
Training Spiking Neural Networks with Event-driven
Backpropagation

Yaoyu Zhu1, Zhaofei Yu1,2∗, Wei Fang1, Xiaodong Xie1, Tiejun Huang1, Timothée Masquelier3
1School of Computer Science, Peking University

2Institute for Artificial Intelligence, Peking University
3Centre de Recherche Cerveau et Cognition (CERCO), UMR5549 CNRS - Univ. Toulouse 3,

Toulouse, France

Abstract

Spiking Neural networks (SNNs) represent and transmit information by spatiotem-
poral spike patterns, which bring two major advantages: biological plausibility
and suitability for ultralow-power neuromorphic implementation. Despite this, the
binary firing characteristic makes training SNNs more challenging. To learn the
parameters of deep SNNs in an event-driven fashion as in inference of SNNs, back-
propagation with respect to spike timing is proposed. Although this event-driven
learning has the advantages of lower computational cost and memory occupation,
the accuracy is far below the recurrent neural network-like learning approaches. In
this paper, we first analyze the commonly used temporal backpropagation train-
ing approach and prove that the sum of gradients remains unchanged between
fully-connected and convolutional layers. Secondly, we show that the max pooling
layer meets the above invariance rule, while the average pooling layer does not,
which will suffer the gradient vanishing problem but can be revised to meet the
requirement. Thirdly, we point out the reverse gradient problem for time-based
gradients and propose a backward kernel that can solve this problem and keep
the property of the invariable sum of gradients. The experimental results show
that the proposed approach achieves state-of-the-art performance on CIFAR10
among time-based training methods. Also, this is the first time that the time-based
backpropagation approach successfully trains SNN on the CIFAR100 dataset. Our
code is available at https://github.com/zhuyaoyu/SNN-event-driven-learning.

1 Introduction

Motivated by the principles of brain computing, Spiking Neural Networks (SNNs) are considered
as the third generation of neural networks [1, 2]. SNNs are developed to work in power-critical
scenarios, such as edge computing. When run on dedicated neuromorphic chips, they can accomplish
the tasks [3, 4, 5] with ultra-low power consumption [6, 7, 8, 9, 10, 11, 12]. In contrast, the last
generation of neural networks – Artificial Neural Networks (ANNs) [13], generally require a large
amount of computation resource (e.g., GPUs). This advantage of SNNs on power consumption
largely relies on efficient event-based computations [14, 15]. Another advantage of SNNs originates
from their biological reality (compared to ANNs). The similarity between SNNs and biological brains
provides an excellent opportunity to study how the brain computes at the neuronal circuit level [16].

Compared with artificial neural networks, developing supervised learning algorithms for spiking
neural networks requires more effort. The main challenge for training SNNs comes from the binary
nature of spikes and the non-differentiability of the membrane potential at spike time. This difficulty

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/zhuyaoyu/SNN-event-driven-learning


in training impedes the performance of SNNs in pattern classification tasks compared to their ANN
counterparts. Existing supervised learning methods of SNNs can be grouped into two categories:

The first category consists of recurrent neural network (RNN)-like learning algorithms. These
algorithms treat spiking neural networks as binary-output recurrent neural networks and handle the
discontinuities of membrane potential at spike times with continuous surrogate derivatives [17]. They
typically train deep SNNs with surrogate gradients based on the idea of backpropagation through
time (BPTT) algorithm [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. While competitive accuracies are
reported on the MNIST, CIFAR-10, and even ImageNet datasets [29, 30, 31], the gradient information
is propagated each time step, whether or not a spike is emitted (as shown in Fig. 1). Therefore,
these approaches do not follow the event-driven nature of spiking neural networks, which lose the
asynchronous characteristic of SNNs and consume much power when trained on neuromorphic
hardware.

The second category is event-driven algorithms, which propagate gradient information through spikes.
Precise spiking timing acts an important role in this situation, and they are extensively used in such
algorithms [32, 33, 34, 35, 36, 37, 38, 39]. Classical examples include SpikeProp [32] and its vari-
ants [33, 40, 41]. These algorithms approximate the derivative of spike timing to membrane potential
as the negative inverse of the time derivative of membrane potential function. This approximation
is actually mathematically correct without preconditions [42]. Some other works apply non-leaky
integrate-and-fire neurons to stabilize the training process [35, 38, 43]. Most of these works restrict
each neuron to fire at most once, which inspires [44] to take the spike time as the state of a neuron,
and model the relation of neurons by this spike time. As a result, the SNN is trained similarly to an
ANN. Among the methods trained in an event-driven fashion (not modelling the relation of spike
time to train like ANNs), the state-of-the-art model is TSSL-BP [39]. However, they use RNN-like
surrogate gradients (a sigmoid function) to assist training. Hence, it is still challenging to train SNNs
in a pure event-driven fashion.

