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A Different Prompt Length
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Figure 1: MLR with Partial Labels at Different
Prompt Length on MS-COCO [3]

We have provided the comparison of the perfor-
mance of DualCoOp with different lengths of
prompt context (i.e. N = 2, 4, 6, 8, 16, 32, 64)
in all three different experiment scenarios (see
Fig. 1 and 2). In MLR with partial labels, we
learn class-specific prompts and thus DualCoOp
performs good when N is small, such as 8, 16.
For zero-shot learning in MLR, we learn uni-
form prompts shared by all classes and it re-
quires larger N (e.g. 32 or 64) for good perfor-
mance. In the main paper, we use N = 16 for all experiments of MLR with partial labels and use
N = 32 for experiments in zero-shot learning.
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Zero-Shot Learning
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Generalized Zero-Shot Learning

Figure 2: Zero-Shot MLR with Different Prompt Length on MS-COCO [3]

In the main paper, we set N+ = N− for simplicity. Here, we conduct experiments in both partial-label
MLC and Zero-Shot MLC settings to check the performance of different N−s by controlling the N+

as the same. As shown Table 1 and 2, F1-Score generally improves with larger N− in both partial
label and zero-shot settings.
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Table 1: Performance of different N−s with 10% labels on MS-COCO
(N+, N−) CP CR CF1 OP OR OF1 mAP

(16, 2) 67.1 77.9 71.8 69.8 82.2 75.5 78.7
(16, 4) 67.7 77.6 72.1 70.3 81.8 75.6 78.7
(16, 8) 68.4 77.8 72.6 70.9 81.8 76.0 78.9

(16, 16) 69.1 77.5 72.6 71.4 81.6 76.2 78.7

Table 2: Zero-Shot performance of different N−s on MS-COCO
(N+, N−) ZS-P ZS-R ZS-F1 GZS-P GZS-R GZS-F1

(32, 2) 31.2 77.4 44.4 55.1 64.3 59.3
(32, 4) 33.1 82.1 47.1 57.1 66.6 61.5
(32, 8) 34.0 84.4 48.4 57.6 67.2 62.0
(32, 16) 34.8 86.6 49.7 57.5 67.1 61.9
(32, 32) 35.8 88.9 51.0 57.4 67.0 61.9

B Full performance of MLR with Partial Labels

In this section, we provide the average per-class and average overall precisions (CP and OP), recalls
(CR and oR) and F1 scores (CF1 and OF1) of DualCoOp in the experiment of MLR with Partial
Labels on MS-COCO [3], VOC2007 [2] and BigEarth [1] (see Table 3, 4 and 5 in supplementary
material) as a supplementary for Table ?? and ?? in the main paper.

C Visualization of Class-Specific Region Feature Aggregation

We have visualized the class-specific region feature aggregation on MS-COCO dataset (in Fig. 3).
We can see DualCoOp generates the high attention score at the correct objects.

Table 3: Performance of MLR with partial labels on MS-COCO
Amount of Labels CP CR CF1 OP OR OF1 mAP

10% 69.1 77.5 72.6 71.4 81.6 76.2 78.7
20% 70.1 79.4 74.2 72.1 83.0 77.2 80.9
30% 71.2. 80.1 75.1. 72.9. 83.5 77.8 81.7
40% 71.3 80.2 75.2 73.2 83.8 78.1 82.0
50% 72.1 80.4 75.8 73.7 83.9 78.5. 82.5
60% 72.4 80.6 76.0 73.9 84.0 78.6 82.7
70% 72.5 80.5 76.1 74.1 83.9 78.7 82.8
80% 72.9 80.7 76.3 74.3 84.1 78.9 83.0
90% 72.9 80.7 76.4 74.5 84.1 79.0 83.1

100% (No Finetune) 73.2 80.8 76.6 74.6 84.2 79.1 83.2
100% (Finetune Aggre. Func.) 75.7 80.4 77.8 77.1 83.7 80.3 84.2

100% (Finetune Img. Enc.) 92.5 68.0 77.3 93.5 70.8 80.6 85.3
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Table 4: Performance of MLR with partial labels on VOC2007
Amount of Labels CP CR CF1 OP OR OF1 mAP

10% 69.6 91.3 78.0 72.4 92.4 81.2 90.3
20% 74.2 92.6 81.7 76.2 93.6 84.0 92.2
30% 74.9 92.8 82.3 78.6 93.3 85.3 92.8
40% 78.4 92.5 84.5 80.8 93.3 86.6 93.3
50% 80.6 93.4 86.3 82.4 94.0 87.8 93.6
60% 80.1 93.7 86.0 81.4 94.4 87.4 93.9
70% 80.9 93.4 86.5 82.7 94.0 88.0 94.0
80% 80.8 93.8 86.5 82.9 94.2 88.2 94.1
90% 80.5 93.9 86.3 82.4 94.4 88.0 94.2

100% (No Finetune) 81.2 94.1 86.8 83.2 94.5 88.5 94.4

Table 5: Performance of MLR with partial labels on BigEartn
Amount of Labels CP CR CF1 OP OR OF1 mAP

10% 76.9 84.3 78.8 71.9 85.9 78.3 88.2
20% 81.6 94.2 86.9 73.4 93.1 82.1 92.9
30% 83.7 93.1 87.4 75.7 92.5 83.3 93.1
40% 82.7 93.9 87.2 75.8 92.0 83.1 93.5
50% 81.3 93.2 85.9 74.4 90.4 81.6 93.7
60% 86.2 92.3 88.9 80.2 91.1 85.3 94.3
70% 86.0 92.8 88.8 79.4 91.7 85.1 94.2
80% 85.1 94.8 89.2 77.9 93.2 84.9 94.1
90% 83.9 94.4 88.2 77.2 93.4 84.5 94.7

100% (No Finetune) 85.8 95.5 90.0 78.7 93.8 85.6 95.2
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Figure 3: Visualization of Class-Specific Region Feature Aggregation
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