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Abstract

Consider the task of learning a hypothesis class H in the presence of an adversary
that can replace up to an ⌘ fraction of the examples in the training set with arbitrary
adversarial examples. The adversary aims to fail the learner on a particular target
test point x which is known to the adversary but not to the learner. In this work
we aim to characterize the smallest achievable error " = "(⌘) by the learner in
the presence of such an adversary in both realizable and agnostic settings. We
fully achieve this in the realizable setting, proving that " = ⇥(VC(H) · ⌘), where
VC(H) is the VC dimension of H. Remarkably, we show that the upper bound
can be attained by a deterministic learner. In the agnostic setting we reveal a
more elaborate landscape: we devise a deterministic learner with a multiplicative
regret guarantee of "  C · OPT + O(VC(H) · ⌘), where C > 1 is a universal
numerical constant. We complement this by showing that for any deterministic
learner there is an attack which worsens its error to at least 2 · OPT. This implies
that a multiplicative deterioration in the regret is unavoidable in this case. Finally,
the algorithms we develop for achieving the optimal rates are inherently improper.
Nevertheless, we show that for a variety of natural concept classes, such as linear
classifiers, it is possible to retain the dependence " = ⇥H(⌘) by a proper algorithm
in the realizable setting. Here ⇥H conceals a polynomial dependence on VC(H).

1 Introduction

A basic goal in machine learning is to develop a predicting model from labeled examples (i.e., training
data) that can reliably generalize to unseen examples (i.e., test data). In its simplest form, namely,
binary classification, a learner Lrn is given a training set S = {(x1, y1), . . . , (xn, yn)}, usually
assumed to be i.i.d. samples drawn from an unknown distribution D of labeled examples where xi’s
are the domain instances (or data points) and yi 2 {0, 1} are the labels. The aim is to produce a
mapping h = Lrn(S) that predicts the labels of fresh examples (x, y) ⇠ D as accurately as possible,
i.e., to minimize the population loss LD(h) = Pr(x,y)⇠D[h(x) 6= y]. This classical setting has
been extensively studied in the last half a century. This accumulated work resulted in fundamental
mathematical characterizations regarding the nature of learnability when the training samples are
truly i.i.d without any tampering by an adversary [Shalev-Shwartz and Ben-David, 2014]. The goal
of this paper is to offer a similar characterization in the presence of an adversary who can tamper
with a subset of the training data.
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With the emergence of sensitive machine learning applications, it is critical to ensure the trustworthy
of such predictive models in the non-ideal scenarios. In this paper, we consider robust learnability
when the training examples can be altered by an adversary whose goal is to make sure that a target
test point will be predicted incorrectly. For instance, a language model trained on conversations
in shopping forums can be attacked by marketing campaigns, who may want a specific product to
be associated with a positive experience, instead of a bad one. Another example is an adversary
who aims to fool a self-driving car to speed up once it observes a stop sign. If such an adversary
can somehow influence the training sets used for training the decision rules, she has all the reasons
to strategically change them with the specific goal of misleading the self-driving car. As another
example, consider a loan applicant who wants to make sure that his loan will be granted. If he can
somehow change the training set used by the bank, he might be able to make his application approved.
Note that the training set is the lens through which a learning algorithm obtains information about the
underlying learning process. Therefore, once we allow the training examples to be tampered with
by an adversary, even slightly, unexpected outcomes may take place. To quantify the robustness of
learning algorithms, in this paper, we show how much the outcome of a learning algorithm for a
particular target test can be trusted once the training set is being altered.

(PAC) learning under instance-targeted poisoning. More formally, we consider an adversary Adv

that is allowed to replace an ⌘-fraction of the training sample S, resulting to a tampered training
sample S

0 given to the learning algorithm Lrn. Note that even though the training sample S is drawn
i.i.d. from a distribution D, the tampered training sample S

0 does not enjoy this property anymore.
Such attackers are also called poisoning adversaries [Barreno, Nelson, Sears, Joseph, and Tygar,
2006], and variants of them are previously studied under the name of malicious noise [Valiant, 1985,
Kearns and Li, 1993] or nasty noise [Bshouty, Eiron, and Kushilevitz, 2002]. More specifically, we
study poisoning settings in which the adversarial perturbation of the original sample S can also
depend on the final test instance x. Due to the adversary’s knowledge of the target test point x,
such poisoning attacks are sometimes referred to as instance-targeted poisoning attacks [Barreno,
Nelson, Sears, Joseph, and Tygar, 2006]. Even without any manipulation to the training set, it is
too much to ask the learning algorithm to predict correctly all the time while given only a finite
number of examples to learn from. In the same vein, we can only hope to design a robust learning
algorithm that is correct with high probability over the selection of (x, y) ⇠ D, especially if the
adversary knows the test instance (x, y) before manipulating the training set S to S

0. Gao, Karbasi,
and Mahmoody [2021], building on ideas from [Levine and Feizi, 2020], proved that PAC learnability
under instance-targeted poisoning attacks is achievable only when ⌘ = o(1). In other words, when
the adversary can only change a sublinear o(n) number of n examples, then the optimal learner can
achieve error o(1) that goes to zero when the number of examples n goes to infinity.

