
A Proofs

This appendix contains the proofs of the results found in Section 4. We start by introducing a useful
rewriting of the mutual information În({x, y}; Ψ(z)) as given by (4) and (5). We then use this
expression to prove some results about În({x, y}; Ψ(z)) needed for the proof of Theorem 1. Finally,
we formally show the safety guarantee offered by ISE and the claim that the posterior mean is
bounded by 2βn with high probability.

Lemma 1. The mutual information În({x, y}; Ψ(z)) as given by (4) and (5) can be rewritten as
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where c1 = 1/ ln(2)π and c2 = 2c1 − 1, and where ρ2ν(x) is given by
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where the dependency on n has been dropped in the notation for simplicity.

Proof. It suffices to substitute the expression (9) for ρ2ν(x) in the second term of (8) to recover (5).
The claim follows then directly from (4) and the definition of mutual information.

Lemma 2. The mutual information În({x, y}; Ψ(z)) as given by (8) is monotonically decreasing in
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n(z) ∀x, z ∈ X .

Proof. First of all, let us simplify notation and define R2 := µ2
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n(z) and ρ̃2 := ρ2ν(x)ρ2n(x, z).
We then need to show that:
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We then can compute the derivative and ask under which conditions it is non negative. Requiring (10)
to be non negative is equivalent to ask that:
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Now, we observe that, since c2 ∈ (−1, 0), while c1 > 0 and ρ̃2 ∈ [0, 1], the factor (1 + c2ρ̃
2)/c1c2ρ̃

2

is always negative. For what concerns the sum of logarithms in the square brackets, it is strictly
positive ∀ρ̃2 ∈ [0, 1], which means that, for (10) to be non negative, we would need R2 < 0, which is
impossible, given that R ∈ R.

Lemma 3. The mutual information În({x, y}; Ψ(z)) as given by (4) and (5) is monotonically
increasing in ρ2ν(x)ρ2n(x, z) ∀x, z ∈ X .

Proof. As in the proof of Lemma 2, let us define R2 := µ2
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Analogously to the proof of Lemma 2, we compute the partial derivative of În
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respect to ρ̃2 and show that it is strictly positive ∀ρ̃ ∈ [0, 1] and ∀R. The partial derivative is given
by:
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we now have to ask when this derivative is non positive. After remembering that |c2| < 1 and that
ρ̃2 ∈ [0, 1], we see that the denominator is always negative; we also have that the exponential term in
the numerator is always positive. These two facts, together with the minus sign, imply that, for (12)
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to be ≤ 0, we need the term inside the square brackets to be non positive. This requirement leads to
the condition:

ρ̃2 ≥ c1π
2 ln2(2)R2 − 2c1π ln(2)R2 + π ln(2)(
π ln(2)− 2

)(
c1π ln(2)R2 + 1

) (13)

where we have used the explicit value of c2: 2c1 − 1. Finally, the rhs of (13) is always above 1 for
R2 ≥ 0, which concludes the proof, since ρ̃2 ∈ [0, 1].

Lemma 4. For every value of σ2
ν > 0, ρ2ν(x) as defined in (9) is monotonically increasing in σn(x).

Proof. As for Lemmas 2 and 3, we compute the derivative of ρ2ν(x) with respect to σ2
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Lemma 6. For any finite µ2
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n(z), the average entropy variation (8) is non negative for all
values of ρ2n(x, z) and ρ2ν(x), and it is zero iff ρ2ν(x)ρ2n(x, z) = 0.

Proof. The result follows immediately from Lemma 3, after noticing that for ρ2ν(x)ρ2n(x, z) = 0 the
mutual information (8) is zero and that ρ2ν(x)ρ2n(x, z) is never negative.

Lemma 7. ∀n, ∀x ∈ Sn, ∀z ∈ X , it holds that:
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Proof. This can be shown directly with the following inequality chain:
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where the first inequality follows from Lemma 2.
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Proof. This Lemma is only non-trivial in case the posterior mean is bounded on Sn, otherwise, if we
admit |µn(x)| → ∞, then we just recover the result that the average information gain is positive.

Now, moving to the proof, as first thing we recall that our algorithm always selects the arg maxx∈Sn
of În
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as next parameter to evaluate, meaning that, by construction, ∀x ∈ Sn and

∀z ∈ X , it holds that:
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≥ În

(
{x, y}; Ψ(z)

)
(19)

This implies, in particular, that În
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where we have used the fact that c2 ∈ (−1, 0) and that ρ2ν(x̃) ∈ [0, 1].

Lemma 9. The function b defined in (18) is monotonically increasing for positive arguments.
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we immediately see that both the exponential factor and the term in square brackets are monotonically
increasing with the argument η, if this is positive, so that b is also monotonically increasing with
η > 0. This can also be shown formally by computing the derivative:
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and by noticing that, for positive η, it is always positive, since c1 > 0.

