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Abstract

We consider a sequential decision making task where we are not allowed to eval-
uate parameters that violate an a priori unknown (safety) constraint. A common
approach is to place a Gaussian process prior on the unknown constraint and al-
low evaluations only in regions that are safe with high probability. Most current
methods rely on a discretization of the domain and cannot be directly extended
to the continuous case. Moreover, the way in which they exploit regularity as-
sumptions about the constraint introduces an additional critical hyperparameter.
In this paper, we propose an information-theoretic safe exploration criterion that
directly exploits the GP posterior to identify the most informative safe parameters
to evaluate. Our approach is naturally applicable to continuous domains and does
not require additional hyperparameters. We theoretically analyze the method and
show that we do not violate the safety constraint with high probability and that
we explore by learning about the constraint up to arbitrary precision. Empirical
evaluations demonstrate improved data-efficiency and scalability.

1 Introduction

In sequential decision making problems, we iteratively select parameters in order to optimize a given
performance criterion. However, real-world applications such as robotics (Berkenkamp et al., 2021),
mechanical systems (Schillinger et al., 2017) or medicine (Sui et al., 2015) are often subject to
additional safety constraints that we cannot violate during the exploration process (Dulac-Arnold
et al., 2019). Since it is a priori unknown which parameters lead to constraint violations, we need to
actively and carefully learn about the constraints without violating them. That is, we need to learn
about the safety of parameters by only evaluating parameters that are currently known to be safe.

Existing methods by Schreiter et al. (2015); Sui et al. (2015) tackle this problem by placing a Gaussian
process (GP) prior over the constraint and only evaluate parameters that do not violate the constraint
with high probability. To learn about the safety of parameters, they evaluate the parameter with the
largest posterior variance. This process is made more efficient by SAFEOPT, which restricts its safe
set expansion exploration component to parameters that are close to the boundary of the current set
of safe parameters (Sui et al., 2015) at the cost of an additional tuning hyperparameter (Lipschitz
constant). However, uncertainty about the constraint is only a proxy objective that only indirectly
learns about the safety of parameters. Consequently, data-efficiency could be improved with an
exploration criterion that directly maximizes the information gained about the safety of parameters.

Our contribution In this paper, we propose Information-Theoretic Safe Exploration (ISE), a safe
exploration algorithm that directly exploits the information gain about the safety of parameters in
order to expand the region of the parameter space that we can classify as safe with high confidence.
By directly optimizing for safe information gain, ISE is more data-efficient than existing approaches
without manually restricting evaluated parameters to be on the boundary of the safe set, particularly
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in scenarios where the posterior variance alone is not enough to identify good evaluation candidates,
as in the case of heteroskedastic observation noise. This exploration criterion also means that we do
not require additional hyperparameters beyond the GP posterior and that ISE is directly applicable to
continuous domains. We theoretically analyze our method and prove that it learns about the safety of
reachable parameters to arbitrary precision.

Related work Information-based selection criteria with Gaussian processes models are success-
fully used in the context of unconstrained Bayesian optimization (BO, Shahriari et al. (2016); Bubeck
and Cesa-Bianchi (2012)), where the goal is to find the parameters that maximize an a priori unknown
function. Hennig and Schuler (2012); Henrández-Lobato et al. (2014); Wang and Jegelka (2017)
select parameters that provide the most information about the optimal parameters, while Fröhlich et al.
(2020) consider the information under noisy parameters. The success of these information-based
approaches also relies on the superior data efficiency that they demonstrated. We draw inspiration
from these methods when defining an information-based criterion w.r.t. the safety of parameters to
guide safe exploration.

