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A Full Version of Section 4

As Section 4 of the main text is very condensed and only contains the necessary material to state
Theorems 3 and 4, here we repeat everything in full detail.

We extend our results for One-Sided Matching to a much broader class of graph-theoretic problems.
Informally, our approach works when the objective is to maximize an additive function over subgraphs
of a given graph which contain all “small” matchings and have constant maximum degree. We make
the space of feasible solutions more precise in the following definition.
Definition 4. Given a constant k ∈ N and a weighted graph G on n nodes, we say that a family F of
subgraphs of G is a matching extending k-family if:

• Graphs in F have maximum degree at most k;

• For any matching M of G of size at most bn/3kc, there is a graph in F containing M .

Clearly, the set of matchings of a graph (viewed as subgraphs rather than subsets of edges) is a
matching extending 1-family, but it is not hard to see that Definition 4 captures other constraints, like
subgraphs that are unions of disjoint paths and cycles (matching extending 3-family) or unions of
disjoint cliques of size k (matching extending (k − 1)-family).

We are ready to introduce the general full information optimization problem that we tackle here; we
then move on to its social choice analog. As this is a special case of the class of problems captured
by Max-on-Graphs (introduced by Amanatidis et al. (2021)), we use a similar formulation and name.
Note that, in the above definition, the family F is independent of the weights w. This is necessary as
w will be unknown in general.

k-Max-on-Graphs: Given a constant k ∈ N, a weighted graph G = (U,E,w), and a concise
description of a matching extending k-family F , find a solution H∗ ∈ arg maxH∈F

∑
e∈E(H) w(e).

One-Sided Matching, as studied in Section 3, is the special case of k-Max-On-Graphs, where G is the
complete bipartite graph on the set of agentsN and the set of items A, the weight of an edge {i, j} is
the value vi,j of agent i for item j, and F contains all the 1-factors of G. Note that the weights of the
graph in this case are defined in terms of the valuation functions of the agents. Moreover, recall that
in our setting only the ordinal preferences of the agents are given and their cardinal values can be
accessed only via queries; so, we do not know the weights that have not been revealed by a query.
This is the case for all the problems we are interested in, and is captured by the next definition. To
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avoid unnecessary notation, items are modeled as dummy agents with all their cardinal values equal
to 0. In addition, we write w(H) :=

∑
e∈E(H) w(e).

Ordinal-k-Max-on-Graphs: Fix a constant k ∈ N and let N be a set of n agents. A weighted graph
G = (N, E, w) is given without its weights. Every agent i ∈ N has a (private) valuation function
vi : N→ R≥0, such that, for every e = {i, j} ∈ E,

w(e) = vi(j) + vj(i).

We are also given an ordinal profile �v= (�i)i∈N that is consistent to v = (vi)i∈N , and a concise
description of a matching extending k-family F . The goal is to find H∗ ∈ arg maxH∈F w(H).

Besides One-Sided Matching, a large number of problems that are relevant to computational social
choice are captured by Ordinal-k-Max-on-Graphs. We give a few examples:

General Graph Matching: Given a weighted graph G = (U,E,w), find a matching of maximum
weight, i.e., F contains the matchings of G and clearly is a matching extending 1-family. In the social
choice analog of the problem, U = N .

Two-Sided Matching: This is a special case of General Graph Matching in which G = (U1 ∪
U2, E, w) is a bipartite graph. It is an extensively studied problem in economics and computational
social choice (Gale and Shapley, 1962; Roth and Sotomayor, 1992).

k-Clique Packing: Given a weighted complete graph G = (U,E,w), where |U | = n is a multiple
of k ≥ 2, the goal is to partition U into |U |/k clusters of size k to maximize the total weight of the
edges in the clusters. That is, F contains all spanning subgraphs of G that are the union of cliques of
size k. As claimed above, F is a matching extending (k − 1)-family: clearly every graph in F has
maximum degree k − 1, and any matching of size bn/(3(k − 1))c (which is less than n/k) can be
extended to a graph in F by arbitrarily grouping each pair of matched nodes with k − 2 unmatched
nodes, and then arbitrarily grouping the remaining nodes k at a time.