1.1 Our Results

The prior work leaves several key questions open on the exact parameters of learnability under
instance-targeted poisoning. Most importantly, the work of Gao, Karbasi, and Mahmoody [2021]
does not quantify the error rate when the adversary’s budget is ⌘ = ⌦(1) (e.g., if the adversary can
corrupt n/100 of the examples). Secondly, Gao, Karbasi, and Mahmoody [2021] only assume the
realizable setting as it is crucial for their results that all the “sub-models” trained using the bagging
technique will have error that goes to zero. Hence, the question of finding optimal learning rates is
left open for both realizable and agnostic settings. Finally, as the developed robust algorithms are all
based on “bagging” they are inherently improper learning technique.

In this work, we make progress on all the directions above and achieve optimal error rates (up to
constant factors) for general ⌘, both for the realizable and agnostic settings. We further study the
proper nature of the obtained algorithms and give the first proper learning methods that are robust
against instance-targeted poisoning attacks for natural hypothesis classes such as linear classifiers.
More precisely, we give a characterization of the optimal error rate of learning under instance-targeted
poisoning attacks with budget ⌘ · n as follows.

Realizable setting. We show that the optimal error is ⇥(⌘ · d) where d is the VC dimension of the
hypothesis set H. To prove this, we first present an upper bound, showing that a (deterministic)
learner can guarantee the error to be at most O(⌘d) under any instance-targeted poisoning attacks of
budget ⌘n. We then also show a matching lower bound (up to a constant factor) as follows. For any
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nontrivial1 hypothesis class of VC dimension d, we show how to design a distribution D over the
examples such that no matter how the learning proceeds, there always exists an adversary of budget
⌘n that can increase the error (under the instance-targeted attack) to ⌦(⌘d). Our lower bound above
holds even if the learning algorithm uses private randomness that is not known to the adversary2. Our
positive result, however, is deterministic, and so can be seen as satisfying the stronger guarantee, in
which the adversary’s perturbations to the training set is allowed to depend on learner’s randomness.

Agnostic setting. We also extend our result above to the agnostic setting in which all hypotheses
h 2 H have population loss bounded away from zero (even before the attack). In this setting, we
devise a deterministic algorithm whose expected error on the test point is O(OPT+ ⌘ · d), where
OPT is the population loss of the best hypothesis h 2 H.

A natural question that arises is whether one can achieve an additive regret guarantee of OPT +
O(⌘ · d)? (Note that agnostic learning is usually defined with respect to additive regret). We show
that this is in fact not possible, at least for deterministic learners, by presenting a negative result. In
particular we show that for any deterministic learner Lrn, there is an extremely simple hypothesis
class (just consisting of two functions) and an input distribution such that the learner is forced to have
adversarial error � 2OPT. This negative result uses tools from the computational concentration of
products [Talagrand, 1995] and a continuity intermediate-value argument.

Proper learning. The deterministic algorithm witnessing the above upper bound is inherently
improper which might be a disadvantage in terms of interpretability or test-time computational
complexity. In contrast, in (the non-adversarial) PAC setting proper algorithms are known to achieve
near optimal learning rates (up to log factors). We therefore explore the cost of proper learning under
instance-targeted poisoning attacks. We show that in many natural classes, such as half spaces, it is
indeed possible to obtain proper learning rules that are robust to instance-targeted poisoning attacks,
with guarantees which are only polynomially worse than optimal. For example, for the class of
half-spaces in Rd we derive a deterministic proper learning rule whose error rate is at most O(d3⌘).
At a technical level, we achieve this result by relying on the projection number of the class [Bousquet,
Hanneke, Moran, and Zhivotovskiy, 2020, Kane, Livni, Moran, and Yehudayoff, 2019, Braverman,
Kol, Moran, and Saxena, 2019].

1.2 Relation to Certification and Stability

Certification. Robustness to instance-targeted poisoning boils down to the following type of
stability: on most of the test instances x, the prediction of the learner y = y(x) remains the same
even if at most ⌘ fraction of the examples in the training-set S are replaced. It is natural to require the
learning rule to certify this stability. That is, a certifying learning rule provides a bound k = k(x)
along with the prediction label y = y(x), where the meaning of k is that the prediction y = y(x)
remains the same even if at most k examples in the input sample are replaced. Note that it is always
possible to provide the trivial guarantee of k = 0, and therefore the goal is to design robust learners
that provide non-trivial certificates. Our algorithm naturally achieves that: for ⇡ 1 � " of the test
instances x it provides a guarantee of k ⇡ ⌘n.