In the presence of constraints that the final solution needs to satisfy, but which we can violate during
exploration, Gelbart et al. (2014) propose to combine typical BO acquisition functions with the
probability of satisfying the constraint. Instead, Gotovos et al. (2013) propose an uncertainty-based
criterion that learns about the feasible region of parameters. When we are not allowed to ever evaluate
unsafe parameters, safe exploration is a necessary sub-routine of BO algorithms to learn about the
safety of parameters. To safely explore, Schreiter et al. (2015) globally learn about the constraint
by evaluating the most uncertain parameters. SAFEOPT by Sui et al. (2015) extends this to joint
exploration and optimization and makes it more efficient by explicitly restricting safe exploration to
the boundary of the safe set. Sui et al. (2018) proposes STAGEOPT, which additionally separates the
exploration and optimization phases. Both of these algorithms assume access to a Lipschitz constant
to define parameters close to the boundary of the safe set, which is a difficult tuning parameter in
practice. These methods have been extended to multiple constraints by Berkenkamp et al. (2021),
while Kirschner et al. (2019) scale them to higher dimensions with LINEBO, which explores in
low-dimensional sub-spaces. To improve computational costs, Duivenvoorden et al. (2017) suggest
a continuous approximation to SAFEOPT without providing exploration guarantees. All of these
methods rely on function uncertainty to drive exploration, while we directly maximize the information
gained about the safety of parameters.

Safe exploration also arises in the context of Markov decision processes (MDP), (Moldovan and
Abbeel, 2012; Hans et al., 2008). In particular, Turchetta et al. (2016, 2019) traverse the MDP to
learn about the safety of parameters using methods that, at their core, explore using the same ideas as
SAFEOPT and STAGEOPT to select parameters to evaluate. Consequently, our proposed method for
safe exploration is also directly applicable to their setting.

2 Problem Statement

In this section, we introduce the problem and notation that we use throughout the paper. We are
given an unknown and expensive to evaluate safety constraint f : X → R s.t. parameters that satisfy
f(x) ≥ 0 are classified as safe, while others are unsafe. To start exploring safely, we also have access
to an initial safe parameter x0 that satisfies the safety constraint, f(x0) ≥ 0. We sequentially select
safe parameters xn ∈ X where to evaluate f in order to learn about the safety of parameters beyond
x0. At each iteration n, we obtain a noisy observation of yn := f(xn) + νn that is corrupted by
additive homoscedastic Gaussian noise νn ∼ N

(
0, σ2

ν

)
. We illustrate the task in Figure 1a, where

starting from x0 we aim to safely explore the domain so that we ultimately classify as safe all the
safe parameters that are reachable from x0.

As f is unknown and the evaluations yn are noisy, it is not feasible to select parameters that are safe
with certainty and we provide high-probability safety guarantees instead. To this end, we assume
that the safety constraint f has bounded norm in the Reproducing Kernel Hilbert Space (RKHS)
(Schölkopf and Smola, 2002)Hk associated to some kernel k : X ×X → R with k(x,x′) ≤ 1. This
assumption allows us to to model f as a Gaussian process (GP) (Srinivas et al., 2010).

Gaussian Processes A GP is a stochastic process specified by a mean function µ : X → R and
a kernel k (Rasmussen and Williams, 2006). It defines a probability distribution over real-valued
functions on X , such that any finite collection of function values at parameters [x1, . . . ,xn] is
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(a) Problem components. (b) ISE mutual information.

Figure 1: In (a) we illustrate the safe exploration task. Based on the unknown safety constraint f ,
we are only allowed to evaluate safe parameters x with values f(x) ≥ 0 above the safety threshold
(dashed line). Starting from a safe seed x0 a safe exploration strategy needs to discover the largest
reachable safe region of the parameter space containing x0. In (b) we show the mutual information
In({x, y}; Ψ(z)) in green for different x inside the safe set and for a fixed z outside (red dashed
line). ISE maximizes this mutual information jointly over x and z.

distributed as a multivariate normal distribution. The GP prior can then be conditioned on (noisy)
function evaluations Dn = {(xi, yi)}ni=1. If the noise is Gaussian, then the resulting posterior is also
a GP and with posterior mean and variance

µn(x) = µ(x) + k(x)>(K + Iσ2
ν)−1(y − µ),

σ2
n(x) = k(x,x)− k(x)>(K + Iσ2

ν)−1k(x),
(1)

where µ := [µ(x1), . . . µ(xn)] is the mean vector at parameters xi ∈ Dn and [y]i := y(xi) the
corresponding vector of observations. We have

[
k(x)

]
i

:= k(x,xi), the kernel matrix has entries
[K]ij := k(xi,xj), and I is the identity matrix. In the following, we assume without loss of
generality that the prior mean is identically zero: µ(x) ≡ 0.