This problem generalizes General Graph Matching (for which k = 2) and often is referred to as Max
n/k-Sum Clustering in the literature; see (Anshelevich and Sekar, 2016). In its social choice analog,
U = N .

General Graph k-Matching: Given a weighted graphG = (U,E,w), find a k-matching of maximum
weight, i.e., F contains all the subgraphs of G where each node has degree at most k. As F already
contains all matchings of G of any size, it is straightforward that it is a matching extending k-family.
In the social choice analog of the problem, U = N .

k-Constrained Resource Allocation: Given a bipartite weighted graph G = (U1 ∪ U2, E, w), the
goal is to assign at most k nodes of U2 to each node in U1 so that the total weight of the corresponding
edges is maximized. That is, F contains the subgraphs of G where each node in U1 has degree at
most k and each node in U2 has degree at most 1. Again, F already contains all matchings of G of
any size, so it is a matching extending k-family.

This problem generalizes One-Sided Matching. In its social choice analog,N = U1∪U2 is partitioned
into the “actual agents” N1 = U1 and the “items” N2 = U2, and vi(j) can be strictly positive only
for i ∈ N1, j ∈ N2.

Short Cycle Packing: Given an integer ` and a weighted complete graph G = (U,E,w), the
goal is to find a collection of node-disjoint cycles of length at most ` so that their total weight is
maximized. Here, F contains any such collection of short cycles. Arguing as in k-Clique Packing, it
is straightforward to see that F is a matching extending (` − 1)-family (although it is not hard to
show that it is actually a matching extending 3-family). The social choice analog of the problem has
U = N , and is closely related to Clearing Kidney `-Exchanges (Abraham et al., 2007).

As already discussed in the Introduction, for One-Sided Matching, Amanatidis et al. (2021) showed a
lower bound of Ω(n1/λ) on the distortion of all deterministic mechanisms that can make up to λ ≥ 1
queries per agent. Using this, we can get the analogous result for all the aforementioned problems.
Although for some of them, like Two-Sided Matching and General Graph Matching, the lower bound
is immediate, here we show it for any problem captured by Ordinal-k-Max-on-Graphs. For the
statement of the theorem, k ∈ N is a constant, and we assume that for every graph G a matching
extending k-family F(G) is specified.
Theorem 3. No deterministic mechanism using at most λ ≥ 1 queries per agent can achieve a
distortion better than Ω(n1/λ) for Ordinal-k-Max-on-Graphs with feasible solutions given by F( · ).
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Proof. We are going to show that if we had a deterministic mechanismM for Ordinal-k-Max-on-
Graphs that makes at most λ ≥ 1 queries per agent and achieves distortion o(n1/λ), then we could
design a deterministic mechanism for One-Sided Matching that also makes at most λ queries per
agent and has distortion o(n1/λ). As the latter is impossible (Amanatidis et al., 2021), that would
imply that the lower bound applies to Ordinal-k-Max-on-Graphs as well.

Let (N ,A,�v) be an arbitrary instance of One-Sided Matching with |N | = |A| = n and underlying
weights defined by v = (vi,j)i∈N ,j∈A. We essentially use the same instance for Ordinal-k-Max-
on-Graphs: A complete bipartite weighted graph G = (U1 ∪ U2, E, w) with U1 = N , U2 = A,
and valuation functions defined as ui(j) = vi,j and uj(i) = 0 for every i ∈ N , j ∈ A; the induced
ordinal profile is also well-defined. Clearly, the matchings in the two instances are exactly the same
and have the same weight (although they may not be feasible with respect to F(G)). However, the
feasible solutions for Ordinal-k-Max-on-Graphs include subgraphs where the nodes may have degree
up to k instead of 1. We need to relate the weight of an (approximately) optimal solution for the
Ordinal-k-Max-on-Graphs instance to the value of an optimal matching for the One-Sided Matching
instance.