Connection to stability. We also present a new perspective on instance-targeted poisoning attacks by
showing how they can be seen as natural forms of algorithmic stability [Bousquet and Elisseeff, 2002,
Rakhlin, Mukherjee, and Poggio, 2005]. In particular, we show that one can study the adversarial
robustness (around the true label) to instance-targeted poisoning by decoupling the (pure) stability
aspect (which does not depend on the true labels) from the (non-adversarial) risk. We refer to the
former as the prediction stability. Roughly speaking, prediction stability requires that the model’s
prediction on x does not change even if the adversary changes the training set withing its budget ⌘n.
Note that here we do not care whether the model’s output on x is the correct label or not, and hence
is a pure measure of stability of the predictions.

It might be helpful to compare prediction stability with the algorithmic stability of [Bousquet and
Elisseeff, 2002, Rakhlin, Mukherjee, and Poggio, 2005]. The later requires that for a typical sample S
of size n, and for every fixed i 2 [n], the prediction of the model trained on S and tested on a random

1A non-trivial class H is one for which there are x1, x2 2 X and h1, h2 2 H so that h1(x1) = h2(x1) and
h1(x2) 6= h2(x2). In particular, any class containing at least 3 hypotheses is non-trivial.

2This model is referred to as the “weak” learning model (under instance-targeted poisoning attacks) in the
work of Gao, Karbasi, and Mahmoody [2021].
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test-point x is likely not changed if one substitutes the i-th example in S with a fresh random example.
Prediction stability strengthens this condition in two ways: (1) the choice of what coordinate in S to
change can adversarially depend on the test instance x, (2) the adversary is allowed to change more
than one examples (i.e., up to ⌘ · n).

1.3 Related Work

Poisoning attacks are studied in theoretical learning under various noise models [Valiant, 1985,
Kearns and Li, 1993, Sloan, 1995, Bshouty, Eiron, and Kushilevitz, 2002]. However, these works
focus on the non-targeted setting in which the adversary does not know the target instance.

The computational aspects of efficient learning under (non-targeted) poisoning have been studied in
various works, including that of Kalai, Klivans, Mansour, and Servedio [2008], Klivans, Long, and
Servedio [2009], Awasthi, Balcan, and Long [2014], with this last work obtaining nearly optimal (up
to constants) learning guarantees among polynomial-time algorithms for learning homogeneous linear
separators with malicious noise under distribution restrictions. That result was subsequently extended
to the nasty noise model by Diakonikolas, Kane, and Stewart [2018], via techniques that also enable
them to study other geometric concept classes. In the unsupervised setting, Diakonikolas, Kamath,
Kane, Li, Moitra, and Stewart [2016], Lai, Rao, and Vempala [2016] studied the computational
aspect of learning under poisoning. In contrast, our work focuses on (supervised) instance-targeted
poisoning, and we study the learning rates information theoretically regardless of learner’s computing
power. The work of Steinhardt, Koh, and Liang [2017] further studied the certification of the overall
(non-targeted) error. More recently, such (non-targeted) poisoning attacks are combined with test-time
attacks and are studied under the name of backdoor attacks [Gu, Dolan-Gavitt, and Garg, 2017, Ji,
Zhang, and Wang, 2017].

Besides instance-targeted attacks (which are the focus of this paper), other notions of targeted attacks
were studied in the literature: for example, in model-targeted attacks, the adversary’s goal is to make
the learner predict according to a specific model. Recent works on this model include [Farhadkhani,
Guerraoui, Hoang, and Villemaud, 2022, Suya, Mahloujifar, Suri, Evans, and Tian, 2021]. Some
other works study label-targeted attacks, in which the adversary’s goal is to flip the decision on the
test instance to a specific label (e.g., see targeted misclassification attacks in [Chakraborty, Alam,
Dey, Chattopadhyay, and Mukhopadhyay, 2018]). The work of [Jagielski, Severi, Pousette Harger,
and Oprea, 2021] studies a generalization of instance-targeted attacks, called subpopulation attacks,
in which the adversary knows the subset of the inputs, from which the test instance will be drawn.