Safe set Using the previous assumptions, we can construct high-probability confidence intervals
on the function values f(x). Concretely, for any δ > 0 it is possible to find a sequence of positive
numbers {βn} such that f(x) ∈

[
µn(x)± βnσn(x)

]
with probability at least 1− δ, jointly for all

x ∈ X and n ≥ 1. For a proof and more details see (Chowdhury and Gopalan, 2017). We use these
confidence intervals to define a safe set

Sn := {x ∈ X : µn(x)− βnσn(x) ≥ 0} ∪ {x0}, (2)

which contains all parameters whose βn-lower confidence bound is above the safety threshold and
the initial safe parameter x0. Consequently, we know that all parameters in Sn are safe, f(x) ≥ 0
for all x ∈ Sn, with probability at least 1− δ jointly over all iterations n.

Safe exploration Given the safe set Sn, the next question is which parameters in Sn to evaluate in
order to efficiently expand it. Most existing safe exploration methods rely on uncertainty sampling
over subsets of Sn. SAFEOPT-like approaches, for example, use the Lipschitz assumption on f to
identify parameters in Sn that could expand the safe set and then select the parameter that has the
biggest uncertainty among those. In the next sections, we present and analyze our safe exploration
strategy, ISE, that instead uses an information gain measure to identify the parameters that allow us
to efficiently learn about the safety of parameters outside of Sn.

3 Information-Theoretic Safe Exploration

We present Information-Theoretic Safe Exploration (ISE), which guides the safe exploration by using
an information-theoretic criterion. Our goal is to design an exploration strategy that directly exploits
the properties of GPs to learn about the safety of parameters outside of Sn. We draw inspiration from
Hennig and Schuler (2012); Wang and Jegelka (2017) who exploit information-theoretic insights to
design data-efficient BO acquisition functions for their respective optimization objectives.

Information gain measure In our case, we want to evaluate f at safe parameters that are maxi-
mally informative about the safety of other parameters, in particular of those where we are uncertain
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Algorithm 1 Information-Theoretic Safe Exploration

1: Input: GP prior (µ0, k, σν), Safe seed x0

2: for n = 0, . . . , N do
3: xn+1← arg maxx∈Sn maxz∈X În

(
{x, y}; Ψ(z)

)
4: yn+1← f(xn+1) + ν
5: Update GP posterior with (xn+1, yn+1)

about whether they are safe or not. To this end, we need a corresponding measure of information
gain. We define such a measure using the binary variable Ψ(x) = If(x)≥0, which is equal to one iff
f(x) ≥ 0. Its entropy is given by

Hn

[
Ψ(z)

]
= −p−n (z) ln

(
p−n (z)

)
−
(
1− p−n (z)

)
ln
(
1− p−n (z)

)
(3)

where p−n (z) is the probability of z being unsafe: p−n (z) = 1
2 + 1

2 erf
(
− 1√

2

µn(z)
σn(z)

)
. The random

variable Ψ(z) has high-entropy when we are uncertain whether a parameter is safe or not; that is, its
entropy decreases monotonically as |µn(z)| increases and the GP posterior moves away from the
safety threshold. It also decreases monotonically as σn(z) decreases and we become more certain
about the constraint. This behavior also implies that the entropy goes to zero as the confidence about
the safety of z increases, as desired.

Given our definition of Ψ, we consider the mutual information I
(
{x, y}; Ψ(z)

)
between an observa-

tion y at a parameter x and the value of Ψ at another parameter z. Since Ψ is the indicator function of
the safe regions of the parameter space, the quantity In

(
{x, y}; Ψ(z)

)
measures how much informa-

tion about the safety of z we gain by evaluating the safety constraint f at x at iteration n, averaged
over all possible observed values y. This interpretation follows directly from the definition of mutual
information: In

(
{x, y}; Ψ(z)

)
= Hn

[
Ψ(z)

]
− Ey

[
Hn+1

[
Ψ(z)

∣∣{x, y}]], where Hn[Ψ(z)] is the

entropy of Ψ(z) according to the GP posterior at iteration n, while Hn+1

[
Ψ(z)

∣∣{x, y}] is its entropy
at iteration n+ 1, conditioned on a measurement y at x at iteration n. Intuitively, In

(
{x, y}; Ψ(z)

)
is negligible whenever the confidence about the safety of z is high or, more generally, whenever an
evaluation at x does not have the potential to substantially change our belief about the safety of z.
The mutual information is large whenever an evaluation at x on average causes the confidence about
the safety of z to increase significantly. As an example, in Figure 1 we plot In

(
{x, y}; Ψ(z)

)
as a

function of x ∈ Sn for a specific choice of z and for an RBF kernel. As one would expect, we see
that the closer it gets to z, the bigger the mutual information becomes, and that it vanishes in the
neighborhood of previously evaluated parameters, where the posterior variance is negligible.

