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Abstract

Solving multi-label recognition (MLR) for images in the low-label regime is
a challenging task that has many real-world applications. Recent work learns
an alignment between textual and visual spaces to compensate for insufficient
image labels, but loses accuracy because of the limited amount of available MLR
annotations. In this work, we utilize the strong alignment of textual and visual
features pretrained with millions of auxiliary image-text pairs and propose Dual
Context Optimization (DualCoOp) as a unified framework for partial-label MLR and
zero-shot MLR. DualCoOp encodes positive and negative contexts with class names
as part of the linguistic input (i.e. prompts). Since DualCoOp only introduces a very
light learnable overhead upon the pretrained vision-language framework, it can
quickly adapt to multi-label recognition tasks that have limited annotations and even
unseen classes. Experiments on standard multi-label recognition benchmarks across
two challenging low-label settings demonstrate the advantages of our approach over
state-of-the-art methods. Project page: https://cs-people.bu.edu/sunxm/
DualCoOp/project.html

1 Introduction

Image recognition has become a very popular and successful research area in recent years, due to
the development of large-scale datasets [12, 28] and advanced model architectures [14, 19, 38, 54].
However, the majority of image recognition approaches have focused on single-label prediction, which
ignores the intrinsic multi-label nature of images. Unlike single-label recognition [14, 19, 38, 54],
multi-label image recognition aims to recognize all semantic labels present in an image [10, 11,
35, 37, 52, 66, 61], providing a more comprehensive understanding and benefiting applications like
image retrieval, video analysis, and recommendation systems.

Multi-label recognition typically deals with images of complex scenes and diverse objects. Collecting
multi-label annotations becomes difficult to scale up, for two reasons: (i) annotating images with the
full semantic label set is laborious and (ii) samples of particular categories can be hard to find. The
first challenge can be addressed by multi-label recognition with partial labels, where merely some
of the categories are annotated for each training image. Recent works proposed solutions to partial-
label MLR based on semi-supervised learning [24, 41], normalized training objectives [15], or label
correlations [8, 21, 46]. The second setting involves zero-shot MLR, where novel unseen categories
are recognized by transferring knowledge from seen categories, with solutions like principal image
features [3, 69], knowledge graphs [29], and attention mechanisms [22, 44]. Despite significant
progress on the two settings, existing approaches are not designed to handle both at once. We propose
to unify these settings as limited-annotation MLR and design a solution that can handle practical
scenarios with either partial or missing labels.

Successful solutions to the above problems transfer knowledge from fully-annotated categories
to partially-labeled and novel categories by learning an alignment between images and category
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Figure 1: A conceptual comparison of previous multi-label recognition (MLR) methods and our approach.
In Partial-Label MLR (a) and Zero-Shot MLR (b), previous works learn to model and align the visual and textual
inputs as well as explore the correlation between the target label with all/seen labels depending on the limited
semantic annotations available on the dataset, which leads to sub-optimal performance and complex model
architectures. In contrast, we propose a unified framework to tackle both limited-annotation tasks (c). We rely
on the modeling and alignment of visual and textual inputs contained a large-scale pretrained vision-language
model, and only learn a pair of positive and negative prompts to this model.

names [8, 46, 69]. Recently, vision-language pretraining models are bridging the visual-textual gap via
large-scale pretraining, e.g., CLIP [47] is trained with 400 million image-text pairs. In this work, we
draw inspiration from the recent success of prompt learning for such models [20, 25, 40, 48, 70, 72].
Prompt learning provides a convenient way to transfer pretrained vision-language models to other
tasks. It designs additional templated or learnable prompt tokens for textual input to “inform” the
model about downstream tasks and avoids finetuning the entire model which can be inefficient and
data-hungry. By doing so, recent works like CoOp [71] have demonstrated CLIP’s remarkable
generalisation to various zero-shot image tasks [20, 47, 72]. However, these methods mainly focus
on matching each image with a single label, hence they are not able to handle the multi-label setting.

To adapt the knowledge learned in CLIP to multi-label image recognition, we propose the DualCoOp
framework. As shown in Fig. 1 (c), DualCoOp learns a pair of differentiable prompts to provide
positive and negative contexts for the target class. Instead of using hand-crafted thresholding to
determine positive labels [51], the dual prompts naturally result in a positive and a negative classifier,
so the existence of the target class in the image can be easily decided by comparing their scores.
Unlike prior models, shown in Fig. 1 (a)(b), we avoid fine-tuning the full vision-language model and
only learn the prompts, which are much smaller compared to the entire model. Therefore, our simple
framework achieves much higher efficiency when adapting to different datasets. Additionally, we
modify the attention mechanism of CLIP to better model spatial information in images, improving
its ability to recognize multiple objects in MLR. With these design choices, we achieve a unified
framework for addressing the general challenges of multi-label recognition with limited annotations.

We summarize our contributions as follows:

• We propose DualCoOp to quickly adapt powerful vision-language models to solve multi-label
recognition tasks using limited annotations.