Let M be a maximum weight matching in G (and thus a maximum-value matching for the original
One-Sided Matching instance) and H ∈ F(G) be an optimal solution. Consider the submatching M̂
of M that uses the b2n/3kc heaviest edges of M . Using the fact that bxc ≥ x/2 for x ≥ 1, we get

w(M̂) ≥ b2n/3kc
n

w(M) ≥ 1

3k
w(M). (4)

Since F(G) is a matching extending k-family and M̂ is sufficiently small (since |V (G)| = 2n), there
is some Ĥ ∈ F(G) such that M̂ is a subgraph of Ĥ . As H is a maximum-weight element of F(G),
we directly get w(H) ≥ w(Ĥ) ≥ w(M̂) and, combining with (4), we have

w(H) ≥ 1

3k
w(M). (5)

Now, if H ′ ∈ F(G) is an α-approximate solution to the same Ordinal-k-Max-on-Graphs instance,
then (5) implies

w(H ′) ≥ 1

α
w(H) ≥ 1

3αk
w(M). (6)

We can construct a matching from H ′ using only ordinal information. In particular, for each i ∈ U1,
among the edges in H ′ that are incident to i, we keep the best one with respect to �i. Of course,
the resulting graph H ′′ may not be a matching, as each node in U2 may still have degree up to k.
However, note that this process also keeps at least a 1/k fraction of the weight incident to each
i ∈ U1, and thus of the total weight. So, (6) implies

w(H ′′) ≥ 1

k
w(H ′) ≥ 1

3αk2
w(M).

We repeat the process for the remaining nodes: for each j ∈ U2, we keep the best of its edges in H ′′
with respect to �j . Now the resulting graph M ′ is a matching and has at least a 1/k fraction of the
total weight of H ′′ and, thus,

w(M ′) ≥ 1

k
w(H ′′) ≥ 1

3αk3
w(M).

If needed, we can extend M ′ to a perfect matching M ′′ by arbitrarily matching the unmatched nodes
of U1 and U2, and consider its analog in the original instance. Clearly, w(M ′′) ≥ w(M ′), and thus
M ′′ is a (3αk3)-approximate solution for the original One-Sided Matching instance. Therefore,
if there existed a mechanismM with distortion α = o(n1/λ) for Ordinal-k-Max-on-Graphs with
feasible solutions given by F , we could use it for the above instance to get H ′ and then M ′′, which
would have weight within a factor of o(3k3n1/λ) from a maximum weight matching. Since k is a
constant, this would imply a distortion of o(n1/λ) for One-Sided Matching, a contradiction.

We are particularly interested in the case of λ = 2. In the next two sections we are going to present
a mechanism for this case, which is asymptotically optimal, namely it achieves distortion O(

√
n),

matching the lower bound we just derived.
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A.1 Sufficiently Representative Assignments

We now revisit the notion of a sufficiently representative assignment. We will appropriately adjust it
to refer to a single set of agents (which, for the case of One-Sided Marching, includes both the actual
agents and the items), and also incorporates the parameter k from the definition of Ordinal-k-Max-
on-Graphs.

Definition 5. GivenN1,N2 ⊆ N and k ∈ N, a many-to-one assignment A of agents inN1 to agents
in N2 is an (N1,N2, k)-sufficiently representative assignment if:

• For every agent j ∈ N2, there are at most
√
n agents from N1 assigned to j;

• For any bipartite graph H with node set N1 ∪N2 and maximum degree k, there are at most
k
√
n agents in N1 that prefer some of their neighbors in H to the agent they are assigned to

according to A.

For One-Sided Matching and k-Constrained Resource Allocation, N1 is the set of actual agents and
N2 is the set of items. In contrast, for all other problems considered here we have N1 = N2 = N .

Like we did in Section 3.2, we need to show that an (N1,N2, k)-sufficiently representative assignment
exists for any instance of Ordinal-k-Max-on-Graphs and any N1,N2 ⊆ N . We rely on the same
high-level idea for the construction:

√
n copies of each agent in N2 are created and then a SERIAL

DICTATORSHIP algorithm is run with respect to the agents in N1. The running time of
√
n-SERIAL

DICTATORSHIP remains O(n1.5).