To compute In
(
{x, y}; Ψ(z)

)
, we need to average (3) conditioned on an evaluation y over all possible

values of y. However, the resulting integral is intractable given the expression of Hn[Ψ(z)] in (3). In
order to get a tractable result, we derive a close approximation of (3),

Hn

[
Ψ(z)

]
≈ Ĥn

[
Ψ(z)

] .
= ln(2) exp

{
− 1

π ln(2)

(
µn(z)

σn(z)

)2
}
. (4)

The approximation in (4) is obtained by truncating the Taylor expansion of Hn[Ψ(z)] at the second
order, and it recovers almost exactly its true behavior (see Appendix B for details). Since the posterior
mean at z after an evaluation at x depends linearly on µn(x), and since the probability density of y de-
pends exponentially on−µ2

n(x), using (4) reduces the conditional entropy Ey
[
Ĥn+1

[
Ψ(z)

∣∣{x, y}]]
to a Gaussian integral with the exact solution

Ey
[
Ĥn+1

[
Ψ(z)

∣∣{x, y}]] =

ln(2)

√
σ2
ν + σ2

n(x)(1− ρ2n(x, z))

σ2
ν + σ2

n(x)(1 + c2ρ2n(x, z))
exp

{
−c1

µ2
n(z)

σ2
n(z)

σ2
ν + σ2

n(x)

σ2
ν + σ2

n(x)(1 + c2ρ2n(x, z))

}
,

(5)

where ρn(x, z) is the linear correlation coefficient between f(x) and f(z), and with c1 and c2 given
by c1 := 1/ ln(2)π and c2 := 2c1−1. This result allows us to analytically calculate the approximated
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 8

Figure 2: Example run of ISE at different iterations. The GP’s posterior mean (blue line) and
confidence interval µn±βnσn (blue shaded) approximate the true safety constraint f (red line) based
on selected data points (green crosses) and, together with the safety threshold at zero (orange line),
identify the current safe set Sn (light blue bar, bottom). The vertical green line indicates the location
of the next parameter xn+1 selected by (6). Initially, ISE evaluates parameters on the boundary of
the safe set, but eventually also evaluates inside the safe set if that provides the most information.
ISE quickly discover the largest reachable safe set (dark blue bar, bottom).

mutual information În
(
{x, y}; Ψ(z)

) .
= Ĥn

[
Ψ(z)

]
− Ey

[
Ĥn+1

[
Ψ(z)

∣∣{x, y}]], which we use to
define the ISE acquisition function, and which we analyze theoretically in Section 4.

ISE acquisition function Now that we have defined a way to measure and compute the information
gain about the safety of parameters, we can use it to design an exploration strategy that selects the
next parameters to evaluate. The natural choice for such selection criterion is to select the parameter
that maximizes the information gain; that is, we select xn+1 according to

xn+1 ∈ arg max
x∈Sn

max
z∈X

În
(
{x, y}; Ψ(z)

)
, (6)

where we jointly optimize over x in the safe set Sn and an unconstrained second parameter z.
Evaluating f at xn+1 according to (6) maximizes the information gained about the safety of some
parameter z ∈ X , so that it allows us to efficiently learn about parameters that are not yet known to
be safe. While z can lie in the whole domain, the parameters where we are the most uncertain about
the safety constraint lie outside the safe set. By leaving z unconstrained, we show in our theoretical
analysis in Section 4 that, once we have learned about the safety of parameters outside the safe set,
(6) resorts to learning about the constraint function also inside Sn. An overview of ISE can be found
in Algorithm 1 and we show an example run of a one-dimensional illustration of the algorithm in
Figure 2.