Corollary 1. From Lemma 9 it follows immediately that, for positive arguments, b−1 exists and is
also monotonically increasing. In Figure 7 we show some examples of the function b−1 for M = 0.5
and various values of σ2

ν .

Theorem 1. Assume that xn+1 is chosen according to (6), and that there exists n̂ such that for all
n ≥ n̂ Sn+1 ⊆ Sn. Moreover, assume that for all n ≥ n̂, |µn(x)| ≤ M for some M > 0 for all
x ∈ Sn. Then, for all ε > 0 there exists Nε such that σ2
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Figure 7: Example plots of the function b−1 introduced in Lemma 8 for M = 0.5 and different values
of σ2

ν .

Proof. In the following n will always be intended ≥ n̂, where n̂ is the one given by the hypothesis.
Let us also define again σ̃2

n := maxSn σ
2
n(x). Finally, let us fix ε > 0.

Combining Lemmas 7 and 8, we obtain:

b(σ̃2
n) ≤ În
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we can now exploit the monotonicity of b (Lemma 9) and the fact that σ̃2
n is not increasing if the safe

set does not expand to conclude that:
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we can then use this to write:
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where γn−n̂ is the maximum information capacity and C = ln(2)
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. The second last passage

follows from the fact that x ≤ ln(1 + x)σ−2ν / ln
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for x ∈ [0, σ−2ν ] together with the fact that
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mutual information I({yn}; {f(xn)}) presented by Srinivas et al. (2010).

Using (25), we can show that the minimum Nε satisfying the claim of the theorem is the one given
by (7):

Nε = min

{
N ∈ N : b−1

(
CγN
N

)
≤ ε

}
(26)

and we are now able to conclude that, as long as the information capacity grows sub-linearly inN , the
set on the r.h.s. of (26) is not empty ∀ε > 0. This is guaranteed by the fact that b−1 is monotonically
increasing, since so is its inverse b. To check that this Nε indeed satisfies the claim, one just has to
apply b−1 on both initial and final state of (25) and then substitute n̂+Nε in the place of n; the rest
follows from the fact that the maximum variance is non increasing on Sn as long as the safe set does
not expand.
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Corollary 2. Under the hypothesis of Theorem 1, ∀ε > 0 ∃Nε ∈ [0,∞) s.t. În
(
{x, y}; Ψ(z)

)
≤ ε

∀n ≥ n̂+Nε.

Proof. This follows directly from Theorem 1 and from the fact that În
(
{x, y}; Ψ(z)

)
is upper

bounded by a monotonic function of the posterior variance (Lemma 7).

Moving on to the safety guarantees, in Section 4 we claimed that any parameter selected according to
(6) is safe with high probability. The following result makes this statement precise.

Lemma 10. Let f : X → R have bounded norm in the Reproducing Kernel Hilbert Space Hk
associated to some kernel k : X × X → R with k(x,x′) ≤ 1, and let Sn be the corresponding safe
set as defined in (2), with x0 such that f(x0) > 0. Then, if xn+1 is selected according to (6), it
follows that P{f(xn) ≥ 0 for all n} ≥ 1− δ.

Proof. By construction of the sequence {βn} we know that
P{f(x) ≥ µn(x)− βnσn(x) for all n, for all x} ≥ 1− δ. The claim then follows by recall-
ing that the acquisition (6) only selects parameters within Sn and that, by construction of of the
safe set, µn(x) − βnσn(x) ≥ 0 for all x ∈ Sn \ {x0}, in addition to the fact that f(x0) > 0 by
assumption.

Finally, in Section 4, we claimed that, under the assumptions of the theory, the posterior mean µn(x)
is bounded by 2βn with high probability. The following lemma makes this statement precise. This
result formalizes the intuition that for a regular enough GP, in order to get an exploding posterior
mean, one needs to be consistently unlucky with the measurement noise.

Lemma 11. Let f be a real valued function on X and let µn and σn be the posterior mean and
standard deviation of a GP(µ0, k) such that it exists a non-decreasing sequence of positive numbers
{βn} for which P

{
f(x) ∈ [µn(x)± βnσn(x)] ∀x, ∀n

}
≥ 1−δ. Moreover, assume that µ0(x) = 0

for all x and that k(x,x′) ≤ 1 for all x,x′ ∈ X . Then it follows that |µn(x)| ≤ 2βn with probability
of at least 1− δ jointly for all x and for all n.

