
6 Appendix

6.1 Algorithm

The pesudocode of AST is presented in Algorithm 1. To generate and sparsely train each sub-net, AST
adapts the gradual pruning scheme combining with prune-and-regrow from GraNet [14]. Specifically,
given initial sparsity si, target sparsity sf , gradual pruning frequency ∆T , starting and end epoch of
gradual pruning t0 and tf , pruning iterations n, the pruning rate of each pruning iteration is defined
as:

st = sf + (si − sf )(1−
t− t0
n∆t

), t ∈ t0, t0 + ∆t, ..., t0 + n∆t (6)

Algorithm 1 The pseudocode of AST.
Require: Model weight W , number of sub-nets N , initial sparsity si, target sparsity [s1f , ..., s

N
f ],

gradual pruning frequency ∆T , extended adjustment period ∆τ .
1: random initialize W with initial sparsity si
2: for each training iteration t do
3: get current number of training iterations tc
4: switching to current sub-net Wi where i ← tc mod (N ∗∆τ)
5: training Wi ← SGD(Wi)
6: if (t mod ∆T == 0) then
7: gradual pruning with the pruning rate produced by Eq. 6 with target sparsity sif
8: prune-and-regrow by Eq.1 and Eq.2
9: if i ! = 0 then

10: gradient correction within the inner-group by Eq.4
11: end if
12: end if
13: end for

6.2 Detailed explanation of rational of AST

Following the proof of Reptile [18], the expectation of αH1g2 can be further expressed as the gradient
inner product of two consecutive sub-nets:

E1,2[αH1g2] = E1,2[αH2g1]

=
1

2
E1,2[αH1g2 + αH2g1]

=
1

2
E1,2[

∂

∂w1
(g1 · g2)]

As shown in Eq.6.2, it is clear to see that the term −αH1g2 is the direction hat serves to maximize
the inner product of two consecutive mini-batches. Thus, it proves that the proposed AST has implicit
regularization to alignment the weight update between sub-nets.

6.3 Detailed experimental setup of AST

The training hyper-parameters of the compared individual sparse training works are same for CIFAR-
10 and CIFAR-100. But this line of works adapt different hyper-parameters to achieve good accuracy
on ImageNet. The report accuracy of Rigl [4] uses 4096 batchsize and trains the model on 100 epochs
with initial learning rate 1.6. GraNet [14] uses 64 bathsize, 100 training epochs, and set the initial
learning rate to 0.1. Mest [26] uses a larger 2048 batchsize and trains the model on 150 epochs with
the initial learning rate 2.048. In this case, to evaluate our method and fair compare with them, we
conduct the basic training settings like the original ResNet by using 256 batchsize and training the
model on 100 epochs with 0.1 initial learning rate. We believe a more fine-grained hyper-parameter
setting could lead to better accuracy. We only run AST on ImageNet once due to the limited resources
by using four Nvidia RTX A4000 GPUs.
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Table 7: ImageNet accuracy and training cost comparison with SoTA works on ResNet-50.

Method ImageNet-2012
ResNet-50 Dense model Acc. = 76.8

Prune Ratio 80% 90%

Individual Training
Top-1 Acc. (%) Training Cost Top-1 Acc. (%) Training Cost

SNIP [11] 69.7 1× 62.0 1×
SET [15] 72.9 1× 69.6 1×
DSR [17] 73.3 1× 71.6 1×
RigL [4] 74.6 1× 72.0 1×

GraNet [14] 76.0 1× 74.5 1×
MEST + EM [26] 75.8 1× 73.6 1×

Training once for all
Jointly-Trained [24](si = 0%) 71.90.5× 1× 65.00.25× 1×

AST + GC (si = 50%) 73.2 0.5× 73.1 0.5×
AST + GC (si = 80%) 72.6 0.5× 72.5 0.5×

Table 8: ImageNet accuracy and training cost comparison with SoTA works on ResNet-18.

