is 0.05 with a cosine learning rate schedule. The momentum and weight
decay of SGD are set to 0.9 and 5e-4, respectively. SAM and SSAM apply the same settings,
except that weight decay is set to 0.001 [14]. We determine the perturbation magnitude p from
{0.01,0.02,0.05,0.1,0.2,0.5} via grid search. In CIFAR10 and CIFAR100, we set p as 0.1 and 0.2,
respectively. For ImageNet-1K, we randomly resize and crop all images to a resolution of 224 x224,
and apply random horizontal flip, normalization during training. We train ResNet with a batch size of
256, and adopt the cosine learning rate schedule with initial learning rate 0.1. The momentum and
weight decay of SGD is set as 0.9 and 1e-4. SAM and SSAM use the same settings as above. The
test images of both architectures are resized to 256256 and then centerly cropped to 224 x224. The
perturbation magnitude p is set to 0.07.

5.2 Experimental results

Results on CIFAR10/CIFAR100. We first evaluate our SSAM on CIFAR-10 and CIFAR100. The
models we used are ResNet-18 [25] and WideResNet-28-10 [56]. The perturbation magnitude p for
SAM and SSAM are the same for a fair comparison. As shown in Table 1, ResNet18 with SSAM
of 50% sparsity outperforms SAM of full perturbations. From Table 2, we can observe that the
advantages of SSAM-F and SSAM-D on WideResNet28 are more significant, which achieve better
performance than SAM with up to 95% sparsity. Note that the parameter size of WideResNet28 is
much larger than that of ResNet-18, and CIFAR is often easy to overfit. In addition, even with very
large sparsity, both SSAM-F and SSAM-D can still obtain competitive performance against SAM.

Table 1: Comparison between SGD, SAM and SSAM on CIFAR using ResNet-18

Model Optimizer Sparsity CIFAR10 CIFAR100 FLOPs*

SGD 7 96.07% 77.80% =
SAM 0% 96.83% 81.03% 2%

50%  9681% (:0.02) 8124% (+021) 1.65%

80%  96.64% (-0.19)  80.47% (-0.56)  1.44x

90%  9675% (-0.08)  80.02% (-1.01)  1.36x

SSAM-F (Ours) o500 96.66% (-0.17)  80.50% (-0.53)  1.33x

ResNetl8 98%  96.55% (-0.28)  80.09% (-0.94)  131x

9%  96.52% (-031)  80.07% (-0.96)  1.30x

0% 96.87% (10.04) 80.59% (-:044)  1.65x

80%  96.76% (-0.07)  80.43% (-0.60)  1.44x

90%  96.67% (-0.16)  80.39% (-0.64)  1.36x

SSAM-D (Ours) 950 96'56% (-027)  79.79% (-1.24)  1.33x

98%  96.61% (-0.22)  79.79% (-124)  131x

9%  96.59% (-0.24)  79.61% (-142)  130x

Results on ImageNet. Table 3 reports the result of SSAM-F and SSAM-D on the large-scale
ImageNet-1K [8] dataset. The model we used is ResNet50 [25]. We can observe that SSAM-F and
SSAM-D can maintain the performance with 50% sparsity. However, as sparsity ratio increases,
SSAM-F will receive relatively obvious performance drops while SSAM-D is more robust.

Training curves. We visualize the training curves of SGD, SAM and SSAM in Fig. 2. The training
curves of SGD are more jittery, while SAM is more stable. In SSAM, about half of gradient updates
are the same as SGD, but its training curves are similar to those of SAM, suggesting the effectiveness.

*The FLOPs is theoretically estimated by considering sparse multiplication compared to SGD in Tables 1- 3.



Table 2: Comparsion between SGD, SAM and SSAM on CIFAR using WideResNet-28-10

Model Optimizer Sparsity CIFAR10 CIFAR100 FLOPs
SGD 7 97.11% R1.93% T
SAM 0% 97.48% 84.20% 2%
50%  97.71% (+023) 85.16% (+096) 1.65%
- 80%  97.67% (+0.19) 84.57% (+0.37)  1.44x
= 90%  9747% (-001)  84.76% (+0.56)  136x
g SSAMEQurs)  gsq 97429 (:0.06)  84.17% (-0.03)  1.33x
2 98%  97.32% (-0.16)  83.85% (-035) 131x
f 9%  97.59% (+0.11)  84.00% (-020)  1.30x
% 50%  97.70% (+0.22) 84.99% (+0.79) 1.65%
5 80%  97.72% (+0.24) 84.36% (+0.16)  1.44x
90%  97.53% (+0.05)  84.16% (-0.04)  1.36x
SSAM-D (Ours) 950, 97509, (+0.04)  83.66% (-0.54)  1.33x
98%  97.30% (-0.18)  83.30% (-0.90)  131x
9%  9727% (-025)  84.16% (-0.04)  130x

Table 3: Comparsion between SGD, SAM and SSAM on ImageNet-1K using ResNet50.