• We propose dual (positive and negative) prompts to drastically reduce the number of learnable
parameters, and improve the spatial modeling of the visual encoder to better distinguish multiple
objects.

• We conduct extensive experiments on partial-label MLR (on MS-COCO [34] and VOC2007 [16])
and zero-shot MLR (on MS-COCO and NUS-WIDE [11]). Notably, DualCoOp improves mAP by
6.8% with 10% of labels on VOC2007, and F1-score at Top-3 Prediction by 10.8% for zero-shot
MLR on NUS-WIDE.

2 Related Works
Multi-Label Recognition with Limited Annotations. Multi-label image recognition has drawn
increasing attention in past years. One straightforward solution to this problem is to individually
learn a binary classifier for each category [36, 43, 57], which however does not consider correlations
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among labels. Hence, recent works have focused on incorporating semantic dependencies among
labels via graph neural networks [10, 11, 61] or RNN/LSTM [35, 59, 62, 66]. Some work also
considers the spatial distribution of labels in the image, and exploits object proposals [33, 37, 60]
or attention mechanism [52, 62, 73] as a regularization to rectify the prediction. However, despite
achieving significant progress, these methods require a large-scale and complete annotated dataset to
train models [27, 34]. This limits their application to more practical scenarios where data is partially
annotated for training [4, 6, 41, 55, 56, 64] and unseen (zero-shot) categories may appear during
testing [7, 18, 29, 42, 69].

With partially labeled data, where merely some labels of each sample are known, Mahajan et al. [41]
and Joulin et al. [24] attempt to use web supervision to automatically generate the pseudo labels,
which unfortunately leads to poor performance as the web supervision is noisy and incomplete [67].
To avoid external noise, Durand et al. [15] exploit the proportion of annotated samples for different
labels and propose a normalized BCE loss to train models based on the given partial labels. More
recent works explicitly transfer information from known labels to complement unknown labels by
utilizing category-specific feature blending [46] or label co-occurrences [8] at both instance-level and
prototype-level.

Unlike partial annotation of the same label set for training and testing, zero-shot multi-label image
recognition needs to handle novel categories during testing, hence inspiring a different route based on
a joint visual-label embedding space [7, 22, 42, 44, 69]. Zhang et al. [69] propose to find a principal
direction that ranks related labels first in the joint embedding space optimized via a tailored zero-shot
ranking loss. Cohen et al. [3] further improve the idea by learning multiple principal vectors to support
the semantic diversity. Huynh et al. [22] consider the spatial regularization and propose a shared
multi-attention model and obviate the need for explicit region proposals [50]. Narayan et al. [44]
propose to enhance the region-based features so as to minimize inter-class feature entanglement.

Though significant progress has been made in each of the directions, existing methods still require a
lot of MLR data and complex architectures/losses. Our approach reduces the need for hard-to-get
MLR data by pretraining on unsupervised text-image pairs. While it may seem unfair to compare
existing MLR methods with ones based on such pretraining, we point out that the pretraining data
is unsupervised and thus easier to obtain. We also provide experiments comparing DualCoOp to
baselines using the same pretraining. Importantly, previous methods are designed for only one task,
hence have limitations in practical applications. In contrast, our proposed framework can be easily
adapted with small data and can address both partial and zero-shot tasks at the same time.

Prompt Learning for Vision-Language Models. Vision-Language Models [23, 47] based on
contrastive learning have demonstrated impressive ability to learn generic visual representations. As
a milestone, CLIP [47] is trained with 400 million curated image-text pairs, and shows remarkable
transfer capability for over 30 classification datasets. With such powerful vision-language models,
several follow-ups [17, 63, 65, 68] have been proposed to explore the training strategies for training
downstream classification tasks. Instead of fine-tuning the entire model [13, 19], which may damage
the learned representation space, recent approaches adopt the prompt-based paradigm that formalizes
NLP tasks as masked language modeling (prompt templates) [30, 32, 53]. Zhou et al. [71] propose to
tune prompts for downstream classification tasks, and further introduce input-conditional prompts for
better generalization ability [72]. Lu et al. [39] learn the distribution of diverse prompts to handle the
varying visual representations. Huang et al. [20] generate pseudo labels for images to learn prompts
in an unsupervised way. Though achieving promising improvements for downstream tasks, these
methods address the multi-class zero-shot image recognition, assuming each image has one label,
hence lacking the ability to handle the multi-label setting. In this paper, we present a novel framework
to efficiently transfer VLMs to address multi-label image recognition with limited annotations.