Proof. From the hypothesis, it follows that the following two conditions hold for all x and for all n
with probability of at least 1− δ:

|f(x)| ∈
[
0, β0σ0(x)

]
(27)

µn(x) ∈
[
−|f(x)| − βnσn(x), |f(x)|+ βnσ(x)

]
(28)

From these two conditions, it follows that |µn(x)| ≤ β0σ0(x) + βnσn(x) with probability of at
least 1 − δ. Now, we recall that the sequence {βn} is non decreasing by assumption and that the
sequence {σn(x)} is non increasing by the properties of a GP, which allows us to conclude that
|µn(x)| ≤ 2βnσ0(x), which concludes the proof once we recall the assumption that k(x,x′) ≤ 1
for all x,x′ ∈ X . The result can easily be extended to the case of non zero prior mean, by just adding
the prior mean as offset in the found upper bound for the posterior mean.

B Entropy of Ψ(x) approximation

In order to analytically compute the mutual information În
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∣∣{x, y}]], we have approximated the entropy of the variable Ψ(x) at iteration

n with Ĥn
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]
, given by (4), which we have then used to derive the results presented in the paper.

The approximation allowed us to derive a closed expression for the average of the entropy at parameter
z after an evaluation at x, Ey

[
Ĥn+1

[
Ψ(z)

∣∣{x, y}]]. This approximation was obtained by noticing
that the exact entropy (3) has a zero mean Gaussian shape, when plotted as function of µn(x)/σn(x),
and then by expanding both the exact expression (3) and a zero mean unnormalized Gaussian in
µn(x)/σn(x) in their Taylor series around zero. At the second order we obtain, respectively,
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and
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By equating the terms in (29) with the ones in (30), we find c0 = ln(2) and
σ2 = ln(2)π/2, which leads to the approximation for Hn

[
Ψ(x)

]
(4) used in the paper:

Hn

[
Ψ(x)
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≈ ln(2) exp

{
− 1
π ln(2)

(
µn(x)
σn(x)

)2}
. In Figure 8a we plot (3) and (4) against each other as

a function of the mean-standard deviation ratio, while Figure 8b shows the difference between the
two. From these two plots, one can see almost perfect agreement between the two functions, with a
non negligible difference limited to two small neighborhoods of the µ/σ space.

(a) Exact and approximated H[Ψ(x)]. (b) Approximation error.

Figure 8: Comparison between exact entropy of Ψ(x) (3) and approximated form (4): (a) the two
entropies plotted against each other; (b) the approximation error expressed as difference of the two.

C Experiments Details

In this Appendix, we collect details about the experiment presented in Section 6. Code
for the used acquisition functions can be found at https://github.com/boschresearch/
information-theoretic-safe-exploration.

ISE selects the next parameter to evaluate according to (6), which is a non convex optimization
problem constrained in one of the variables. We find the solution to this problem via constrained
gradient ascent with multiple restarts.

GP samples For the results shown in Figure 3a we run both ISE and the expansion stage of
STAGEOPT on 100 samples from a GP defined on the square [−2.5, 2.5] × [−2.5, 2.5], with RBF
kernel with the following hyperparameters: µ0 ≡ 0; kernel lengthscale = 0.1; kernel outputscale =
150; σ2

ν = 0.05, while the safe seed x0 was chosen as the origin: x0 = (0, 0). For the STAGEOPT
runs, we used the code by Berkenkamp et al. (2021), who open-sourced it on GitHub under the MIT
license (https://github.com/befelix/SafeOpt). As STAGEOPT requires a discretized domain,
we used the same uniform discretization of 700 points per dimension for all GP samples. Finally, the
percentage of the domain classified as safe is estimated via Monte Carlo sampling. Concerning the
safety violations summarized in Table 1, the fact that they are comparable is expected, since in our
experiments they all use the posterior GP confidence intervals to define the safe set.

Table 1: Average percentage of safety violations per run over the 100 runs used to obtain Figure 3a.

ISE SO L=0 SO L=1 SO L=5 SO L=10
% of safety violations 0.04 ± 0.20 0.01 ± 0.12 0.03 ± 0.19 0.05 ± 0.22 0.05 ± 0.25

To evaluate whether or not ISE converges to the same safe set as STAGEOPT-like exploration does,
we performed the same experiment as for Figure 3a, but with the difference that for this experiment
we used a bigger kernel lengthscale of 1.6. For each GP sample, the true reachable safe set is obtained
by sampling according to the rule xn+1 ∈ arg maxSn σ

2
n(x), starting from x0, until the uncertainty

over the safe set Sn was reduced under the noise variance. We show the results in Figure 9, which
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Figure 9: The percentage of the maximally reachable safe set classified as safe is plotted as function
of n: we can see that ISE eventually leads to discover the same reachable safe set discovered by
STAGEOPT-like exploration.

