DualCoOp: Fast Adaptation to Multi-Label Recognition with Limited Annotations (Supplementary Material)

Ximeng Sun¹ Ping Hu¹ Kate Saenko^{1,2} ¹Boston University, ²MIT-IBM Watson AI Lab, IBM Research {sunxm, pinghu, saenko}@bu.edu

A Different Prompt Length

We have provided the comparison of the performance of DualCoOp with different lengths of prompt context (i.e. N = 2, 4, 6, 8, 16, 32, 64) in all three different experiment scenarios (see Fig. 1 and 2). In MLR with partial labels, we learn class-specific prompts and thus DualCoOp performs good when N is small, such as 8, 16. For zero-shot learning in MLR, we learn uniform prompts shared by all classes and it requires larger N (e.g. 32 or 64) for good perfor-

mance. In the main paper, we use N = 16 for all experiments of ML R with partial labels and use N = 32 for experiments in zero-shot learning. Prompts at Different Lengths (N)

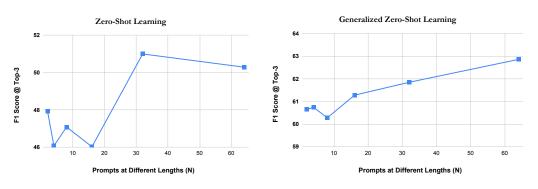


Figure 2: Zero-Shot MLR with Different Prompt Length on MS-COCO [3]

In the main paper, we set $N_+ = N_-$ for simplicity. Here, we conduct experiments in both partial-label MLC and Zero-Shot MLC settings to check the performance of different N_- s by controlling the N_+ as the same. As shown Table 1 and 2, F1-Score generally improves with larger N_- in both partial label and zero-shot settings.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: Performance of different N-s with 10% labels on MS-COCO

(N_+, N)	СР	CR	CF1	OP	OR	OF1	mAP
(16, 2)	67.1	77.9	71.8	69.8	82.2	75.5	78.7
(16, 4)	67.7	77.6	72.1	70.3	81.8	75.6	78.7
(16, 8)	68.4	77.8	72.6	70.9	81.8	76.0	78.9
(16, 16)	69.1	77.5	72.6	71.4	81.6	76.2	78.7

Table 2: Zero-Shot performance of different *N*-s on MS-COCO

(N_{+}, N_{-})	ZS-P	ZS-R	ZS-F1	GZS-P	GZS-R	GZS-F1
(32, 2)	31.2	77.4	44.4	55.1	64.3	59.3
(32, 4)	33.1	82.1	47.1	57.1	66.6	61.5
(32, 8)	34.0	84.4	48.4	57.6	67.2	62.0
(32, 16)	34.8	86.6	49.7	57.5	67.1	61.9
(32, 32)	35.8	88.9	51.0	57.4	67.0	61.9

B Full performance of MLR with Partial Labels

In this section, we provide the average per-class and average overall precisions (CP and OP), recalls (CR and oR) and F1 scores (CF1 and OF1) of DualCoOp in the experiment of MLR with Partial Labels on MS-COCO [3], VOC2007 [2] and BigEarth [1] (see Table 3, 4 and 5 in supplementary material) as a supplementary for Table **??** and **??** in the main paper.

C Visualization of Class-Specific Region Feature Aggregation

We have visualized the class-specific region feature aggregation on MS-COCO dataset (in Fig. 3). We can see DualCoOp generates the high attention score at the correct objects.

Table 5: Performance of MLR with partial labels on MS-COCO									
Amount of Labels	CP	CR	CF1	OP	OR	OF1	mAP		
10%	69.1	77.5	72.6	71.4	81.6	76.2	78.7		
20%	70.1	79.4	74.2	72.1	83.0	77.2	80.9		
30%	71.2.	80.1	75.1.	72.9.	83.5	77.8	81.7		
40%	71.3	80.2	75.2	73.2	83.8	78.1	82.0		
50%	72.1	80.4	75.8	73.7	83.9	78.5.	82.5		
60%	72.4	80.6	76.0	73.9	84.0	78.6	82.7		
70%	72.5	80.5	76.1	74.1	83.9	78.7	82.8		
80%	72.9	80.7	76.3	74.3	84.1	78.9	83.0		
90%	72.9	80.7	76.4	74.5	84.1	79.0	83.1		
100% (No Finetune)	73.2	80.8	76.6	74.6	84.2	79.1	83.2		
100% (Finetune Aggre. Func.)	75.7	80.4	77.8	77.1	83.7	80.3	84.2		
100% (Finetune Img. Enc.)	92.5	68.0	77.3	93.5	70.8	80.6	85.3		

Table 3: Performance of MLR with partial labels on MS-COCO

Table 4: Performance of MLR with partial labels on VOC2007									
Amount of Labels	CP	CR	CF1	OP	OR	OF1	mAP		
10%	69.6	91.3	78.0	72.4	92.4	81.2	90.3		
20%	74.2	92.6	81.7	76.2	93.6	84.0	92.2		
30%	74.9	92.8	82.3	78.6	93.3	85.3	92.8		
40%	78.4	92.5	84.5	80.8	93.3	86.6	93.3		
50%	80.6	93.4	86.3	82.4	94.0	87.8	93.6		
60%	80.1	93.7	86.0	81.4	94.4	87.4	93.9		
70%	80.9	93.4	86.5	82.7	94.0	88.0	94.0		
80%	80.8	93.8	86.5	82.9	94.2	88.2	94.1		
90%	80.5	93.9	86.3	82.4	94.4	88.0	94.2		
100% (No Finetune)	81.2	94.1	86.8	83.2	94.5	88.5	94.4		

Table 4: Performance of MLR with partial labels on VOC2007

Table 5: Performance of MLR with partial labels on BigEartn

Table 5: Performance of MLR with partial labels on BigEarth									
Amount of Labels	CP	CR	CF1	OP	OR	OF1	mAP		
10%	76.9	84.3	78.8	71.9	85.9	78.3	88.2		
20%	81.6	94.2	86.9	73.4	93.1	82.1	92.9		
30%	83.7	93.1	87.4	75.7	92.5	83.3	93.1		
40%	82.7	93.9	87.2	75.8	92.0	83.1	93.5		
50%	81.3	93.2	85.9	74.4	90.4	81.6	93.7		
60%	86.2	92.3	88.9	80.2	91.1	85.3	94.3		
70%	86.0	92.8	88.8	79.4	91.7	85.1	94.2		
80%	85.1	94.8	89.2	77.9	93.2	84.9	94.1		
90%	83.9	94.4	88.2	77.2	93.4	84.5	94.7		
100% (No Finetune)	85.8	95.5	90.0	78.7	93.8	85.6	95.2		

Input

Chair

Potted Plant

Potted Plant

Sink

Microwave

Input

Input

Bottle

Car

Vase

Oven

Person

Input

Bicycle

Dog

Figure 3: Visualization of Class-Specific Region Feature Aggregation

References

- [1] Bindita Chaudhuri, Begüm Demir, Subhasis Chaudhuri, and Lorenzo Bruzzone. Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method. *IEEE Transactions on Geoscience and Remote Sensing*, 56(2):1144–1158, 2018.
- [2] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *IJCV*, 88(2):303–338, 2010.
- [3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.