3 Method

Problem Definition. We formally define multi-label recognition with limited annotations as follows:
Consider M as the set of categories which describe objects or attributes in images. Given a training
image I , the existence of a category m ∈ M can be positive, negative or unknown, corresponding
to the label ym = 1,−1 or 0 respectively. During inference, we predict each label of interest for an
input image.
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Figure 2: Illustration of our proposed approach. DualCoOp learns a pair of positive and negative prompts to
quickly adapt powerful pretrained vision-text encoders to the MLR task. For each class, two prompts generate
two contrastive (positive and negative) textual embeddings as the input to the text encoder. Furthermore, we
propose Class-Specific Region Feature Aggregation to first project each region’s feature to the textual space and
then aggregate the spatial logits by the magnitude of class-specific semantic responses. During training, we
apply the ASL loss [51] to optimize learnable prompts while keeping other network components frozen. During
inference, we compare the positive and negative logits to make a prediction for each class.

Many existing MLR problems fit into this broad definition. In this paper, we consider the settings
with partial or missing labels: (1) Partial-label MLR [8, 15, 46], in which only a subset of labels
are known (+1 or −1) for each training image and we are interested in predicting all existing labels
during inference. (2) Zero-shot MLR [3, 22, 49], in which each label is either known (seen) or
unknown (unseen) for all images during training and we are interested in predicting either all labels
or only unknown (unseen) labels during inference. In this paper, we propose a unified setting that
includes both scenarios, which we call limited-annotation MLR.

Approach Overview. To compensate for insufficient or missing image labels, it is important to learn
how the meanings of category names are related to each other, so that we can transfer knowledge
between related categories. This is usually done by learning an alignment between the visual and
textual spaces. However, our dataset is too limited to learn a broad and generalizable mapping. We
propose to instead leverage the strong alignment of visual and textual feature spaces learned by
large-scale vision-language pretraining (CLIP [48]) with a light-weight learnable overhead which
quickly adapts to the MLR task with limited semantic annotations. Figure 2 provides an overview of
our proposed approach. DualCoOp learns a pair of “prompt” contexts in the form of two learnable
sequences of word vectors, to provide positive and negative contexts of a given category name m. This
generates positive and negative textual features (Fm

t )+ and (Fm
t )− that are fed into the pretrained

text encoder. Furthermore, to better recognize multiple objects, which can be located at different
locations in the image, the spatial aggregation step is modified. We first compute the similarity score
of each projected visual feature F i

v at location i with (Fm
t )+/(Fm

t )− to obtain prediction logits over
regions. For each class, we perform aggregation of all spatial logits, in which the weight for each
logit is determined by its relative magnitude. We call this Class-Specific Region Feature Aggregation.
During training, we optimize the learnable prompts via the ASL loss [51] while keeping all other
network components frozen. During inference, we directly compare the final positive and negative
logits to make a prediction for each label ym.

Dual Learnable Prompts. Instead of learning a single prompt for a class [71], we propose Dual
Context Optimization (DualCoOp) which learns two contrastive prompts’ contexts for each class.
The learnable part in dual prompts carries positive and negative contextual surroundings individually
and can be optimized end-to-end from data via binary classification loss. Specifically, we define the
pair of prompts given to the text encoder as follows:

Prompt+ =
[
V +
1 , V +

2 , · · · , V +
N+ , CLS

]
, (1)

Prompt− =
[
V −
1 , V −

2 , · · · , V −
N− , CLS

]
(2)

where each V is a learnable word embedding vector (e.g. with dimension 512 in CLIP [48]) and CLS
is the given category name. N+ and N− are the numbers of word tokens learned in the positive and
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negative prompts respectively. For simplicity, we set N+ = N− in our experiments. We learn a pair
of positive and negative prompts for each class (i.e. class-specific prompt pair) when solving MLR
with partial labels, and learn a pair of prompts shared for all classes in zero-shot MLR. With a pair of
prompts, we compute the binary classification output p with the following form:

p =
exp(< A(Ev(I)), Et(Prompt+) > /τ)

exp(< A(Ev(I)), Et(Prompt+) > /τ) + exp(< A(Ev(I)), Et(Prompt−) > /τ)
, (3)

where < ·, · > represents cosine similarity and p is the predicted probability for a given (image, label)
pair as positive example. Ev(·) and Et(·) are the visual and textual encoders from the vision-language
pretraining. A(·) is our new aggregation function to adaptively reduce the spatial dimension of visual
features for each class, which will be discussed next.

Class-Specific Region Feature Aggregation. In multi-label image recognition, it is common that
multiple objects appear in different regions of the image. Pooling to produce a single image-level
feature vector for all classes gives sub-optimal performance since spatial information is reduced and
different objects are mixed. In this work, we reformulate the last multi-headed attention pooling
layer of the visual encoder in CLIP [48] and apply class-specific pooling to adaptively aggregate
region features in the multi-label setting. The original attention pooling layer in CLIP pools the visual
feature map first, and then projects the global feature vector into text space as follows:

AttnPool(x) = Projv→t(
∑
i

softmax(
q(x̄)k(xi)

T

C
) · v(xi))

=
∑
i

softmax(
q(x̄)k(xi)

T

C
) · Projv→t(v(xi)) = Pool(Projv→t(v(xi))),

where q, v and k are independent linear embedding layers and x = Ev(I) is the output feature map
of the visual encoder. By removing the pooling operation, we can project the visual feature xi of
each region i to the textual space [70]:

F i
v = Projv→t(v(xi)). (4)

For each region i and each class m, we compute cosine similarity between F i
v and (Fm

t )+ =
Et(Prompt+) as S+

i,m =< F i
v, (F

m
t )+ >, and compute S−

i,m in the same way. In order to make a
single prediction for the whole image, we aggregate S+

i,m and S−
i,m into S+

m and S−
m according to the

magnitude of S+
i,m, i.e.:

S+
m = A(S+

i,m) =
∑
i

(
softmax(S+

i,m) · S+
i,m

)
, (5)

S−
m = A(S−

i,m) =
∑
i

(
softmax(S+

i,m) · S−
i,m

)
. (6)

Notably, we do not introduce any new parameters in our re-formulation of the spatial aggregation
function. All parameters used to project visual features to the textual space are inherited from the
original multi-headed attention pooling layer in CLIP.

Optimization. We apply the Asymmetric Loss (ASL) [51] to handle the inherent positive-negative
imbalance in the optimization of multi-label recognition. Specially, we compute losses for a positive
(image, label) pair L+ and a negative (image, label) pair L− as follows:

L+ = (1− p)γ+ log(p), (7)
L− = (pc)

γ− log(1− pc), (8)
where pc = max(p− c, 0) is the probability for negative examples shifted by hard thresholding via
the margin c. We set the hyper-parameters γ− ≥ γ+, so that ASL down-weighs and hard-thresholds
easy negative samples. The pair of learnable prompts are updated by back-propagating ASL through
the frozen text encoder.

4 Experiments

4.1 Multi-Label Recognition with Partial Labels

Datasets. We conduct experiments on MS-COCO [34], VOC2007 [16] and BigEarth [5] to evaluate
multi-label recognition with partial labels. MS-COCO [34] contains 80 common object categories
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Table 1: Multi-label Recognition on MS-COCO and VOC2007 with partial labels. DualCoOp achieves the
best performance over all SOTA methods. ∗ indicates previous models using weights pretrained by CLIP [47]

Methods #P 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.
MS-COCO [34]

SSGRL [9] 64.7M 62.5 70.5 73.2 74.5 76.3 76.5 77.1 77.9 78.4 74.1
GCN-ML [10] 44.9M 63.8 70.9 72.8 74.0 76.7 77.1 77.3 78.3 78.6 74.4

KGGR [7] ≥ 25M 66.6 71.4 73.8 76.7 77.5 77.9 78.4 78.7 79.1 75.6
Curriculum labeling [15] ≥ 38M 26.7 31.8 51.5 65.4 70.0 71.9 74.0 77.4 78.0 60.7

Patial BCE [15] ≥ 38M 61.6 70.5 74.1 76.3 77.2 77.7 78.2 78.4 78.5 74.7
SST [8] 33.5M 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7
SST∗ 33.5M 69.1 78.5 79.3 79.9 80.1 80.5 81.1 80.7 80.7 78.9

SARB [46] 29.6M 71.2 75.0 77.1 78.3 78.9 79.6 79.8 80.5 80.5 77.9
SARB∗ 29.6M 75.5 78.5 79.0 79.5 80.4 80.2 80.8 80.6 80.8 79.4

DualCoOp (ours) 1.3M 78.7 80.9 81.7 82.0 82.5 82.7 82.8 83.0 83.1 81.9
PASCAL VOC 2007 [16]

SSGRL [9] 66.6M 77.7 87.6 89.9 90.7 91.4 91.8 91.9 92.2 92.2 89.5
GCN-ML [10] 44.9M 74.5 87.4 89.7 90.7 91.0 91.3 91.5 91.8 92.0 88.9

KGGR [7] ≥ 25M 81.3 88.1 89.9 90.4 91.2 91.3 91.5 91.6 91.8 89.7
Curriculum labeling [15] ≥ 38M 44.7 76.8 88.6 90.2 90.7 91.1 91.6 91.7 91.9 84.1

Patial BCE [15] ≥ 38M 80.7 88.4 89.9 90.7 91.2 91.8 92.3 92.4 92.5 90.0
SST [8] 32.4M 81.5 89.0 90.3 91.0 91.6 92.0 92.5 92.6 92.7 90.4

SARB [46] 29.6M 83.5 88.6 90.7 91.4 91.9 92.2 92.6 92.8 92.9 90.7
DualCoOp (ours) 0.3M 90.3 92.2 92.8 93.3 93.6 93.9 94.0 94.1 94.2 93.2

and we use the official train2014 (82K images) and val2014 (40K images) splits for training and
test. VOC2007 [16] contains 20 object categories and we use the official trainval (5K images)
and test (5K images) splits for training and test. Furthermore, since CLIP pretraining data is not
publicly available and it is plausible that CLIP pretraining data covers many coarse and fine-grained
visual domains since it performs well in the zero-shot evaluation for many downstream tasks, we
also experiment on a Remote Sensing Image dataset BigEarth [5], whose domain is far from the
domains of the datasets in the mainstream papers (i.e. PASCAL VOC, MS-COCO, and NUS-WIDE).
To create the training set with partial labels, we randomly mask out labels from the fully annotated
training set1 and use the remaining labels for training by following standard practice [8, 15, 46]. In
this work, we vary the proportion of kept labels from 10% to 90% [8, 46].