4 Theoretical Results

In this section, we study the expression for În
(
{x, y}; Ψ(z)

)
obtained using (4) and (5) and analyze

the properties of the ISE exploration criterion (6). By construction of Sn in (2) and the assumptions
on f in Section 2, we know that any parameter selected according to (6) is safe with high probability,
see Appendix A for details. To show that we also learn about the safe set, we first need to define
what it means to successfully explore starting from x0. The main challenge is that it is difficult to
analyze how a GP generalizes based on noisy observations, so that it is difficult to define a notion of
convergence that is not dependent on the specific run. SAFEOPT avoids this issue by expanding the
safe set not based on the GP, but only using the Lipschitz constant L. Contrary to their approach, we
depend on the GP to generalize from the safe set. In this case, the natural notion of convergence is
provided by the the posterior variance. In particular, we say that at iteration n we have explored the
safe set up to ε-accuracy if σ2

n(x) ≤ ε for all parameters x in Sn. In the following, we show that
ISE asymptotically leads either to ε-accurate exploration of the safe set or to indefinite expansion of
the safe set. In future work it will be interesting to further investigate the notion of generalization and
to derive a similar convergence result as those obtained by Sui et al. (2015).

Theorem 1. Assume that xn+1 is chosen according to (6), and that there exists n̂ such that for all
n ≥ n̂ Sn+1 ⊆ Sn. Moreover, assume that for all n ≥ n̂, |µn(x)| ≤ M for some M > 0 for all
x ∈ Sn. Then, for all ε > 0 there exists Nε such that σ2

n(x) ≤ ε for every x ∈ Sn if n ≥ n̂+Nε.
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The smallest of such Nε is given by

Nε = min

{
N ∈ N : b−1

(
CγN
N

)
≤ ε

}
, (7)

where b(η) := ln(2) exp
{
−c1M

2

η

}[
1−

√
σ2
ν

2c1η+σ2
ν

]
, γN = maxD⊂X ;|D|=N I

(
f(D);y(D)

)
is

the maximum information capacity of the chosen kernel (Srinivas et al., 2010; Contal et al., 2014),
and C = ln(2)/σ2

ν ln
(
1 + σ−2ν

)
.

Proof. See Appendix A.

Theorem 1 tells us that if at some point the set of safe parameters Sn stops expanding, then the
posterior variance over the safe set vanishes eventually. The intuition behind Theorem 1 is that if there
were a parameter x in the safe set whose posterior mean remained finite and whose posterior variance
remained bounded from below, then an evaluation of f at such x would yield a non negligible
average information gain about the safety of x, so that, since x is in the safe set, at some point ISE
will be forced to choose to evaluate x, reducing its posterior variance. This result guarantees that,
should the safe set stop expanding, ISE will asymptotically explore the safe set up to an arbitrary
ε-accuracy. In practice, we observe that ISE first focuses on reducing the uncertainty in areas of the
safe set that are most informative about parameters whose classification is still uncertain (e.g. the
boundary of the safe set), and only eventually turns to learning about the inside of the safe set. This
behavior is what ultimately leads to the posterior variance to decay over the whole Sn. Therefore,
even if in general it is not always possible to say whether or not the safe set will ever stop expanding,
we can read Theorem 1 as an exploration guarantee for ISE, as it rules out the possibility that the
proposed acquisition function forever leaves the uncertainty high in areas of the safe set that, if better
understood, could lead to an expansion of the safe set.

Theorem 1 requires a bound on the GP posterior mean function, which is always satisfied with
high probability based on our assumptions about f . Specifically, we have that |µn(x)| ≤ 2βn with
probability of at least 1− δ for all n (see Appendix A for details). Therefore, it does not represent an
additional restrictive assumption for f . Finally, we also note that the the constant Nε defined by (7)
always exists since the function b is monotonically increasing, as long as γN grows sublinearly in N .
Srinivas et al. (2010) prove that this is the case for commonly-used kernel and, more generally, it is a
prerequisite for data-efficient learning with GP models.

5 Discussion and Limitations

ISE drives exploration of the parameter space by selecting the parameters to evaluate according
to (6). An alternative but conceptually similar approach to this criterion would be to consider the
parameter that yields the biggest information gain on average over the domain, i.e., substituting the
inner max in (6) with an average over X . The resulting integral, however, is intractable and would
require further approximations. Moreover, the parameter found by solving (6) will also yield a high
average information gain over the domain, due to the regularity of all involved objects.