Most relevant to our setting are the recent works of Gao, Karbasi, and Mahmoody [2021], Blum,
Hanneke, Qian, and Shao [2021] where the general problem of learning (and more quantitative
variant of learning error rate) under instance-targeted poisoning was formally defined and studied.
In particular, Blum, Hanneke, Qian, and Shao [2021] studied learnability under instance-targeted
poisoning where the adversary can add an unbounded number of so-called clean-label examples
to the training set. A clean-label example (x, y) has the property that y is the correct label of x,
while x could be an arbitrary instance that is not sampled from the same distribution that generates
other instances in the training set. Gao, Karbasi, and Mahmoody [2021] also showed that when the
adversary’s corruption is only an o(1) fraction of the training set, PAC learning is possible (if it is
possible without the attack). In a concurrent work, Balcan, Blum, Hanneke, and Sharma [2022]
study the problem of certifying the correct prediction even under instance-targeted data poisoning.
Our methods, however, can be used to obtain certification of the stability of the model around their
prediction (even though the prediction might not be true always), while controlling the overall error
to be provably small (again under the instance-targeted attack).

Rosenfeld, Winston, Ravikumar, and Kolter [2020] empirically demonstrated that randomized
smoothing [Cohen, Rosenfeld, and Kolter, 2019] can provide robustness against label-flipping attacks,
in which the adversary is limited to merely flipping the label of a subset of the training set. They also
showed that randomized smoothing can be used to handle replacing attacks (the model also studied
in this paper), in which the adversary substitutes a part of the training set with a new set of same
size. Subsequently, Levine and Feizi [2020] used deterministic methods that further allowed attacks
that can add examples to or remove them from the training set. Chen, Li, Wu, Sheng, and Li [2020],
Weber, Xu, Karlas, Zhang, and Li [2020], Jia, Cao, and Gong [2020] further developed the technique
of randomized bagging/sub-sampling for the goal of resisting instance-targeted poisoning attacks.
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Finally, we comment that other theoretical works have also studied instance-targeted poisoning
attacks [Mahloujifar and Mahmoody, 2017, Etesami, Mahloujifar, and Mahmoody, 2020]. These
works show how to amplify error for specific test instances, say from 0.01 error to 0.5, through
instance-targeted poisoning. In particular, these works do not talk about the fraction of the test
population that is vulnerable to targeted poisoning. The work of Shafahi, Huang, Najibi, Suciu,
Studer, Dumitras, and Goldstein [2018] studied the power of such attacks empirically.

2 Preliminaries

Notation and basic learning theory definitions. We consider the setting of binary classification.
Let X denote the input domain and Y = {0, 1} denote the label-set. A pair (x, y) 2 X ⇥ Y is called
an example. A sequence S = (x1, y1), . . . , (xn, yn) 2 (X ⇥ Y)n of n examples is a sample of size
n. The i’th example in S is denoted by Si.

A function h : X ! Y is called an hypothesis or a concept. A set of hypotheses H ⇢ Y
X is called an

hypothesis class, or a concept class. We denote the VC-dimension of a concept class H by d = d(H).

For a set Z, let Z⇤ = [nZ
n denote the set of all finite sequences with elements from Z. A learning

rule or learning algorithm or learner Lrn : (X ⇥Y)⇤ ! X
Y is a deterministic3 mapping which takes

an input sample S 2 (X ⇥ Y)⇤ and maps it to a hypothesis Lrn(S) = h 2 X
Y . If it is guaranteed

that Lrn(S) 2 H for all input samples S then Lrn is said to be proper; otherwise, it is improper.

Let D be a distribution over examples, and let h be an hypothesis. The population loss of h

with respect to D is defined by LD(h) = Pr(x,y)⇠D[h(x) 6= y] = E(x,y)⇠D[1[h(x) 6= y]]. A
distribution D is said to be realizable by H if infh2H LD(h) = 0. Similarly, for a sample S, let
LS(h) = 1

|S|

Pn
i=1 1[h(xi) 6= yi] denote the empirical error of h with respect to S, and call a

sample realizable by a class H if there exists h 2 H such that LS(h) = 0. The expected loss
(also called risk) of a learning algorithm Lrn w.r.t a distribution D and sample size n is defined
by "n(Lrn|D) := PrS⇠Dn,(x,y)⇠D [Lrn(S)(x) 6= y]. The function n 7! "n(Lrn|D) is called the
learning curve, or learning rate of Lrn w.r.t D.

For a real number r, let bre denote the nearest integer to r. In case of ties, when r = k + 1/2 for
some k 2 Z, then define bre = k + 1. For any finite multiset H0

⇢ H, denote by Maj(H0) the
function defined for all x 2 X by Maj(H0)(x) =

j
1

|H0|

P
h02H0 h

0(x)
m

.

Adversarial risk and prediction stability. Before we introduce the definition of Adversarial risk,
we define Hamming distance between samples, which is a natural way to quantify distance between
samples of equal size.
Definition 2.1 (Hamming distance between samples). Fix n 2 N and let S, S0

2 (X ⇥ Y)n. We
define the Hamming distance between S and S

0 by dH(S, S0) =
Pn

i=1 1[Si 6= S
0

i].