Mechanism 1
√
n-SERIAL DICTATORSHIP(N1,N2,�v)

1: Let B be a multiset with
√
n copies of each j ∈ N2

2: for every agent i ∈ N1 do
3: Let αi be i’s most preferred agent in B w.r.t. �i
4: Remove αi from B
5: end for
6: return A = (αi)i∈N1

The following theorem is the analog of Theorem 2. While the proof is very similar, the counting
argument here is somewhat less intuitive compared to the case of One-Sided Matching due to the
differences between Definitions 2 and 5.

Theorem 10. The assignment computed by the
√
n-SERIAL DICTATORSHIP algorithm is an

(N1,N2, k)-sufficiently representative assignment.

Proof. Let A be the assignment produced by the algorithm. During the execution of the algorithm,
whenever all the copies of an agent j ∈ N2 have been matched, we will say that j is exhausted.
Assume towards a contradiction that A is not an (N1,N2, k)-sufficiently representative assignment.
By construction, the first condition of Definition 5 is obviously satisfied. So, there must be a graph
H , as described in the second condition of Definition 5, with respect to which there exists a subset
S1 ⊆ N1 with |S1| > k

√
n such that every i ∈ S1 prefers her best neighbor in H , say βi, to agent αi

she has been assigned to in A. Let S2 ⊆ N2 be the set that contains all these βis. Because H has
maximum degree at most k we have |S2| ≥ |S1|/k >

√
n.

Consider any agent i ∈ S1. The fact that this agent was not assigned to βi by
√
n-SERIAL DICTA-

TORSHIP implies that when it was i’s turn to pick, agent βi was exhausted. Therefore, at the end of
the algorithm, all agents of S2 must be exhausted. Since an agent in N2 is exhausted when all its√
n copies have been assigned and there are at most n agents in N1, we can only have as many as
n√
n

=
√
n exhausted agents. The latter means that |S2| ≤

√
n, a contradiction.

A.2 The General Mechanism

We are now ready to show that it is possible to achieve distortion O(
√
n) for any problem that can

be modeled as a special case of Ordinal-k-Max-on-Graphs. Our mechanism generalizes the main
idea of The Mechanism of querying each agent about for her overall favorite alternative, as well
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as the alternative suggested by an appropriate sufficiently representative assignment. For the latter,
we need to specify N1 and N2: These are typically both equal to the whole N , unless the problem
distinguishes between actual agents and items, in which case these two groups are captured by N1

and N2, respectively. In any case, all the edges in a feasible solution have at least one endpoint in
each of N1 and N2.

Mechanism 2 GENERAL-TWOQUERIES(G,F ,N1,N2,�v)

1: Query each agent i ∈ N1 for her favorite alternative in N2 w.r.t. �i
2: Compute A =

√
n-SERIAL DICTATORSHIP(N1,N2,�v)

3: Query each agent i ∈ N1 about the agent αi ∈ N2 she is assigned to in A
4: Set all non-revealed values to 0
5: return a maximum-weight member of F

Note that the final step of the algorithm involves computing a solution that is optimal according to the
revealed values. There are computational issues to consider here, however, we first tackle the question
of whether it is even possible to match the lower bounds of Theorem 3 for λ = 2, despite the lack of
information. We briefly discuss how to transform GENERAL-TWOQUERIES into a polynomial-time
mechanism after the proof of Theorem 4 below. Again, for the statement of the theorem we assume
that k ∈ N is a constant and that, for every G, a matching extending k-family F(G) is specified.

Theorem 4. For Ordinal-k-Max-on-Graphs with feasible solutions given by F( · ), GENERAL-
TWOQUERIES has distortion O(

√
n).

Proof. Consider any instance with valuation profile v and relevant sets of agents N1 and N2. Let
Y be the solution computed by the GENERAL-TWOQUERIES mechanism when given as input
(G,F ,N1,N2,�v), and let X denote an optimal solution. Let wR(Y ) be the revealed weight of Y
as seen by the mechanism, that is, the weight of Y taking into account only the values that have been
revealed by the queries. We will show that w(X) ≤ (1 + 10k2

√
n) · wR(Y ), and the bound on the

distortion will then follow by the obvious fact that w(Y ) ≥ wR(Y ).