Being able to work in a continuous domain, ISE can deal with higher dimensional domains better
than algorithms requiring a discrete parameter space. However, as noted in Section 4, finding xn+1

as in (6) means to solve a non-convex optimization problem with twice the dimension of the the
parameter space, which can also become a computationally challenging problem as the dimension
grows. In a high-dimensional setting, we follow LINEBO by Kirschner et al. (2019), which at each
iteration selects a random one-dimensional subspace to which it restricts the optimization of the
acquisition function.

In Sections 2 and 3, we assumed the observation process to be homoskedastic. However, it needs
not to be the case, and the results can be extended to the case of heteroskedastic Gaussian noise.
The observation noise at a parameter x explicitly appears in the ISE acquisition function, since it
crucially affects the amount of information that we can gain by evaluating the constraint f at x. On
the contrary, STAGEOPT-like methods do not consider the observation noise in their acquisition
functions. As a consequence, ISE can perform significantly better in an heteroskedastic setting, as
we also show in Section 6.
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Lastly, we reiterate that the theoretical safety guarantees offered by ISE are derived under the
assumption that f is a bounded norm element of the RKHS space associated with the GP’s kernel. In
applications, therefore, the choice of the kernel function becomes even more crucial when safety is an
issue. For details on how to construct and choose kernels see (Garnett, 2022). The safety guarantees
also depend on the choice of βn. Typical expressions for βn include the RKHS norm of the constraint
f (Chowdhury and Gopalan, 2017; Fiedler et al., 2021), which is in general difficult to estimate in
practice. Because of this, usually in practice a constant value of βn is used instead.

6 Experiments

In this section we empirically evaluate ISE. Additional details about the experiments and setup can
be found in Appendix C. As commonly done in the literature (see Section 5), we set βn = 2 for all
experiments. This choice guarantees safety per iteration, rather than jointly for all n and it allows for
a less conservative bound than the one needed for the joint guarantees.

GP samples For the first part of the experiments, we evaluate ISE on constraint functions f that
we obtain by sampling a GP prior at a finite number of points. This allows us to test ISE under
the assumptions of the theory and we compare its performance to that of the exploration part of
STAGEOPT (Sui et al., 2018). STAGEOPT is a modified version of SAFEOPT, in which the exploration
and optimization parts are performed separately: first the SAFEOPT exploration strategy is used to
expand the safe set as much as possible, then the objective function is optimized within the discovered
safe set. We further modify the version of STAGEOPT that we use in the experiment by defining the
safe set in the same way ISE does, i.e., by means of the GP posterior, as done, for example, also
by Berkenkamp et al. (2016). We select 100 samples from a two-dimensional GP with RBF kernel,
defined in [−2.5, 2.5]×[−2.5, 2.5] and run ISE and STAGEOPT for 100 iterations for each sample. As
STAGEOPT requires a discretization of the domain, we use this discretization to compare the sample
efficiency of the two methods, by computing, at each iteration, what percentage of the discretized
domain is classified as safe. Moreover, we also compare with the heuristic acquisition inspired by
SAFEOPT proposed by Berkenkamp et al. (2016). This method works exactly as STAGEOPT, with
the difference that the set of expanders is computed using directly the GP posterior, rather than the
Lipschitz constant. More precisely, a parameter x is considered an expander if observing a value
of µn(x) + βnσn(x) at x would enlarge the safe set. For the STAGEOPT run, we use the kernel
metric to compute the set of potential expanders, for different values of the Lipschitz constant L.
From the results shown in Figure 3a, we see not only that ISE performs as well or better than all
tested instances of STAGEOPT, but also how the choice of L affects the performance of the latter.
This plot makes it also evident how crucial the choice of the Lipschitz constant is for STAGEOPT and
SAFEOPT-like algorithms in general. In Table 1, in Appendix C, we report the average percentage of
safety violations per run achieved by ISE and STAGEOPT. As expected, we see that the percentage
of safety violations is comparable among all algorithms.