Method ImageNet-2012
ResNet-18 Dense model Acc. = 69.76

Prune Ratio 80% 90%

Individual Training
Top-1 Acc. (%) Training Cost Top-1 Acc. (%) Training Cost

GraNet [14] - 1× 63.1 1×
Training once for all

AST + GC (si = 80%) 62.3 0.5× 62.1 0.5×

Table 9: CIFAR-100 accuracy and training cost comparison with SoTA works on wide ResNet-32.
Dataset CIFAR-100 Acc. (%) Training FLOPS

ResNet-32 Dense Model Acc. = 74.94% 1.37e+16 (1×)
Individual Training

Lottery Ticket [5] 68.99 65.02 57.37 -

SNIP [11] 68.89 65.22 54.81 -

DSR [17] 69.63 68.20 61.24 -

GraNet [14] 73.18 72.56 69.89 1.51e+16 (1.13×)

MEST [26] 69.35±0.36 67.85±0.23 62.58±0.31 1.47e+16 (1.07×)

MEST+EM [26] 70.44±0.26 68.43±0.32 64.59±0.27 -

MEST+EMS [26] 71.30±0.31 70.36±0.05 67.16±0.25 -
Training once for all

Jointly-Trained (si = 50%) [24] 70.40±0.14 69.32±0.84 66.85±0.59 1.45e+16 (1.09×)

AST (si = 0%) 73.12±0.10 72.39±0.14 68.06±0.21 6.47e+15 (0.48×)

AST (si = 90%) 69.82±0.12 69.22±0.07 69.37±0.15 5.03e+15 (0.38×)

AST+GC (si = 0%) 73.41±0.04 72.57±0.15 68.42±0.15 6.47e+15 (0.48×)1

AST+GC (si = 90%) 70.11±0.39 70.01±0.54 67.15±0.31 5.03e+15 (0.38×)1

1 For the wide ResNet-32 model, the step-wise and layer-wise gradient projection requires 1.86e+12
FLOPS, which is minimum compared to the majority of training.

6.4 Additional experimental results

To evaluate the effect of initial sparsity, we conduct the experiment by using 50% initial sparsity of
ResNet-50 on ImageNet as shown in Table.8. Compared to 80% initial sparsity, 50% initial sparsity
could achieve 0.6% accuracy gain on both 80% and 90% prune ratio. Furthermore, we also conduct
the experiment on the smaller ResNet-18, which achieve 62.3% and 62.1% accuracy on 80% and
90% prune ratio respectively.
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6.5 Training cost comparison

In addition to the training rounds comparison, we analyze the training cost of the proposed AST
method in terms of the detailed metrics. Table 9 summarizes the number of total FLOPs of training
multiple sparse deep neural networks. Compared to the joint-training scheme [24] or seperately
trained GraNet [14], the proposed AST algorithm achieves up to 2.63× training cost reduction, while
maintaining the similar inference accuracy as the individual training baseline. Furthermore, the
detailed computation cost of the ImageNet experiments are reported in Table 3.

6.6 The impact of different extended adjustment (EA) periods

Regarding the Observation 1, we have summarized the comparison results between the investi-
gated Completely-subset (CS) scheme and the Non-disjoint scheme (ND) in Table 1 of the original
manuscript. As a result, on CIFAR-10 dataset, the ND scheme has the outperformed performance
compared to the constrained completely-subset scheme (CS).

For the Observation 2, to validate the effectiveness of the proposed extended adjustment method (EA),
we add an ablation study on various adjustment periods ∆τ , which is used to determine the frequency
of sub-nets switching. As shown in Table R1, compared to the smaller adjustment period (i.e.,
∆τ = 0, 90), ∆τ = 300 achieves the best accuracy on all three sparsity levels. The reason is that
performing sub-net switching frequently elevates the instability of model optimization.

Table 10: The impact of the extended adjustment period. Given the wide ResNet-32 and CIFAR-100
dataset, sweep the sparsity update interval from 0 epoch up to 300 steps.

Dataset CIFAR-100 Acc (%)
ResNet-32 Dense Model Acc. = 74.94

∆τ (steps) 90% 95% 98%

0 72.92±0.27 72.25±0.20 68.20±0.07

90 73.28±0.13 72.72±0.20 68.25±0.03

300 73.41±0.04 72.57±0.15 68.42±0.15

6.7 AST vs. Naive fine-tuning

We analyze the impact of fine-tuning based on the following three perspectives:

1. A short time of fine-tuning from the dense pre-trained model.
2. Start with sparse pre-training, fine-tune the high sparsity models with a short epochs, while

keep the overall training cost (time) as same as AST.
3. To further clarify the advantages of AST, we also investigate another perspective: a short

time of fine-tuning from the sparse pre-trained model.