Evaluation. On all datasets, we follow [8, 15, 46] to report the mean average precision (mAP) for
each proportion of labels available for optimization (from 10% to 90%) and its average value for all
proportions. We count the learnable parameters (#P) of each baseline and DualCoOp to measure the
complexity of optimization2. We also report the per-class and the average overall precision (CP and
OP), recall (CR and OR), and F1 (CF1 and OF1) of DualCoOp under different proportions of labels
for training in the supplementary material due to the page limit.

Implementation. We adopt ResNet-101 [19] as the visual encoder in all baselines and DualCoOp for
input resolution 448×448, and use the same Transformer [48, 58] in CLIP [47] as the text encoder.
The visual and text encoders are initialized from the CLIP pretrained model and kept frozen during
optimization. For each class/label, we learn two independent context vectors with 16 context tokens
(N = 16) following [71], which is the only learnable part in DualCoOp. We use the SGD optimizer
with an initial rate of 0.002 which is decayed by the cosine annealing rule. We train context vectors
for 50 epochs with a batch-size 32/8/32 for MS-COCO/VOC2007/BigEarth, respectively. For ASL
loss, we choose γ+ = 1, γ− = 2 and c = 0.05 via validation. Training is done with one RTX A6000.

Baselines. To evaluate the effectiveness of DualCoOp, we compare with the following baselines:
(1).SSGRL [9], GCN-ML [10] and KGGR [7] adopt graph neural networks to model label depen-
dencies. We follow [8] to report their performance in the partial-label setting. (2). Curriculum
labeling [15] and SST [8] generate pseudo labels for unknown labels. (3). Partial BCE [15] uses a
normalized BCE loss to better exploit partial labels. (4). SARB [46] blends category-specific repre-
sentation across different images to transfer information of known labels to complement unknown
labels.

1The difference in performance is within 1.0% of independent runs.
2For baselines without public released implementation, we only measure the major part of the learnable

parameters based on description in their papers. (indicated as #P ≥ [a value] in Table 1-5)
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Table 2: Comparison between SARB and DualCoOp. Both use parameters pretrained by CLIP [47].
Method 10% 30% 50% 70% 90% Avg.
SARB* 77.2 83.6 87.4 91.6 93.5 86.7

DualCoOp 88.2 93.1 93.7 94.2 94.7 92.8

Table 3: Computations Cost Comparison between SARB [46] and DualCoOp. ∗ indicates previous models
using weights pretrained by CLIP [47]

Methods Training Latency
(ms/img)

Training Memory
(GB/img)

Testing Latency
(ms/img)

Testing Memory
(GB/img)

Avg. mAP
(%)

SARB* 4.7 0.21 4.0 0.13 79.4
DualCoOp 5.3 0.22 4.0 0.06 81.9

Results. Table 1 shows the comparison of mAP between DualCoOp and all baselines optimized with
10% to 90% of labels. For the two most recent works (SST [8] and SARB [46]), we further substitute
the ImageNet pretrained weights [19] with the CLIP pretrained weights [47] when initializing of
their visual encoders, which results in SST∗ and SARB∗ in Table 1. Since we learn class-specific
prompts, DualCoOp on MS-COCO adopts more learnable parameters than VOC2007. Our proposed
DualCoOp achieves the best performance across all proportions of labels available during the training
with the smallest learnable overhead (1.3M vs. 29.6M in SARB∗ on MS-COCO and 0.3M vs. 29.6M
in SARB∗ on VOC2007). Notably, DualCoOp yields a great improvement over the second-best
method, 3.2% on MS-COCO and 6.8% on VOC2007, especially when only providing 10% of labels
during the training. This indicates that DualCoOp can quickly adapt to the multi-label recognition
task with a few labels. On BigEarth, we compare DualCoOp with the strong baseline SARB. Table 2
shows that DualCoOp consistently improves over SARB by 11.0% when only providing 10% of
labels and 6.1% for average performance which proves DualCoOp boosts the performance in various
visual domains by taking advantage of the powerful vision-language pretraining.

Full Label Training. On MS-COCO, we use 100% of training labels and finetune the visual encoder,
DualCoOp achieves 85.2% mAP, outperforming previous SOTA approaches like ASL [51] (85.0%
mAP) and CSRA [74] (83.5% mAP) with the same ResNet-101 backbone. Without finetuning the
visual encoder, we notice that our performance drops to 83.2% mAP, which is still comparable to the
performance of ASL and CSRA. Such a performance drop may be due to the noise in the image-text
pairs used for pre-training the CLIP model and the misalignment of the objectives between the
pre-training task and MLR task. This also shows that it is non-trivial to address the MLR task with
the pretrained CLIP model, even though it is pre-trained with larger-scale data.