Model Optimizer Sparsity ImageNet FLOPs
SGD / 76.67% Ix
SAM 0% 77.25% 2%

50%  77-31%(+0.06) 1.65x

SSAM-F (Ours) 80% 76.81%(-0.44)  1.44x

ResNet50 90%  76.74%(-0.51)  1.36x

50% 77.25%(-0.00)  1.65%

SSAM-D (Ours)  80% 77.00%(-0.25)  1.44x

90% 77.00%(-0.25)  1.36%
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Figure 2: The training curves of SGD, SAM and SSAM. The sparsity of SSAM is 50%.
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Sparsity vs. Accuracy. We report the effect of sparsity ratios in SSAM, as depicted in Fig. 3. We
can observe that on CIFAR datasets, the sparsities of SSAM-F and SSAM-D pose little impact on
performance. In addition, they can obtain better accuracies than SAM with up to 99% sparsity. On
the much larger dataset, i.e., ImageNet, a higher sparsity will lead to more obvious performance drop.

98.0 86 77.6
—@— SSAM-F —®— SSAM-F

3978 774
X P'S SSAM-D e SSAM-D
N’ = —
297.6 772
R e e N o o S e | o e |
5974 / 77.0
3 L 831 —®— SSAM-F
<972 SSAM-D SGD& 76.8

97.0 R=m L S 76.6

05 08 09 095 098 099 05 08 09 095 098 0.99 05 08 0.9
Sparsity Sparsity Sparsity

(a) WideResNet on CIFAR10. (b) WideResNet on CIFAR100. (c) ResNet50 on ImageNet.
Figure 3: Accuarcy v.s. sparsity on CIFAR10, CIFAR100 and ImageNet datasets.



5.3 SSAM with better generalization

Visualization of landscape. For a more intuitive comparison between different optimization schemes,
we visualize the training loss landscapes of ResNet18 optimized by SGD, SAM and SSAM as shown
in Fig. 4. Following [36], we sample 50 x 50 points in the range of [—1, 1] from random "filter
normalized" [36] directions, i.e., the x and y axes. As shown in Fig. 4, the landscape of SSAM is
flatter than both SGD and SAM, and most of its area is low loss (blue). This result indicates that
SSAM can smooth the loss landscape notably with sparse perturbation, and it also suggests that the
complete perturbation on all parameters will result in suboptimal minima.

Figure 4: Training loss landscapes of ResNet18 on CIFAR10 trained with SGD, SAM, SSAM.

Hessian spectra. In Fig. 5, we report the Hessian spectrum to demonstrate that SSAM can converge
to a flat minima. Here, we also report the ratio of dominant eigenvalue to fifth largest ones, i.e.,
A1/ s, used as the criteria in [17, 29]. We approximate the Hessian spectrum using the Lanczos
algorithm [21] and illustrate the Hessian spectra of ResNetl8 using SGD, SAM and SSAM on
CIFARI10. From this figure, we observe that the dominant eigenvalue A; with SSAM is less than
SGD and comparable to SAM. It confirms that SSAM with a sparse perturbation can still converge to
the flat minima as SAM does, or even better.
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Figure 5: Hessian spectra of ResNet18 using SGD, SAM and SSAM on CIFARI10.

6 Conclusion

In this paper, we reveal that the SAM gradients for most parameters are not significantly different
from the SGD ones. Based on this finding, we propose an efficient training scheme called Sparse
SAM, which is achieved by computing a sparse perturbation. We provide two solutions for sparse
perturbation, which are based on Fisher information and dynamic sparse training, respectively. In
addition, we also theoretically prove that SSAM has the same convergence rate as SAM. We validate
our SSAM on extensive datasets with various models. The experimental results show that retaining
much better efficiency, SSAM can achieve competitive and even better performance than SAM.
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