We can write the optimal weight as

w(X) = wR(X) + wC(X), (7)

where wR(X) is the revealed weight of X that takes into account only the values that have been
revealed by the queries, whereas wC(X) is the concealed weight of X that takes into account only
the values that have not been revealed by the queries of the mechanism. Since Y is the solution that
maximizes the social welfare based only on the revealed values, we have that

wR(X) ≤ wR(Y ). (8)

Thus, it suffices to bound wC(X).

Let S be the set of agents in N1 who are not queried about all their neighbors in X . We partition S
into two subsets S≥ and S< consisting of agents for whom the second query of the mechanism is
used to ask about someone they consider better or worse than their best neighbor in X , respectively.
For an agent i ∈ N1, let χi be i’s favorite neighbor in X and recall that i is queried about agent
αi ∈ N2 to whom she is assigned according to the (N1,N2, k)-sufficiently representative assignment
A. So,

S≥ = {i ∈ S : vi,αi ≥ vi,χi} ,
S< = {i ∈ S : vi,αi < vi,χi} .

Let NX(i) be the set of agents who are neighbors of i in X and for which i was not queried about.
We now define

w≥C (X) =
∑
i∈S≥

∑
j∈NX(i)

vi,j

w<C (X) =
∑
i∈S<

∑
j∈NX(i)

vi,j
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Clearly, wC(X) = w≥C (X) + w<C (X).

For every agent j ∈ N2, let S≥j = {i ∈ S≥ : αi = j} be the set of all agents in S≥ that are
queried about j by the mechanism using the second query. So, S≥ =

⋃
j∈N2

S≥j . Since A is an
(N1,N2, k)-sufficiently representative assignment, the first condition of Definition 5 implies that
|S≥j | ≤

√
n for every j ∈ N2. Therefore,

w≥C (X) =
∑
j∈N2

∑
i∈S≥

j

∑
`∈NX(i)

vi,`

≤
∑
j∈N2

∑
i∈S≥

j

∑
`∈NX(i)

vi,j

≤
∑
j∈N2

∑
i∈S≥

j

k · vi,j

≤ k
∑
j∈N2

|S≥j |max
i∈S≥

j

vi,j

≤ k
√
n
∑
j∈N2

max
i∈S≥

j

vi,j (9)

where the first inequality holds by the definition of the sets S≥j , for every j ∈ N2. To complete our
bound on w≥C (X), we need the following claim.

Claim 1. For all the problems of interest,∑
j∈N2

max
i∈S≥

j

vi,j ≤ 9k · wR(Y ).

Proof. For each j ∈ N2, let ij ∈ arg max
i∈S≥

j
vi,j . Consider the subgraph H of the input graph G

with edge set E(H) = {{ij , j} | j ∈ N2}}, i.e., H contains exactly the edges that define the sum of
interest. In particular, we have∑

j∈N2

max
i∈S≥

j

vi,j =
∑
j∈N2

vij ,j = wR(H).

We now claim that each node in H has degree at most 2. To see this, consider an agent ` ∈ N .
There is at most one j ∈ N2 such that ` ∈ S≥j (since these sets are disjoint), and thus we may have
` = ij for at most one j ∈ N2, resulting in the edge {j, `} in H . Additionally, ` may itself be in
N2, resulting in a second edge {`, i`} in H . Other than these two, there can be no other edges of H
adjacent to `.

Since H has maximum degree at most 2, it must contain a matching M of comparable weight.
Specifically, H must be the union of node-disjoint paths and cycles. We construct a (possibly empty)
matching M1 on H by arbitrarily picking one edge from each odd cycle and one edge from the
beginning of each odd path. If we remove M1 from H , then the remaining graph is the union of
node-disjoint even paths and even cycles, and thus can be decomposed into two disjoint matchings
M2,M3 in a straightforward way. Since M1, M2, and M3 cover all the edges of H , the best of them,
say M , must have weight at least wR(H)/3, i.e,

wR(M |v) =
1

3
wR(H).