To show that for STAGEOPT exploration not only overestimating the Lipschitz constant, but also
underestimating it can negatively impact performance, we consider the simple one-dimensional
constraint function f(x) = e−x + 0.05 and run the safe exploration for multiple values of the
Lipschitz constant. This function gets increasingly away from the safety threshold for x → −∞,
while it asymptotically approaches the threshold for x→∞, so that a good exploration algorithm
would, ideally, quickly classify as safe the domain region for x < 0 and then keep exploring the
boundary of the safe set for x > 0. The results plotted in Figure 3b show how both a too high and a
too low Lipschitz constant can lead to sub-optimal exploration. In the case of a too small constant,
this is because STAGEOPT considers expanders almost all parameters in the domain, leading to
additional evaluations in the region for x < 0 that are unlikely to cause expansion of the safe set. On
the other hand, a too high value of the Lipschitz constant can lead to the set of expanders to be empty
as soon as the posterior mean gets close to the safety threshold for x > 0.

OpenAI Gym Control After investigating the performance of ISE under the hypothesis of the
theory, we apply it to two classic control tasks from the OpenAI Gym framework (Brockman et al.,
2016), with the goal of finding the set of parameters of a controller that satisfy some safety constraint.
In particular we consider linear controllers for the inverted pendulum and cart pole tasks.

For the inverted pendulum task, the linear controller is given by ut = α1θt + α2θ̇t, where ut is the
control signal at time t, while θt and θ̇t are, respectively, the angular position and the angular velocity
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(a) Comparison with STAGEOPT for GP samples. (b) Comparison in 1D exponential example.

Figure 3: (a) Average expansion of safe set over 100 two-dimensional GP samples. The average
percentage of the domain classified as safe is plotted as a function of n with its standard error. The
lines for L = 0 and L = 1 overlap. We can see that ISE obtains an higher sample efficiency than the
best instance of STAGEOPT and a comparable one with the heuristic acquisition function proposed by
Berkenkamp et al. (2016). The plot also shows that STAGEOPT performance is heavily affected by
the choice of L. In (b) the average percentage of the domain classified as safe in the one dimensional
example for f(x) = e−x + 0.05 is plotted as function of th eiteration n with its standard error, and it
shows the detrimental effect of over- and underestimating L.

of the pendulum. Starting from a position close to the upright equilibrium, the controller’s task is the
stabilization of the pendulum, subject to a safety constraint on the maximum velocity reached within
one episode. For some given initial controller configuration α0 := (α0

1, α
0
2), we want to explore the

controller’s parameter space avoiding configurations that lead the pendulum to swing with a too high
velocity. We apply ISE to explore the α-space with x0 = α0 and the safety constraint being the
maximum angular velocity reached by the pendulum in an episode of fixed length. In this case, the
safety threshold is not at zero, but rather at some finite value θ̇M , and the safe parameters are those
for which the maximum velocity is below θ̇M . The formalism developed in the previous sections
can be easily applied to this scenario if we consider f(α) = −(maxt θ̇t(α)− θ̇M ). In Figure 4a we
show the true safe set for this problem, while in Figures 4b–4d one can see how ISE safely explores
the true safe set. These plots show how the ISE acquisition function (6) selects parameters that are
close to the current safe set boundary and, hence, most informative about the safety of parameters
outside of the safe set. This behavior eventually leads to the full true safe set to be classified as safe
by the GP posterior, as Figure 4d shows.

The cart pole task is similar to the inverted pendulum one, but the parameter space has three
dimensions. The controller we consider is given by ut = α1θt + α2θ̇t + α3ṡt, where θt and θ̇t are,
respectively, the angular position and angular velocity of the pole at time t, while ṡt is the cart’s
velocity. We set the initial state to zero angular and linear velocity and with the pole close to the
vertical position, with the controller’s goal being to keep the pole stable in the upright position. A
combination of the three parameters α1, α2 and α3 is considered safe if the angle of the pole does not
exceed a given threshold within the episode. Again, we can easily cast this safety constraint in terms
of the formalism developed in the paper: f(α) = −(maxt θt(α)− θM ), where θM is the maximum
allowed angle. Figure 5a shows the expansion of the cart pole α space promoted by ISE, compared
with STAGEOPT for different values of the Lipschitz constant. Both methods achieve a comparable
sample efficiency and both lead to the classification as safe of the full true safe set.

