A Proof of Lemma 1

Proof. In an optimal translational model T, for any valid (h, r, t) we have:
\[
\text{trans}_r(\text{emb}(h)) = \text{emb}(t)
\]
(18)
According to the definition of prototypes, an entity p is the prototype for $(h, r, ?)$ if and only if:
\[
\text{trans}_r(\text{emb}(h)) = \text{trans}_r(\text{emb}(p))
\]
(19)
\[\square\]

B Proof of Lemma 2

Proof. Recall that the margin loss of T^θ with margin γ is:
\[
\mathcal{L} = -\max(\gamma - T^\theta(h, r, t), 0) + \sum_{i=1}^{n} \frac{1}{n} \max(\gamma - T^\theta(h_i', r, t_i'), 0)
\]
(20)
where (h_i', r, t_i') is the i-th negative triplet.
If the global minimum of the loss is achieved, then for any positive (h, r, t), we have:
\[
\max(\gamma - T^\theta_{hr}(t), 0) = \gamma \Rightarrow T^\theta_{hr}(t) = 0
\]
(21)
for any negative (h, r, t_{neg}), we have:
\[
\max(\gamma - T^\theta_{hr}(t_{neg}), 0) = 0 \Rightarrow T^\theta_{hr}(t_{neg}) \geq \gamma
\]
(22)
Then for the positive prototype p of (h, r, t), we have:
\[
f_{hr}(p) = \gamma
\]
(23)
For the negative prototype p_{neg} of (h, r, t), we have:
\[
f_{hr}(p_{neg}) = 0
\]
(24)
With Eq. (8), the score of an candidate tail t' is:
\[
T^\theta_{hr}(t') = \begin{cases}
1 & (h, r, t') \text{ is positive} \\
0 & \text{otherwise.}
\end{cases}
\]
(25)
And the cross-entropy loss for T^θ is minimized.
\[\square\]

C Proof of Theorem 2

Proof. In an optimal TransE model, for all entities a, b, c, d that satisfy the premise of the IBL rule (i.e. $(a, r_0, b), (b, r_1, c), (c, r_1^{-1}, d) \in \text{KB}$), we have
\[
\|e_a + r_0 - e_b\| = 0, \|e_b + r_1 - e_c\| = 0, \|e_c + r_1^{-1} - e_d\| = 0
\]
Therefore, $e_d = e_a + r_0, \|e_a + r_0 - e_d\| = 0$.
As a result, $(a, r_0, d) \in \text{KB}$, which indicates that the hypothesis of the IBL rule also holds. So the IBL rule $r_0 \land r_1 \land r_1^{-1} \Rightarrow r_0$ always holds.
\[\square\]

D Hyperparameters

We search hyperparameters from the following range: learning rate $l \in \{1 \times 10^{-5}, 2 \times 10^{-5}, 5 \times 10^{-5}, 1 \times 10^{-4}, 2 \times 10^{-4}, 5 \times 10^{-4}\}$, batch size $b \in \{8, 16, 32, 64, 128, 256, 512, 1024\}$, dimension of embedding $d \in \{200, 500, 1000, 2000\}$, and margin $\gamma \in \{3, 6, 9, 12, 15, 18\}$. We use wandb to search for best hyperparameters.

E Dataset Statistics

We summarize the number of entities, relations and examples in each split for four benchmarks in our experiments in Table 10.

https://wandb.ai/home
Table 10: Dataset statistics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Entities</th>
<th>#Relations</th>
<th>#Train</th>
<th>#Validation</th>
<th>#Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB15k-237</td>
<td>14,541</td>
<td>237</td>
<td>272,115</td>
<td>17,535</td>
<td>20,466</td>
</tr>
<tr>
<td>WN18RR</td>
<td>40,943</td>
<td>11</td>
<td>86,835</td>
<td>3,034</td>
<td>3,134</td>
</tr>
<tr>
<td>Kinship</td>
<td>104</td>
<td>25</td>
<td>3,206</td>
<td>2,137</td>
<td>5,343</td>
</tr>
<tr>
<td>UMLS</td>
<td>135</td>
<td>46</td>
<td>1,959</td>
<td>1,306</td>
<td>3,264</td>
</tr>
</tbody>
</table>