Now we can work with M like in the proof of Theorem 3. Consider the submatching M̂ of M
containing the b2n/3kc heaviest edges of M to get

wR(M̂) ≥ 1

3k
wR(M) ≥ 1

9k
wR(H). (10)
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Since F is a matching extending k-family and M̂ is sufficiently small, there is some Ŷ ∈ F(G) such
that M̂ is a subgraph of Ŷ . As Y is a maximum-weight element of F(G) with respect to the revealed
weights, we directly get wR(Y ) ≥ wR(Ŷ ) ≥ wR(M̂) and, combining with (10), we have

wR(Y ) ≥ 1

9k
w(H),

as desired.

By combining (9) with Claim 1, we get

w≥C (X) ≤ 9k2
√
n · wR(Y ). (11)

We next consider the quantity w<C (X). By the fact that A is an (N1,N2, k)-sufficiently representative
assignment, it follows that |S<| ≤ k

√
n; otherwise X would be a graph that violates the second

condition of Definition 5. Combined with the fact that all agents inN1 are queried about their favorite
alternative, we can obtain the following upper bound on w<C (X). Recall that for i ∈ N1, we have
NX(i) ⊆ N2 and |NX(i)| ≤ k.

w<C (X) =
∑
i∈S<

∑
j∈NX(i)

vi,j

≤
∑
i∈S<

k ·max
j∈N

vi,j

≤ k |S<| max
i∈S<

max
j∈N

vi,j

≤ k2
√
n · wR(Y ). (12)

The bound now follows by (7), (8), (11), (12).

Clearly, Theorem 4 follows as a corollary of Theorem 4.

A subtle point here is that of computational efficiency. Although designing polynomial time mech-
anisms is not our primary goal, it is clear that the only possible bottleneck is the last step of
GENERAL-TWOQUERIES. Indeed, the mechanism runs in polynomial time whenever there is a
polynomial-time algorithm (exact or O(1)-approximation) for the full information version of the
corresponding optimization problem. The good news are that all variants of matching problems
we presented can be solved efficiently by Edmond’s algorithm (Edmonds, 1965) or its extensions
(Marsh III, 1979).

Corollary 5. There are deterministic polynomial-time mechanisms for General Graph Matching,
Two-Sided Matching, General Graph k-Matching, and k-Constrained Resource Allocation which all
use at most two queries per agent and have distortion O(

√
n).

B Missing Material From Section 5

B.1 Full Proof of Theorem 6

Let M be an arbitrary mechanism that makes at most λ ≥ 1 queries per agent. Consider the
following instance with n agents and m = n alternatives. We assume that m satisfies the condition
m ≥ 1

2

∑λ
`=1m

(λ−`+1)/λ + 2, and also that it is superconstant; otherwise the theorem holds trivially.
We partition the set of alternatives A into λ+ 2 sets A1, A2, ... Aλ+1, Aλ+2, such that

• |A`| = 1
2m

(λ−`+1)/λ for ` ∈ [λ];

• |Aλ+1| = 2;

• |Aλ+2| = m− 1
2

∑λ
`=1m

(λ−`+1)/λ − 2.

The ordinal profile has the following properties:

7



√
m

2

m

2

...

...

2

position 1 position 2 position 3 All other positions

arbitrary

2
√
m

2
√
m

Figure 1: An overview of the instance used in the proof of Theorem 6 two queries (λ = 2). Each
rectangle in the first three positions corresponds to an alternative. Each rectangle at position 1 contains
two agents. Each rectangle at position 2 contains the agents from 2

√
m rectangles at position 1, as

indicated by the arrows, meaning that those agents rank the same alternative second. The rectangles
at position 3 contain m/2 agents each, corresponding to

√
m/4 rectangles at position 2. That is, the

agents that rank second one of the first
√
m/4 alternatives at position 2, rank third the alternative

corresponding to the first rectangle at position 3; similarly, the agents that rank second one of the
last
√
m/4 alternatives at position 2, rank third the alternative corresponding to the second rectangle

at position 3. The ranking of the alternatives in the remaining positions is consistent but otherwise
arbitrary.