High dimensional domains Many interesting applications have a high dimensional parameter
space. While SAFEOPT-like methods are difficult to apply already with dimension > 3 due to the
discretization of the domain, ISE can perform well also in four or five dimensions. To see this, we
apply ISE to the constraint function f(x) = e−x

2

+ 2e−(x−x1)
2

+ 5e−(x−x2)
2 − 0.2. Figure 5b

shows the ISE performance in dimension 5. We see that ISE is able to promote the expansion of the
safe set, leading to an increasingly bigger portion of the true safe set to be classified as safe.

Heteroskedastic noise domains For even higher dimensions, we can follow a similar approach to
LINEBO, limiting the optimization of the acquisition function to a randomly selected one-dimensional
subspace of the domain. Moreover, as discussed in Section 5, it is also interesting to test ISE in the
case of heteroskedastic observation noise, since the noise is a critical quantity for the ISE acquisition
function, while it does not affect the selection criterion of STAGEOPT-like methods. Therefore, in
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(a) True safe set (b) Iteration 10

(c) Iteration 30 (d) Iteration 50

Figure 4: Safe exploration of the linear controller’s parameter space in the inverted pendulum
experiment. In (a) we see the true safe set, while in (b-d) we see the safe set (blue region) as identified
by ISE at various iterations. The point marked by the green dot is αn+1 as selected by (6), while the
black cross is the initial safe seed α0.

(a) Exploration of the safe set for the cart pole task. (b) Expansion of the safe set in dimension five.

Figure 5: In (a) we plot the percentage of the true safe set of the cart pole task classified as safe by
ISE and STAGEOPT, while in (b) we see the expansion of the five-dimensional safe set promoted by
ISE, for the safety constraint f used in the high dimensional experiments.

this experiment we combine a high dimensional problem with heteroskedastic noise. In particular,
we apply a LINEBO version of ISE to the constraint function f(x) = 1

2e
−x2

+ e−(x±x1)
2

+

3e−(x±x2)
2

+ 0.2 in dimension nine and ten, with the safe seed being the origin. This function has
two symmetric global optima at ±x2 and we set two different noise levels in the two symmetric
domain halves containing the optima. To assess the exploration performance, we use the simple
regret, defined as the difference between the current safe optimum and the true safe optimum. As
the results in Figure 6 show, ISE achieve a greater sample efficiency than the other STAGEOPT-like
methods. Namely, for a given number of iterations, by explicitly exploiting knowledge about the
observation noise, ISE is able to classify as safe regions of the domain further away from the origin,
in which the constraint function assumes its largest values, resulting in a smaller regret. On the other
hand, SAFEOPT-like methods only focus on the posterior variance, so that the higher observation
noise causes them to remain stuck in a smaller neighborhood of the origin, resulting in bigger regret.
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(a) Dimension 9. (b) Dimension 10.

Figure 6: Example of high dimensional exploration, for d =9 and d =10. After every ten iterations,
we perform safe optimization with UCB acquisition within the current safe set and plot the simple
regret rn with respect to the safe optimum. (a) and (a) show, respectively, the average regret over 70
runs in dimension nine and ten, as a function of the number of iterations. We can see that this adapted
version of ISE promotes expansion of the safe set, leading to classifying as safe regions where
the latent function attains its largest value. The plots also show that ISE achieves a better sample
efficiency than both STAGEOPT-like exploration and the STAGEOPT inspired heuristic acquisition.

7 Conclusion and Societal Impact

We have introduced Information-Theoretic Safe Exploration (ISE), a novel approach to safely explore
a space in a sequential decision task where the safety constraint is a priori unknown. ISE efficiently
and safely explores by evaluating only parameters that are safe with high probability and by choosing
those parameters that yield the greatest information gain about the safety of other parameters. We
theoretically analyzed ISE and showed that it leads to arbitrary reduction of the uncertainty in
the largest reachable safe set containing the starting parameter. Our experiments support these
theoretical results and demonstrate an increased sample efficiency and scalability of ISE compared to
SAFEOPT-based approaches.

In many safety sensitive applications the shape of the safety constraints is unknown, so that an
important prerequisite for any kind of process is to identify what parameters are safe to evaluate. By
providing a principled way to do this, the contributions of this paper allow to deal with safety in a
broad range of applications, which can favor the usage of ML approaches also in safety sensitive
settings. On the other hand, misuse of the proposed method cannot be prevented in general.
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