In this work, we develop a novel event-driven learning algorithm that can train high-performance
deep SNNs. The main contributions of our work are as follows:

1. We prove that the typical SNN temporal backpropagation training approach assigns the
gradient of an output spike of a neuron to the input spikes generating it. After summing this
assignment rule altogether, we find that the sum of gradients is unchanged between layers.

2. We analyze the case of the pooling layer (which does not have neurons) and find that average
pooling does not keep the gradient sum unchanged, but we can modify its backward formulas
to meet the requirement. Meanwhile, the max-pooling layer satisfies the rule initially.

3. We point out the reverse gradient problem in event-driven learning that the direction of
the temporal gradient is reversed during backpropagation when the kernel function of an
input spike is decreasing. Then we propose a backward kernel function that addresses this
problem while keeping the sum of gradients unchanged between layers.

4. The adjusted average pooling layer and the non-decreasing backward kernel enhances the
performance of our model as well as the convergence speed. To our best knowledge, our
proposed approach achieves state-of-the-art performance on CIFAR10 among event-driven
training methods (with temporal gradients) for SNNs. Meanwhile, our method is the first
event-driven backpropagation approach that successfully trains SNN on the larger-scale
CIFAR100 dataset.

2 Backgrounds and Related Work

The gradient-based learning of spiking neural networks contains two stages: the forward (inference)
and the backward (learning) stages. In the forward stage, Leaky Integrate-and-Fire (LIF) neurons
are most commonly used [18, 21, 26, 39], while other types of neurons are also applicable [32, 35].
Typically, these neuron models can be changed to the form of the Spike Response Model (SRM) [37,
45, 46], which is easily represented in an event-driven fashion.

In the backward stage, the methods used by existing works exhibits more diversity. Here, we
classify existing approaches from two dimensions: whether non-spike information is needed in
discrete time steps (RNN-like) or not (event-driven) and whether the gradient represents spike scale
(activation-based) or spike timing (time-based).

2



Gradient direction

𝑡

𝑢

Output

Input

𝑡

𝑢

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

𝑢𝑗

𝐼𝑗

Spike

No spike

Gradient direction

a b c d

𝑡 𝑡
𝑡0 𝑡0+1 𝑡0+2 𝑡0+3 𝑡0 𝑡0+1 𝑡0+2 𝑡0+3

Output

Input

Spike train

Figure 1: (a) The input and output spike train, as well as membrane potential curve of a neuron in
event-driven learning with (b) time-based gradient: When the spiking neural network is simulated in
an event-driven fashion, a neuron updates its state when an input spike arrives or it emits an output
spike. The gradients here indicate whether spikes should move leftward or rightward along the time
axis. (c) The input, output, membrane potential sequence of a neuron in RNN-like learning with (d)
activation-based gradient: The spiking neural network is forced to be simulated in discrete time steps
(since gradient should be propagated in non-spike time steps) and the gradients denote whether spikes
should be ’larger’ or ’smaller’.

Event-driven learning v.s. RNN-like learning: In both forward and backward computation of
event-driven learning, information is only carried by spikes in SNNs. Specifically, in backward
computation, gradient information is propagated through spikes [32, 33, 41, 35] (shown in Fig. 1a-b).
On the other side, in RNN-like learning, information is not only carried by spikes in backward
computation. Especially, gradient information can be propagated through a neuron that does not emit
a spike in backward computation (shown in Fig. 1c-d). This gradient propagation is achieved by a
surrogate function [12, 17, 18, 23, 47], which is a function of the membrane potential at the current
time step ut, and the firing threshold θ.

Time-based gradient v.s. activation-based gradient: Time-based gradients represent the (reverse)
direction that the timing of a spike should move, that is, to move leftward or rightward on the time
axis [32]. In backward propagation, the derivative of the firing time of a spike to the corresponding
membrane potential ∂t

∂u is often approximated as −1
∂u
∂t

[32, 33], denoting how the change of membrane
potential will change the spike firing time (Fig. 1b). On the other side, activation-based approaches
replace the Heaviside neuron activation function Θ(·) (spike st = Θ(ut − θ)) in forward propagation
with derivable functions σ(·) in backward propagation, whether there are spikes in the current time
step [18, 26, 31, 21]. Therefore, activation-based approaches essentially regard SNNs as binary
RNNs and train them with approximated gradients, where the gradients indicate whether the values
in the network (including the binary spikes) should be larger or smaller (Fig. 1d).

As a result, time-based gradients are event-driven by nature, since the temporal gradient could only be
carried by spikes. Meanwhile, activation-based gradients are more suitable for the RNN-like training
scheme since the diversity of surrogate gradients largely relies on the fact that ut ̸= θ in discrete time
steps [17], which no longer holds in continuous time simulation. If we want to apply activation-based
gradients to event-driven learning, there should only be one value ∂s

∂u when the membrane potential
reaches the threshold.

Tab. 1 lists whether a gradient type can be used in a learning fashion. It should be noticed that
although activation-based gradient is more suitable for RNN-like learning, it is still able to be used
for event-driven learning.