• For every ` ∈ [λ + 1], each alternative j ∈ A` is ranked at position ` by a set Tj,` of
m
|A`| = Θ

(
m(`−1)/λ) agents.

• For every ` ∈ [λ], every pair of agents that rank the same alternative in A` at position `, rank
the same alternative in A`+1 at position `+ 1.

• For every agent, the alternatives that she does not rank in the first λ+ 1 positions are ranked
arbitrarily from position λ+ 2 to m.

An example of the ordinal profile when λ = 2 is depicted in Figure 1 (see supplementary material).
For every agent i, a query ofM for alternative j reveals a value of

• m−`/λ if i ranks j at position ` ∈ [λ+ 1], and

• and a value of 0 if i ranks j at any other position.

Given this instance as input, let y be the alternative thatM chooses as the winner. No matter the
choice of y, we will define the cardinal profile so that it is consistent to the information revealed by
the queries ofM, and the values of the agents for alternative y are also consistent to the information
that would have been revealed, irrespective of whether those values have actually been revealed. That
is, any agent has a value of m−`/λ for y if she ranks y at position ` ∈ [λ+ 1], and a value of 0 if she
ranks y at any other position. Hence, the social welfare of y is

• Θ
(
m(`−1)/λ) ·m−`/λ = Θ(m−1/λ) if y ∈ A` for ` ∈ [λ+ 1], or

8



• 0 if y ∈ Aλ+2.

Consequently, to show the desired bound of Ω(m1/λ) on the distortion ofM, it suffices to assume
that y ∈ A` for some ` ∈ [λ+ 1], and prove that the values of the agents that have not been revealed
and do not correspond to alternative y can always be defined such that there exists an alternative
x 6= y with social welfare Ω(1).

Suppose towards a contradiction that the cardinal profile cannot be defined in a way so that there
exists an alternative x with social welfare Ω(1). We make the following two observations:

(O1) If there exists an alternative x ∈ A1 \ {y} for which at least one agent in Tx,1 is not queried
byM for x, then we can set the value of this agent for x to be constant. Consequently, all
the agents in

⋃
j∈A1\{y} Tj,1 that rank alternatives different that y at position 1, must be

queried at position 1.
(O2) Let ε ∈ (0, 1) be a constant and ` ∈ {2, . . . , λ+ 1}. Consider any alternative x ∈ A` \ {y}

and any set of agents S ⊆ Tx,` such that |S| ≥ ε · m
|A`| = Θ(m(`−1)/λ). If at least 1

2 |S|
agents in S are not queried byM for x, then we could set the value of all these agents for
x to be m−(`−1)/λ (which is the revealed value whenM queries for alternatives ranked at
position `− 1), and the social welfare of x would be at least

1

2
|S| ·m−(`−1)/λ = Θ(m(`−1)/λ) ·m−(`−1)/λ = Θ(1).

Consequently, for every alternative x ∈ A` \ {y} and set S ⊆ Tx,` such that |S| ≥ ε · m
|A`| ,

at least 1
2 |S| agents in S must be queried at position ` for x.

Given these two observations, we are now ready to show by induction that the mechanism must make
λ+ 1 queries for a high proportion of the agents, contradicting thatM makes at most λ queries per
agent.

For the base case, consider an alternative x ∈ A2 \ {y}. By the definition of the ordinal profile, the
agents in Tx,2 who rank x at position 2 are partitioned into |A1|

|A2| subsets such that all m
|A1| agents

in each subset rank first the same alternative of A1. By (O1) we have that, besides the agents that
rank alternative y at position 1, all other agents must be queried at position 1. Hence, there exists
a set S ⊆ Tx,2 consisting of |S| ≥

(
|A1|
|A2| − 1

)
· m
|A1| agents that are queried at position 1. By the

definitions of A1 and A2, and since m is superconstant, we have that |S| ≥ 1
2 ·

m
|A2| . By (O2) for

ε = 1
2 and ` = 2, we have that at least 1

2 |S| ≥
1
4 ·

m
|A2| of the agents in S must also be queried at

position 2 for x.