Computational Cost. We compare the computational cost between DualCoOp and SARB [46] in
terms of training/testing latency and memory (see Table 3) using the same device (one Nividia A100
GPU). For the current multi-label recognition task, the categories are pre-set before inference, (i.e. we
already know which class we would like to consider during inference.) In this case, we compute the
text features for each class from the learned prompts and the class name ahead of the inference. Then
we use the pre-computed text features to predict each image during the test. Since the text features
are pre-computed (very light-weighted computing overhead), the text encoder is not executed during
inference. For inference, the latency time and memory consumption of DualCoOp are the same as
other baselines when using the same backbone for the image encoder. During training, CLIP-based
methods slightly raise latency time and memory consumption since image and text encoders are both
executed during the forward, and only prompts are updated in DualCoOp.

4.2 Zero-shot Multi-Label Recognition

Datasets. Following [3, 22], we conduct experiments on MS-COCO [34] and NUS-WIDE [11] to
perform zero-shot multi-label recognition. On MS-COCO, we follow [2, 3] to split the dataset into
48 seen classes and 17 unseen classes. NUS-WIDE [11] dataset includes 270K images. Following
[3, 22] we use 81 human-annotated categories as unseen classes and an additional set of 925 labels
obtained from Flickr tags as seen classes.

Evaluation. We follow [3] and report precision, recall, and F1 score at Top-3 predictions in each
image on MS-COCO. We also follow [3, 22] to report mAP over all categories as well as precision,
recall, and F1 score at Top-3 and Top-5 predictions in each image on NUS-WIDE. We evaluate all
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Table 4: Zero-Shot Multi-Label Recognition on MS-COCO[34]. DualCoOp achieves the best F1 score in
both ZSL and GZSL settings.

Methods ZSL GZSL#P P R F1 P R F1
CONSE [45] - 11.4 28.3 16.2 23.8 28.8 26.1
Fast0Tag [69] 0.61M 24.7 61.4 25.3 38.5 46.5 42.1
Deep0Tag [49] ≥ 23M 26.5 65.9 37.8 43.2 52.2 47.3
SDL (M=2) [3] 30.6M 26.3 65.3 37.5 59.0 60.8 59.9
DualCoOp (ours) 0.02M 35.3 87.6 50.3 58.4 68.1 62.9

Table 5: Zero-Shot Multi-label Recognition on NUS-WIDE [11]. DualCoOp achieves the best F1 score over
all SOTA methods at Top-3/Top-5 predictions in both ZSL and GZSL settings.

Methods Top-3 Top-5#P P R F1 P R F1 mAP

Zero-Shot Learning (ZSL)
CONSE [45] - 17.5 28.0 21.6 13.9 37.0 20.2 9.4
LabelEM [1] - 15.6 25.0 19.2 13.4 35.7 19.5 7.1
Fast0Tag [69] 0.61M 22.6 36.2 27.8 18.2 48.4 26.4 15.1

One Attention per Label [26] ≥ 12.8M 20.9 33.5 25.8 16.2 43.2 23.6 10.4
LESA (M=10) [22] ≥ 0.45M 25.7 41.1 31.6 19.7 52.5 28.7 19.4

BiAM [44] 3.8M – – 33.1 – – 30.7 26.3
SDL (M=7) [3] 33.6M 24.2 41.3 30.5 18.8 53.4 27.8 25.9
DualCoOp (ours) 0.02M 37.3 46.2 41.3 28.7 59.3 38.7 43.6

Generalized Zero-Shot Learning (GZSL)
CONSE [45] - 11.5 5.1 7.0 9.6 7.1 8.1 2.1
LabelEM [1] - 15.5 6.8 9.5 13.4 9.8 11.3 2.2
Fast0Tag [69] 0.61M 18.8 8.3 11.5 15.9 11.7 13.5 3.7

One Attention per Label [26] ≥ 12.8M 17.9 7.9 10.9 15.6 11.5 13.2 3.7
LESA (M=10) [22] ≥ 0.45M 23.6 10.4 14.4 19.8 14.6 16.8 5.6

BiAM [44] 3.8M – – 16.1 – – 19.0 9.3
SDL (M=7) [3] 33.6M 27.7 13.9 18.5 23.0 19.3 21.0 12.1
DualCoOp (ours) 0.02M 31.9 13.9 19.4 26.2 19.1 22.1 12.0

methods with both zero-shot setting (test only on unseen classes) and generalized zero-shot setting
(test on both seen and unseen classes).