Note that the Hamming distance is defined only for samples of equal sizes. If dH(S, S0)  ⌘ · n, we
say that S, S0 are ⌘-close. For any sample S, let B⌘(S) :=

�
S
0 : dH(S, S0)  ⌘ · n

 
.

Definition 2.2 (⌘-adversarial risk). Let ⌘ 2 (0, 1) be the adversary’s budget, let Lrn be a learning
rule, and let D be a distribution over examples. The ⌘-adversarial risk of Lrn w.r.t D and sample
size n is defined by

"
Adv

n (Lrn|D, ⌘) := Pr
S⇠Dn,(x,y)⇠D

[9S0
2 B⌘(S) : Lrn(S

0)(x) 6= y] .

Thus, robust learning with respect to instance-targeted poisoning with budget ⌘ boils down to
minimizing the adversarial risk. Indeed, given an input sample S and a test example (x, y), an
adversary with budget � can force a mistake on x if and only if Lrn(S0)(x) 6= y for some S0

2 B⌘(S).

Randomness. In Definition 2.2 above we define adversarial risk for the setting in which both the
learner Lrn and the model h = Lrn(S) are deterministic. When either Lrn or h is allowed to use
randomness, then the notion of adversarial risk as defined in Definition 2.2 can be extended in several
ways, depending on whether the adversary can see the randomness of the learner or not. Some of
these variations are discussed in the work of Gao, Karbasi, and Mahmoody [2021]. We remark

3In Appendix B, we extend the definition in a way that captures also a family of randomized learners.
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however that our results in the realizable setting apply to all variations. This is simply because our
upper bounds are achieved by deterministic learners, whereas our lower bound uses the weakest type
of an adversary (which does not depend on the randomness of the learner). In contrast, our lower
bound in the agnostic setting applies only to deterministic learners.

Explicit bounds. We do not try to optimize the constants hidden in the O(·),⌦(·) notation in the
derived bounds. The reason is because on the one hand, this way the proofs are simpler and more
accessible, and on the other hand, we do not know how to get tight (or nearly tight) lower and
upper bounds on the constants. Obtaining tight bounds is a natural direction for future research; we
elaborate on this in Section 5. Nevertheless, the complete proofs (which are given in the appendix)
include explicit numerical bounds on the constants.

Decoupling adversarial risk into stability and risk. It is convenient and illustrative to decouple
robust learnability to two properties: small expected loss and prediction stability. The latter means
that the prediction of the learning algorithm on a random test point is stable under replacing a bounded
amount of examples from the training set:
Definition 2.3 (Prediction stability). Let n 2 N, �, ⌘ 2 (0, 1). Let Lrn be a learning rule and D be
a distribution over examples. We say that the learning rule Lrn is (n,�, ⌘)-prediction stable with
respect to D if the following holds

�n(Lrn|D, ⌘) := Pr
S⇠Dn,x⇠Dx

[9S0
2 B⌘(S) : Lrn(S

0)(x) 6= Lrn(S)(x)]  �.

where Dx is the marginal distribution induced by D on the domain X .

Of course, prediction stability alone does not guarantee robust learning. Indeed, useless learning
rule that always outputs the all 0’s classifier has maximal stability. At the very least, the learning
rule should learn the class in the classical sense (in the absence of an adversary). The following
observation asserts that prediction-stable learning rules with small loss are robust learners:
Observation 2.4 (Prediction stability + small error = robust learning). Let Lrn be a learner and D a
distribution over examples. Then,

max {"n(Lrn|D),�n(Lrn|D, ⌘)}  "n(Lrn|D, ⌘)  �n(Lrn|D, ⌘) + "n(Lrn|D).

In other words, if Lrn is (n,�, ⌘)-prediction stable with respect to D whose expected population
loss is "n(Lrn|D)  ". Then Lrn learns D with an adversarial expected loss � + ✏. Conversely, if
"n(Lrn|D, ⌘)  " then Lrn is (n, ", ⌘)-prediction stable with respect to D and its expected population
loss is also "n(Lrn|D)  ". We leave the (simple) proof of Observation 2.4 to the reader.

3 Realizable Setting

Theorems 3.1 and 3.3 below characterize the optimal adversarial risk in the realizable setting.
Theorem 3.1 (Realizable case – positive result). There exists a constant c1 > 0 so that the following
holds. Let H be a hypothesis class with VC dimension d and let ⌘ 2 (0, 1). Then there exists a
learner Lrn having ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘)  c1⌘d

for any distribution D realizable by H and for any sample size n � 1/⌘.

