A Proof of Lemma 1

Proof. In an optimal translational model \mathcal{T} , for any valid (h, r, t) we have: $\operatorname{trans}_{r}(\operatorname{emb}(h)) = \operatorname{emb}(t)$ (18) According to the definition of prototypes, an entity p is the prototype for (h, r, ?) if and only if: $\operatorname{trans}_{r}(\operatorname{emb}(h)) = \operatorname{trans}_{r}(\operatorname{emb}(p))$ (19)

B Proof of Lemma 2

Proof. Recall that the margin loss of \mathcal{T}^{θ} with margin γ is:

$$\mathcal{L} = -\max(\gamma - \mathcal{T}^{\theta}(\mathbf{h}, \mathbf{r}, \mathbf{t}), 0) + \sum_{i=1}^{n} \frac{1}{n} \max(\gamma - \mathcal{T}^{\theta}(\mathbf{h}'_{i}, \mathbf{r}, \mathbf{t}'_{i}), 0)$$
(20)

where (h'_i, r, t'_i) is the *i*-th negative triplet.

If the global minimum of the loss is achieved, then for any positive (h, r, t), we have:

$$\max(\gamma - \mathcal{T}_{hr}^{\theta}(t), 0) = \gamma \Rightarrow \mathcal{T}_{hr}^{\theta}(t) = 0$$
(21)

for any negative (h, r, t_{neg}) , we have:

$$\max(\gamma - \mathcal{T}_{hr}^{\theta}(t_{neg}), 0) = 0 \Rightarrow \mathcal{T}_{hr}^{\theta}(t_{neg}) \ge \gamma$$
(22)

Then for the positive prototype p of (h,r,t), we have:

$$f_{hr}(p) = \gamma \tag{23}$$

For the negative prototype p_{neg} of (h,r,t), we have:

$$\mathcal{E}_{\rm hr}(\mathbf{p}_{\rm neg}) = 0 \tag{24}$$

With Eq. (8), the score of an candidate tail t' is:

$$\mathcal{I}_{hr}^{\theta}(t') = \begin{cases} 1 & (h, r, t') \text{ is positive} \\ 0 & \text{otherwise.} \end{cases}$$
(25)

And the cross-entropy loss for \mathcal{I}^{θ} is minimized.

C Proof of Theorem 2

Proof. In an optimal TransE model, for all entities a, b, c, d that satisfy the premise of the IBL rule (i.e. $(a, r_0, b), (b, r_1, c), (c, r_1^{-1}, d) \in KB$), we have

$$\|e_a + r_0 - e_b\| = 0, \|e_b + r_1 - e_c\| = 0, \|e_c + r_1^{-1} - e_d\| = 0$$

Therefore, $e_d = e_a + r_0$, $||e_a + r_0 - e_d|| = 0$.

As a result, $(a, r_0, d) \in KB$, which indicates that the hypothesis of the IBL rule also holds. So the IBL rule $r_0 \wedge r_1 \wedge r_1^{-1} \implies r_0$ always holds. \Box

D Hyperparameters

We search hyperparameters from the following range: learning rate $l \in \{1 \times 10^{-5}, 2 \times 10^{-5}, 5 \times 10^{-5}, 1 \times 10^{-4}, 2 \times 10^{-4}, 5 \times 10^{-4}\}$, batch size $b \in \{8, 16, 32, 64, 128, 256, 512, 1024\}$, dimension of embedding $d \in \{200, 500, 1000, 2000\}$, and margin $\gamma \in \{3, 6, 9, 12, 15, 18\}$. We use wandb ³ to search for best hyperparameters.

E Dataset Statistics

We summarize the number of entities, relations and examples in each split for four benchmarks in our experiments in Table 10.

³https://wandb.ai/home

Dataset	#Entities	#Relations	#Train	#Validation	#Test
FB15k-237	14,541	237	272,115	17,535	20,466
WN18RR	40,943	11	86,835	3,034	3,134
Kinship	104	25	3,206	2,137	5,343
UMLS	135	46	1,959	1,306	3,264

Table 10: Dataset statistics.