Let ` ∈ {3, . . . , λ+ 1} and assume as induction hypothesis that for every alternative z ∈ A`−1 \ {y}
there is a set of agents Sz ⊆ Tz,`−1 such that |Sz| ≥ 1

22(`−2) · m
|A`−1| who are queried byM at the

first `− 1 positions. Consider an alternative x ∈ A` \ {y}. By the definition of the ordinal profile,
the agents in Tx,` who rank alternative x at position ` are partitioned into |A`−1|

|A`| subsets such that all
m

|A`−1| agents in each subset rank the same alternative in A`−1 at position `− 1. So, by our induction
hypothesis, there is a set S ⊆ Tx,` consisting of

|S| ≥
(
|A`−1|
|A`|

− 1

)
· 1

22(`−2)
· m

|A`−1|
agents that are queried at the first `− 1 positions. By the definition of A`−1 and A`, and since m is
superconstant, we have that

|S| ≥ 1

22(`−2)+1
· m
|A`|

.

Since ` ≤ λ+ 1 and λ is a constant, by observation (O2) for ε = 1
22(`−2)+1 , we have that at least

1

2
|S| ≥ 1

22(`−1)
· m
|A`|

agents in S must also be queried at position ` for x.
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Now, let x ∈ Ak+1 \ {y}. The above induction shows that there are at least 1
22λ
· m
|Aλ+1| agents in

Tx,λ+1 who must be queried byM at the first λ+ 1 positions. This contradicts the fact thatM can
make at most k queries per agent, and the theorem follows.

B.2 Proof of Theorem 7

Consider any social choice instance with valuation profile v that induces the ordinal preference profile
�v. Let y be the alternative chosen by the mechanism when given as input this instance, and denote
by x the optimal alternative. We will show that SW(x) ≤ (1 + (1 + c) ·

√
m)SWR(y). The bound

on the distortion will then follow by the obvious fact that SW(y) ≥ SWR(y).

We can write the optimal welfare as

SW(x) = SWR(x) + SWC(x)

≤ SWR(y) + SWC(x) , (13)

where SWC(x) is the concealed welfare of x, consisting of the values of agents for x that were
not revealed by the queries of the mechanism, and the inequality follows by the fact that y is the
alternative that maximizes the revealed welfare. Let S be the set of agents who were not queried
about their value for x, and partition S into the following two subsets:

• S≥ consists of the agents in S for whom the second query is about an alternative that the
agent considers better than x;

• S< consists of the agents in S for whom the second query is about an alternative that the
agent considers worse than x.

Given these sets, now let

SW≥C(x) =
∑
i∈S≥

vi,x and SW<
C(x) =

∑
i∈S<

vi,x.

be the contribution of the agents in S≥ and of the agents in S< to the concealed welfare of x,
respectively. That is,

SWC(x) = SW≥C(x) + SW<
C(x).

By the definition of the mechanism, each agent is queried about her favorite alternative in the
sufficiently representative set B. For every j ∈ B \ {x}, let S≥j ⊆ S≥ be the set of agents in S≥

who are queried for alternative j instead of x. Thus, S≥ =
⋃
j∈B\{x} S

≥
j . By the definition of S≥,

the fact that y maximizes the revealed welfare, and since |B| ≤ c ·
√
m, we obtain

SW≥C(x) =
∑

j∈B\{x}

∑
i∈S≥

j

vi,x

≤
∑

j∈B\{x}

∑
i∈S≥

j

vi,j

≤
∑

j∈B\{x}

SWR(j|v)

≤ |B| · SWR(y|v)

≤ c ·
√
m · SWR(y). (14)

Since all the agents in S< are queried for alternatives in the sufficiently representative set B that they
consider worse than x and B, it must be the case that |S<| ≤

√
m. Since all agents are queried at the
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first position for their favorite alternative, we obtain

SW<
C(x) =

∑
i∈S<

vi,x

≤
∑
i∈S<

max
j∈A

vi,j

≤ |S<| · max
i∈S<

max
j∈A

vi,j

≤
√
m · SWR(y). (15)

The bound now follows by (13), (14) and (15).
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