Implementation. We adopt ResNet-50 [19] similar to [3] as the visual encoder in DualCoOp for
input resolution 224. Instead of learning class-specific prompts, we learn the class-agnostic context
vectors with 64 context tokens (N = 64) for all classes, which is the only learnable part in DualCoOp.
We optimize context vectors for 50 epochs with a batch-size 32/192 for MS-COCO/NUS-WIDE,
respectively. During inference, we combine the learnt pair of context vectors with the class name
for each class (either base class or novel class) and compute the text features. Other implementation
details are the same as in Sec. 4.1

Baselines. To evaluate the effectiveness of DualCoOp in the zero-shot setting, we compare with
the following baselines: (1). CONSE [45] adopts an ensemble of classifiers for unseen classes. (2).
LabelEM [1] learns a joint image-label embedding. (3). Fast0Tag [69] and SDL [3] estimate one or
multiple diverse principal directions of the input images. (4). Deep0Tag [49] and LESA [22] estimate
the relevant regions via region proposals and attention techniques respectively. (5). BiAM [44]
enhances the region-based features to minimize inter-class feature entanglement.

Results. Table 4-5 shows the comparison between DualCoOp and all SOTA methods of zero-shot
learning and generalized zero-shot learning on MS-COCO and NUS-WIDE datasets. DualCoOp
achieves the best F1 score in all cases with a very light learnable overhead (0.02M) and improves the
performance of zero-shot learning (unseen labels) with a significant margin: F1 score improves by
12.5 @Top-3 on MS-COCO, and by 10.8 @Top-3 and 10.9 @Top-5 on NUS-WIDE. This shows the
power of exploiting the pretrained alignment of textual and visual spaces in CLIP via DualCoOp to
solve multi-label recognition.

4.3 Ablation Studies

Effectiveness of Text Supervision. To show the effectiveness of text supervision from label space, we
compare the model learned with discrete label space (“Discrete Label”) with four methods (SST [8],
SARB [46], CoOp [71] and DualCoOp) which introduce the textual space to utilize the contextual
correlation of labels in Table 6. We find that methods with text supervision usually perform better
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Table 6: Comparison among methods on MS-COCO using partial labels with the same initialization. All
methods use parameters pretrained by CLIP [47].

Method Text Supervision 10% 30% 50% 70% 90%
Discrete Label ✗ 70.6 75.1 76.5 77.3 78.0

SST ✓ 69.1 79.3 80.1 81.1 80.7
SARB ✓ 75.5 79.0 80.4 80.8 80.8
CoOp ✓ 63.0 68.5 69.2 71.5 75.0

DualCoOp ✓ 78.4 81.0 82.0 82.5 82.8

Table 7: Ablation on Linguistic Inputs for Zero-Shot Learning of MS-COCO.

Linguistic Input #P ZSL GZSL
P R F1 P R F1

M0 Contextless Classname 0 5.2 12.9 7.4 3.5 4.1 3.8
M1 Hand-crafted Pos./Neg. Templates + Classname 0 25.6 63.6 36.5 31.0 36.2 33.4
M2 Pos. Learnable Prompt + Classname (N=64) 0.01M 31.2 77.5 44.5 55.7 65.0 60.0
M3 Neg. Learnable Prompt + Classname (N=64) 0.01M 9.3 23.0 13.2 2.6 3.0 2.8
M4 Dual Learnable Prompts + Classname (N=64) 0.02M 35.3 87.6 50.3 58.4 68.1 62.9
M5 Dual Learnable Prompts + Classname (N=32) 0.01M 35.8 88.9 51.0 57.4 67.0 61.9

than the method only using discrete labels. However, when the semantic annotations are limited, text
supervision sometimes yields worse performance (e.g. mAP of SST is 1.5% lower than Discrete
Labels with only 10% of labels). CoOp [71] utilizes the visual-textual alignment. However, with the
original multi-head attention and single positive prompt, it yields worse performance than Discrete
Labels. To better utilize the well-pretrained alignment, DualCoOp learns dual context pairs and
adopts class-specific region feature aggregation, which leads to great performance (e.g. 7.8% higher
than Discrete Labels with 10% of labels) and quickly adapts to the dataset even with limited labels.

Ablation of Prompt Design. We compare our proposed dual learnable prompts with two hand-crafted
prompts and one prompt learning method on the MS-COCO dataset with the zero-shot setting (see
Table 7). Hand-crafted prompts can use either contextless class names [31] or manually designed
prompt templates. In our experiments, we carefully choose the positive and negative prompt templates
as “a photo of a [classname]” and “a photo without a [classname]”. In contrast with performing
the binary classification for each class with dual learnable prompts as the input, we also experiment
with learning a single prompt of positive or negative contexts and use a chosen threshold (0.5 in
our experiment) to make the prediction for each class. As we can see, the single positive prompt
learning method (M2) performs better than non-learnable methods (M0 and M1), and a single negative
learnable prompt (M3) achieves much worse accuracy than its positive counterpart (M2). However,
when we include both positive and negative prompts, dual prompts (M4) performs even better than a
single prompt, which indicates that DualCoOp learns complementary and beneficial information in
the dual prompt pair. M4 also outperforms M2 in terms of mAP with both ZSL (77.53% vs. 64.74%)
and GZSL (69.8% vs. 63.1%). To keep the same amount of learnable parameters as in single prompt
settings, we also halve the token size (M5), and find that DualCoOp still outperforms two single
prompts in M2 and M3 by large gaps, demonstrating the effectiveness of our dual-prompt design.