We prove Theorem 3.1 in Appendix A.

Note that the requirement that the sample size is n � 1/⌘ is necessary since otherwise ⌘ · n < 1,
which means that the adversary cannot modify the input sample, and so this case reduces to classical
learning without an adversary.

Theorem 3.1 is proven using the STABLE PARTITION AND VOTE (or SPV, for short) meta-algorithm,
described in Figure 1. The meta-algorithm is based on the idea of partitioning and then voting used
in [Gao, Karbasi, and Mahmoody, 2021], but with a more refined and precise analysis. The partition
and vote technique works as follows. First, partition the input sample to subsamples of a carefully
chosen size. Then, train a given learner (which is called the input learner of SPV) on each subsample,
and finally let the trained learners vote to determine the output label. The size of each subsample
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SPV: STABLE PARTITION AND VOTE

Input: Stability parameter ⌘ 2 (0, 1), a learning algorithm Lrn and an input sample S ⇠ D
n

where n � 1/⌘.
Output: A classifier h : X ! Y .

1. Partition S into d7⌘ne consecutive subsamples such that all first t = b7⌘nc subsam-
ples are of size at least 1

7⌘ . Denote the i’th subsample by S
(i).

2. For all i 2 [t], run the learning algorithm Lrn on S
(i) to obtain a hypothesis

hi = Lrn(S(i)).
3. Return the hypothesis h defined as follows for all x 2 X :

h(x) = Maj ({h1, . . . , ht}) (x).

Figure 1: SPV - A meta algorithm implementing a stable version of the input learning algorithm Lrn.

trades-off, in a way, expected loss and prediction-stability: if it is too small, the given learner will
perform poorly on each subsample. On the other hand, if it is relatively large then the number of
learners that participate in the majority vote is small and the adversary can poison a large fraction of
these learners and flip the overall majority vote. We elaborate on this when proving Theorem 3.1.
Notice that the time complexity of SPV is proportional to the time complexity of the learner Lrn.

To state the complementing impossibility result, we need the following definition of non-trivial
concept classes [Bshouty, Eiron, and Kushilevitz, 2002].
Definition 3.2 (Non-trivial concept classes). We say that a concept class H over a domain X is
non-trivial, if there are x1, x2 2 X and h1, h2 2 H so that h1(x1) = h2(x1) and h1(x2) 6= h2(x2).
Theorem 3.3 (Realizable case – impossibility result). There exists a constant c2 > 0 so that the
following holds. Let H be a non-trivial hypothesis class with VC dimension d and let ⌘ 2 (0, 1).
Then, there exists a distribution D realizable by H, so that every learner Lrn has ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘) � min{c2⌘d, 1/100}

for any sample size n � 1/⌘.

We note that this impossibility result applies also to a variety of randomized learners; we elaborate on
this in Appendix B, where we also prove Theorem 3.3.

The above lower bound demonstrates how vulnerability to instance-targeted attacks depends greatly
on the hypothesis class we want to learn, and specifically on its VC-dimension.

3.1 Certification

Besides prediction-stability, another useful property our SPV meta-algorithm has is the ability to
efficiently calculate and output a certificate for the stability of its predictions. Formally, given an
input sample S, a certificate is a function ⌘S : X ! [0, 1], outputted by a learner in addition to its
output hypothesis hS such that the following is satisfied: hS(x) = hS0(x) for every point x and
for every input sample S

0 which is ⌘S(x)-close to S. If one ignores computational considerations,
outputting optimal certificates is always possible:
Definition 3.4 (Optimal Certificate). Let Lrn be any learning rule, and let S be an input sample.
Define the optimal certificate ⌘?(·) = ⌘

?(·|S) of Lrn on input sample S as follows. The optimal
certificate ⌘?(x|S) is equal to k

n where k is the largest integer for which Lrn(S0)(x) = Lrn(S)(x)
for every sample S

0 with hamming distance at most k from S.

In other words, if S is a sample that was corrupted by an adversary with budget ⌘ such that ⌘ 

⌘
?(x|S) then the output label Lrn(S)(x) is equal to the label that would have been outputted if the

learner was trained with the uncorrupted sample.

The issue with the optimal certificate ⌘?(x) is that it can be impossible to compute as it requires to
iterate over the potentially infinite space of all samples S0 of hamming distance at most n · ⌘(x) from
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PSPV: PROPER STABLE PARTITION AND VOTE

Input: Stability parameter ⌘ 2 (0, 1), a proper learning algorithm Lrnp and an input sample
S ⇠ D

n where n � 1/⌘.
Output: A classifier h 2 H.

1. Partition S into d5kp⌘ne consecutive subsamples such that all first t = b5kp⌘nc
subsamples are of size at least 1

5kp⌘
. Denote the i’th subsample by S

(i).