(a) Comparison with STAGEOPT for GP samples. (b) Comparison in 1D exponential example.

Figure 10: In these plots we show the same results as in Figure 3, but here we plot the standard
deviation instead of the standard error.

shows that, indeed, both ISE and STAGEOPT-like exploration lead to the discovery of the same
largest safe set. Similarly as for Figure 3a, the percentages that we show are then obtained via Monte
Carlo sampling. For the plot in Figure 3b, the constraint function was f(x) = e−x + 0.05 and we
used a RBF kernel with hyperparameters: µ0 ≡ 0; kernel lengthscale = 1.2; kernel outputscale =
100; σ2

ν = 0.05, while the safe seed was x0 = 0, and the domain for the STAGEOPT exploration was
composed of 500 points. The chosen function is a slightly offset exponential. On one side of the
domain this constraint function becomes increasingly close to the safety threshold, making it hard to
explore with high Lipschitz constant. On the other hand, if the Lipschitz constant is too small, the
algorithm will prefer to reduce uncertainty away from the border. On the contrary, ISE will always
tend to select parameters close to the boundary. This intuition is what justifies the results shown in
Figure 3b. In Figure 10 we report the same plots as in Figure 3, but with error bars representing the
standard deviation instead of the standard error.

OpenAI Gym Control For the inverted pendulum and cart pole experiments, we used the environ-
ments provided by the OpenAI gym (Brockman et al., 2016) under the MIT license. The cart pole
environment by default accepts only discrete actions ut ∈ {0, 1}, causing a push of fixed strength ei-
ther to the left or right. Instead of mapping the output of our linear controller ut = α1θt+α2θ̇t+α3ṡt
to {0, 1}, we modified the environment to accept continuous actions, corresponding to pushes of
varying intensity in the direction specified by the action’s sign. For the inverted pendulum experiment,
the threshold angular velocity θ̇M was set to 0.5 rad/s, with an episode length of 400 steps, and
Figure 4 shows one run of ISE using a GP with RBF kernel with the following hyperparameters:
µ0 ≡ 0; kernel lengthscale = 1.3; kernel outputscale = 6.6; σ2

ν = 0.04. For the cart pole one, the
episode length was set to 200 steps and the threshold angle θM was of 0.28 radians. The GP we
used in this case had a RBF kernels with hyperparameters: µ0 ≡ 0; kernel lengthscale = 0.8; kernel
outputscale = 5; σ2

ν = 0.05. The safe seed α0 was set to α0 = (−0.0073,−1.39, 2.01), while the
domain was set to [−2, 0]× [−2, 1.5]× [−2, 7]. The average percentage of true safe set classified
as safe plotted in Figure 5a is over 100 runs and is estimated via Monte Carlo sampling. For what
concerns the comparison about the number of unsafe evaluations in the cart pole task, the average
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percentage of safety violations was of 5.02± 0.95 for the STAGEOPT runs, while for ISE it was of
5.5± 0.98.

High dimensional domains For the five dimensional experiment we used the same custom
LINEBO wrapper for both the ISE and STAGEOPT acquisitions, which at each iteration randomly
selects multiple one-dimensional subspaces and then finds the optimum of the respective acquisition
function restricted to these subspaces. In these experiments we used a GP with RBF kernel with
hyperparameters: µ0 ≡ 0; kernel lengthscale = 1.6; kernel outputscale = 1; while the safe seed x0

was set to x0 = (−0.2)d and the observation noise to σ2
ν = 0.5.

Heteroskedastic noise domains In these experiments we used the same LINEBO wrapper as
in the five dimensional experiment. The GP had a RBF kernel with hyperparameters: µ0 ≡ 0;
kernel lengthscale = 1.6; kernel outputscale = 1; while the safe seed x0 was set to the origin. For
what concerns the observation noise, as explained in Section 6, we used heteroskedastic noise,
with two different values of the noise variance in the two symmetric halves of the domain. In
particular, given a parameter x = (x1, x2, . . . , xn), we set the noise variance to σ2

ν = 0.05 if
x0 ≥ 0, otherwise we set it to σ2

ν = 0.5. As explained in Section 6, the constraint function is
f(x) = 1

2e
−x2

+ e−(x±x1)
2

+ 3e−(x±x2)
2

+ 0.2, with x1 and x2 given by: x1 = (2.7, 0, . . . , 0)
and x2 = (6, 0, . . . , 0).

Computational resources The experiments were run on a HPC cluster, with each experiment
using four Intel Xeon Gold CPUs. All experiments (including early evaluations) amounted to a total
of 77020 hours. The Bosch Group is carbon neutral. Administration, manufacturing and research
activities do no longer leave a carbon footprint. This also includes GPU clusters on which the
experiments have been performed.
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