Multi-Headed Attention vs. Class-Specific Region Aggregation. In Table 8, we compare the
adaptive ability of these two visual aggregation methods when training/testing with a larger resolution
(see Table 8), which is crucial in multi-label recognition as spatial details matter. For a fair comparison,
we only replace the class-specific region aggregation in DualCoOp with the original multi-headed
attention layer in CLIP [48] at the end of the visual encoder. We adaptively resize the input feature
map to match the input dimension of the multi-headed attention layer.

Table 8: Comparison between multi-headed attention and class-specific feature aggregation on MS-COCO
Visual Aggregation Finetune. Train Res. Test Res. 10% 30% 50% 70% 90%

Multi-Headed
Attention

✗ 224 224 70.4 74.1 74.8 75.4 75.7
✗ 224 448 65.9 70.2 71.2 72.0 72.1
✗ 448 448 72.1 75.5 76.5 77.1 77.3
✓ 448 448 74.1 77.6 78.2 78.5 78.4

Class-Specific
Feature Aggregation

(DualCoOp)

✗ 224 224 73.1 76.4 77.7 78.2 78.4
✗ 224 448 76.0 78.1 79.5 80.3 80.5
✗ 448 448 78.4 81.1 82.0 82.5 82.8

✓(Aggre. Func.) 448 448 79.4 82.2 83.1 83.7 84.0
✓(Image Enc.) 448 448 57.8 69.0 73.7 80.9 84.2
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As shown in Table 8, multi-headed attention is bonded to the pre-training image resolution (224
in CLIP), while our class-specific region aggregation benefits from the increased input resolution
either during training or in inference. Our class-specific feature aggregation uses original weights,
but actually performs better than finetuning the original multi-headed attention layer.
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Figure 3: Comparison among different ag-
gregations on MS-COCO using partial labels.

Ablation of Finetuning DualCoOp. To better exam-
ine the effectiveness of finetuning for DualCoOp, we
have implemented two different finetuning mechanisms
for DualCoOp: (1). only finetune the weights in Class-
Specific Region Feature Aggregation, (2). finetune all
weights in the CLIP image-encoder. As shown in Table 8,
finetuning aggregation function can stably improve the
performance over the non-finetuning setting with differ-
ent amounts of labels available. However, finetuning the
entire visual encoder does not always outperform the non-
finetuning baseline, especially under limited annotations
(≤ 70% labels).

Ablation of Aggregation Function. We experiment with
different functions to aggregate the regional logits for each class in Fig. 3. We compute final logits in
three ways: (1) taking the average of logits at all spatial locations (“Ave”), (2) taking the region with
the largest positive logit (“Max”), and (3) generating aggregating weights for all spatial locations
via a softmax function over the positive logits (“Ours”). “Max” performs better than “Ave”, which
indicates the regional feature is more informative than the global feature in multi-label recognition.
Furthermore, by taking account of both the regional and the global features, “Ours” gives the best
performance.

5 Conclusion

In this paper, we propose a unified framework, DualCoOp, for two types of multi-label recognition
with limited annotations: partial-label and zero-shot. DualCoOp utilizes powerful vision-language
pretraining obtained from a web-scale dataset. By introducing a lightweight learnable overhead,
it can quickly adapt to solve multi-label recognition after receiving a small amount of labels. In
DualCoOp, we learn a pair of positive and negative prompts followed by the target class name as the
linguistic input. Furthermore, to better aggregate visual region features for each class, we reformulate
the original visual attention in the pretraining model as a class-specific region feature aggregation.
We conduct extensive experiments for both partial-label MLR and Zero-Shot MLR across MS-
COCO, VOC2007, and NUS-WIDE datasets, showing the efficacy of our proposed approach over
state-of-the-art methods.

Limitations. Since the vision-language pretraining adopts a large Transformer-based language model
and all labels need to be feed-forward through the text encoder, the large language model limits the
size of the label set. Also, compared to training the model with both seen and unseen labels, we still
get worse performance for the zero-shot unseen classes even though we have used 400M auxiliary
samples in the pretraining. This highlights the difficulty of zero-shot MLR.

Negative Societal Impacts. Negative impacts of our research are difficult to predict, however, they
are likely to be the usual pitfalls associated with deep learning models. These include susceptibility to
adversarial attacks and data poisoning, dataset bias, and lack of interpretability. Other risks associated
with the deployment of computer vision systems include privacy violations when images are captured
without consent, or used to track individuals for profit, or increased automation resulting in job losses.
While we believe that these issues should be mitigated, they are beyond the scope of this paper.
Furthermore, we should be cautious of potential failures of the approach which could impact the
performance/user experience of any high-level AI systems based on our research.
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internal cluster, or cloud provider)? [Yes] Please check implementation details in Sec. 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]
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