2. For all i 2 [t], train Lrnp on S
(i) to obtain a hypothesis hi = Lrnp(S(i)).

3. Return h 2 H such that

h(x) = Maj ({h1, . . . , ht}) (x)

holds for all x 2 X{h1,...,ht},2kp
.

Figure 2: PSPV - A meta-algorithm that implements a stable version of the input proper learning
algorithm Lrnp and maintains properness.

the input sample S. In contrast, our SPV learner can efficiently calculate a non-trivial lower bound
on ⌘? which therefore also serves as a certificate. The key property which enables this is the fact that
its output hypothesis is the majority vote of base learners, each trained on a disjoint subsample. This
is summarized in the following proposition:
Proposition 3.5. Consider a learner whose output hypothesis is given by a majority vote of t learners
L1, . . . , Lt that are trained on t disjoint subsamples S1, . . . , St of the input sample S. Define

⌘(x|S) =
1

n
·

⇣P
i2[t] 1[hi(x) = y]�

P
i2[t] 1[yi 6= y]

2
� 1

⌘
,

where hi is the output hypothesis of Li, y is the output label of the majority vote of the Li’s, and n is
the size of the input sample S. Then, ⌘(x|S)  ⌘

?(x|S).

Proof. Notice that n · ⌘(x|S) + 1 is equal to the minimal number of hi’s whose prediction on x

must be flipped in order to enforce that |{i : hi(x) = y}|  |{i : hi(x) 6= y}|. Therefore, at least
one example in each Si such that hi(x) = y must be replaced in order to change the prediction of
Lrn(S) on x. In particular, if only n · ⌘(x|S) examples are replaced than the prediction of Lrn(S) on
x remains the same. This implies that ⌘?(x|S) � ⌘(x|S) as stated.

In light of Proposition 3.5, our SPV learner can efficiently compute and output a certificate ⌘(x) which
is proportional to ⌘ (where ⌘ is the stability parameter given to SPV), with probability proportional
to the expected loss of the input learner given to SPV when executed on a sample of size

l
1
7⌘

m
.

3.2 A Proper Variant of SPV

We now present a proper version of SPV for classes H with a finite projection number, described
in Figure 2. The projection number of a concept class H is denoted by kp = kp(H) (we present its
definition after the statement of Theorem 3.6 below). In particular, for the class of halfspaces it yields
a robust learner with the following guarantee:
Theorem 3.6. There exists a constant c > 0 so that the following holds. Let H be the class of
halfspaces over Rd for some d � 1, and let ⌘ 2 (0, 1). Then, there exists a proper learner Lrn having
⌘-adversarial risk

"n(Lrn|D, ⌘)  c⌘d
3

for any distribution D realizable by H and for any sample size n � 1/⌘.

The proof of Theorem 3.6 is deferred to Appendix C.

To derive Theorem 3.6, we reinforce the SPV algorithm with a technique introduced by Kane,
Livni, Moran, and Yehudayoff [2019] and further developed by Bousquet, Hanneke, Moran, and
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Zhivotovskiy [2020]. This technique allows in certain cases to project a majority vote of hypotheses
from the class H back to H. Its applicability hinges on a combinatorial parameter called the projection
number. The PSPV learner explicitly uses the projection number, so for completeness we give its
definition below. The interested may see the work of Bousquet, Hanneke, Moran, and Zhivotovskiy
[2020] for an insightful discussion on the role of the projection number in proper learning.
Definition 3.7 (Projection Number). Let H be a concept class. For any ` � 2 and for any multiset
H

0
⇢ H define the set XH0,` to be the set of all x 2 X , for which the number of hypotheses in H

0

that disagree with Maj(H0)(x) is less than |H
0
|/`. The Projection Number of the class H, denoted

kp = kp(H), is defined to be the smallest ` so that for any finite multiset H0
⇢ H, there exist h 2 H

such that h(x) = Maj(H0)(x) for all x 2 XH0,`. If no such ` exists then kp = 1.

4 Agnostic Setting

In this section, we extend the results on robust learnability to the agnostic case. First, by a simple
generalization of the positive result for the realizable case, we provide a robust semi-agnostic
learner. That is, our learner has adversarial risk depending linearly on OPT = OPT(H, D) :=
minh2H LD(h). While semi-agnostic learning is considered not ideal in many cases, we complement
our positive result by showing that semi-agnostic learning is unavoidable when the goal is to design a
robust and deterministic (as ours) learner for the agnostic setting.

4.1 A Semi-agnostic Learner

Formally, a semi agnostic learner is defined as follows. Let c 2 R. A learning rule Lrn is a c-
semi agnostic learner if the following holds. Let H be a concept class and let D be a distribution
over examples. Then there exists an excess error rate "Agn : N ! [0, 1] such that "n(Lrn|D) 

cOPT+ "
Agn(n) where OPT = infh2H LD(h).