Same as the experimental setup in the main paper, we conduct the experiments based on the wide
ResNet-32 model on CIFAR-100 dataset. Given the dense pre-trained model, we separately fine-tune
the dense model to achieve 90%, 95%, and 98% sparsity with minimum efforts. As shown in Table 11,
fine-tuning from a dense model in a short period cannot achieve comparable accuracy as the proposed
AST algorithm. Furthermore, the 160 epochs of pre-training and additional fine-tuning elevate the
overall training costs.

In addition to the dense model fine-tuning, we address the second concern of the reviewer by
performing the sparse progressive training while keeping the overall training cost to be the same as a
single AST training. With the wide ResNet-32 model, we first sparsify the model to 90% sparsity
from scratch with 60 epochs. Subsequently, we prune the 90% sparse model to 95% and then to 98%
sparsity with 50 epochs of fine-tuning. Compared to the single AST training, the total training effort
is the same (60+50+50=160 epochs). As shown in Table 12, such an individual pruning method failed
to achieve the performance as the proposed AST training method. The large accuracy gap suggests
the necessity of the proposed alternative sparsification training.
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Table 11: Fine-tune to high sparsity models from a pre-trained dense checkpoint with minimum
training effort (up to 30 epochs of fine-tuning).

Dataset CIFAR-100 Acc. (%)

ResNet-32 Dense Model Acc. = 74.94

Sparsity 90% 95% 98%

160+10 Epochs 70.06±0.08 62.56±0.15 44.47±0.86

160+20 Epochs 72.13±0.23 67.66±0.04 56.50±0.16

160+30 Epochs 72.76±0.19 68.89±0.35 59.34±0.79

AST+GC (160 epochs) 73.41±0.04 72.57±0.15 68.42±0.15

Table 12: Progressive sparse fine-tuning on CIFAR-100 dataset with wide ResNet-32 model: Start
from scratch, train a 90% sparse model with 60 epochs then fine-tuning to 95% and 98% sparsity
with 50 epochs each. The total training effort is same as a single AST run (160 epochs).

Dataset CIFAR-100 Acc. (%)
ResNet-32 Dense Model Acc. = 74.94

Sparsity 90% 95% 98%

Epoch 60 50 50

Progressive Fine-tune 71.68±0.06 71.11±0.04 68.02±0.14

AST+GC Training Epoch = 160
73.41±0.04 72.57±0.15 68.42±0.15

Furthermore, we investigate the impact of fine-tuning based on a pre-trained sparse model. We first
fully train a sparse subnet with 90% sparsity (with 160 epochs) and prune the resultant model to 95%
and 98% with a minimum amount of fine-tuning. As shown in Table 13, fine-tuning the 90% sparse
model to 95% or 98% sparsity with up to 30 epochs cannot achieve comparable accuracy as AST,
with even higher total training effort.

The experimental results in Table 11, Table 12, and Table 13 suggest that it is difficult for individual
fine-tuning to achieve the level of high sparsity and high accuracy as the proposed AST, regardless of
the initial sparsity of the inherited model checkpoint.

Table 13: Fine-tune to high sparsity model from a pre-trained sparse checkpoint (90% sparsity) with
minimum training effort (up to 30 epochs of fine-tuning).

Dataset CIFAR-100 Acc. (%)
ResNet-32 90% Sparse Model Acc. = 73.16

Sparsity 95% 98%

160+10 Epochs 69.63±0.09 59.25±0.44

160+20 Epochs 70.95±0.20 64.49±0.23

160+30 Epochs 71.70±0.28 66.67±0.24

AST-GC (160 Epochs) 72.57±0.15 68.42±0.15
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6.8 Inference acceleration and computation reduction of AST

Table 14: Inference acceleration and negligible accuracy drop of the proposed AST algorithm with
structured fine-grained sparsity on ResNet-18 model.

Dataset CIFAR-10 Acc. (%) Training Cost
N:M Sparse Pattern Dense Model 2:4 3:4 7:8 15:16

Individually Trained (SR-STE) 95.07 94.89 94.47 94.25 93.92 2.33e+16 (3.95×)
AST + GC - 94.63 94.26 94.31 93.79 5.91e+15 (1×)

Inference FLOPS / 10K images 5.12e+12 2.56e+12 1.28e+12 6.40e+11 3.19e+11 -
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