Before stating our positive result in this setting, we first discuss how achieving adversarial risk
O(d(OPT+ ⌘) is possible by reduction to the realizable setting.

Reduction to the realizable setting. Suppose a learner is given a training set S0 of size n that comes
with ⌘n replacements made by the adversary on the original set S. Moreover, suppose that S is
sampled from a distribution D such that the best h 2 H has OPT error on D. This means that,
roughly OPT fraction of S does not match to h. Therefore, one can see S

0 as first sampled from D

(without noise) followed by ⇡ (⌘ + OPT) · n replacement corruptions. This way, one can employ a
learner that can tolerate ⌘0 = ⌘ + OPT fraction of adversarial corruptions in the realizable setting
and obtain total adversarial risk O(d(OPT+ ⌘).

The above discussion raises a natural question: can a learner achieve adversarial risk O(OPT+ d⌘)
or even (ideally) OPT + O(d⌘)? The latter is the typical type of risk bound in agnostic settings,
where there is no multiplicative dependence on OPT in the risk.

The following theorem, which we prove in Appendix D states the positive result.
Theorem 4.1 (Positive result for the agnostic case). There exist constants c1, c2 so that the following
holds. Let H be a hypothesis class with VC dimension d and let ⌘ 2 (0, 1). Then, there exists a
learner Lrn having ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘)  c2 · OPT+ c1 · d · ⌘

for any distribution D over examples and for any sample size n � 1/⌘.

As in the realizable case upper bound, the above upper bound is proved by using the SPV meta-learner.
The main difference is that to prove this result we use a different input learner Lrn given to SPV than
the one we use in the realizable case.

4.2 Ruling Out Agnostic Learning

Note that Theorem 4.1 only proves the existence of a semi-agnostic learner under instance-targeted
poisoning. A more desirable goal would be to obtain (standard) agnostic learners whose error under
the attack is OPT+  where  is a vanishing (additive) error term when ⌘ ! 0. Here we will prove
that at least when it comes to deterministic learners, such a goal is out of reach, and the best we can
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hope for is 2OPT plus additive terms that depend on ⌘ and the VC dimension. This explains why we
can only achieve a semi-agnostic learner.

The following theorem, which we prove in Appendix E shows that in Theorem 4.1, the constant c1
needs to be at least 2, and so the standard way agnostic learners bound their regret is not possible for
instance-targeted poisoning.

Theorem 4.2 (Impossibility of agnostic learning). Let ⌘0 2 (0, 1), n 2 N. For any hypothesis class
H that has at least two hypotheses and for any deterministic learner, there is a distribution D over
(two) examples and ⌘ = ⌘

0 + eO(1/
p
n) such that Lrn has ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘) � 2OPT+ ⌦(⌘0)�O(1/n).

5 Conclusion and Open Questions

In this work, we studied the optimal rate of learning for binary classification problems under instance-
targeted poisoning. We showed that in the realizable setting the error rate can be characterized up to
a constant factor and is proportional both to adversary’s budget and the VC dimension of the class. In
the agnostic setting, we proved a perhaps surprising lower bound that standard agnostic learning (with
additive regret compared to the optimal error in the no-attack setting) is impossible for deterministic
learners, and also complemented this with a positive result using a semi-agnostic learner. We also
showed how to make our learners proper in a variety of interesting settings.

Our work leaves a few interesting directions for future research.

• Finding the exact constant in the realizable case. Our results in the realizable case
characterize the optimal adversarial risk up to a constant multiplicative factor in the sense
that there exist constants c1, c2 so that achieving ⌘-adversarial risk of c1⌘d is possible for
any hypothesis class with VC-dimension d, whereas obtaining ⌘-adversarial risk of c2⌘d
can’t be achieved for any hypothesis class with VC-dimension d. However, there is a large
gap between c1, c2. Can we close or shrink this gap?

• Finding the correct multiplicative factor in the agnostic case. Our results show that in
the agnostic case, there must be a constant C � 2 so that the best adversarial risk attainable
is C · OPT. What is the value of C?

• Characterizing proper robust learning. In the proper and realizable case, our stable
learner for linear classifiers depends on d

3, while our lower bound depends linearly on d, as
in the general improper case. It remains open to identify the correct dependence on d.

• Characterizing the role of randomness. Our impossibility result for the agnostic learning
(Theorem 4.2) only applies to deterministic learners. It remains open to either effectively
use randomness during the learning (known or unknown to the adversary) and obtain an
agnostic learner, or to extend the negative result to cover such randomized learners as well.
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