Table 1: Whether the gradient type can be used in a learning fashion

Event-driven learning RNN-like learning

Time-based gradient ✓ ×
Activation-based gradient ✓ ✓

3



3 Methods

3.1 Forward Formulas

We use the spike response model [1] for neurons in the network. The forward propagation in the
network can be described as follows:

u
(l)
i (t) =

∫ t

t
(l)
i,last

∑
j

w
(l)
ij · s(l−1)

j (τ)

 · ϵ(t− τ)dτ, (1)

s
(l)
i (t) = δ(u

(l)
i (t)− θ). (2)

Here u
(l)
i (t) denotes the membrane potential of neuron i in layer l at time t, w(l)

ij denotes the weight

between neuron j in layer l − 1 and neuron i in layer l. t(l)i,last is the time of last spike of neuron i in

layer l, and s
(l)
i (t) represents the spike emitted from neuron i at time t. The function δ(·) is the Dirac

Delta function and θ is the firing threshold. The spike response kernel ϵ(t) can be described by

ϵ(t) =
τm

τm − τs
(e−

t
τm − e−

t
τs ), (3)

where τm and τs are the membrane time constant and the synapse time constant respectively. Notice
that we do not use reset kernels as in previous works [39, 41]. Instead, we eliminate the influence of
input spikes prior to the last output spike on membrane potentials.

3.2 Rethinking the Classical Time-based Backward Propagation Formula

In this subsection, we analyze the classical time-based backpropagation formula in SNNs. We first
theoretically prove that the backpropagation rule essentially assigns gradients of output spikes of
neurons to their input spikes. Then we check the pooling layer and show that the average pooling
should be adjusted in backpropagation to satisfy the gradient assignment mechanism, while the max
pooling naturally satisfies this mechanism.

Invariant sum of gradients among layers with weights. The most commonly used time-based
gradient backpropagation method origins from [32]. The two key approximations are as follows:

∂tk(s
(l)
i )

∂u
(l)
i (tk)

=
−1

du
(l)
i (tk)/dt

=

 ∑
tk,last(s

(l)
i )<tm(s

(l−1)
j )≤tk(s

(l)
i )

w
(l)
ij · ∂ϵ(tk − tm)

∂tm


−1

, (4)

∂u
(l)
i (tk)

∂tm(s
(l−1)
j )

= w
(l)
ij · ∂ϵ(tk − tm)

∂tm
, (5)

where tk(s
(l)
i ) denotes the firing time tk of neuron i in layer l, tk,last(s

(l)
i ) is the firing time of the last

spike emitted by neuron i before time tk. ∂tk(s
(l)
i )

∂· means the influence of changing other variables
on the timing of a spike, and ∂·

∂tk(s
(l)
i )

is the influence of changing spike timing on that variable.

Combining Eqs. 4-5 and the forward formulas, we can get an invariant equality:∑
j

∑
tk,last(s

(l)
i )<tm(s

(l−1)
j )≤tk(s

(l)
i )

∂tk(s
(l)
i )

∂tm(s
(l−1)
j )

= 1. (6)

The proof is provided in Appendix. Eq. 6 implies the fact that the reference time (t = 0) is
meaningless, and only relative spike times matter. If we increase all the spike times in layer l − 1 by
1 unit along the time axis, then all the spike times in layer l are also increased by 1 unit along the
time axis. Denote the loss function as L, then the gradient of L with respect to tm(s

(l−1)
j ) is:

∂L

∂tm(s
(l−1)
j )

=
∑
i

∑
tm(s

(l−1)
j )<tk(s

(l)
i )≤tm,next(s

(l−1)
j )

∂L

∂tk(s
(l)
i )

· ∂tk(s
(l)
i )

∂tm(s
(l−1)
j )

, (7)

4



Gradients

Output

Input

= + + = + +

LossLayer 𝒍 − 𝟏 Layer 𝒍

Figure 2: Left: Spikes (vertical ones) and their corresponding gradients (horizontal arrows) in layer
l − 1 and layer l. Right: Input and output of the neuron in layer l. The input integrates spikes from
connected neurons in layer l − 1 (notice the input is not multiplied by weights). In backpropagation,
the gradients are transmitted from the output of the neuron to the inputs. The key property is that
the gradient of an output spike exactly equals the sum of gradients of input spikes between the last
output spike and it.

where tm,next(s
(l−1)
j ) denotes the firing time of the next spike emitted by neuron j after time

tm. Therefore, we actually decompose the gradient ∂L/∂tk(s
(l)
i ) from layer l into (part of) a

set of gradients ∂L/∂tm(s
(l−1)
j ) of the last layer l − 1, and keep their sum unchanged. In other

words, we assign the weighted sum ∂L/∂tk(s
(l)
i ) by weights ∂tk(s

(l)
i )/∂tm(s

(l−1)
j ) to the gradients

∂L/∂tm(s
(l−1)
j ) in the last layer, as shown in Fig. 2.

If we sum all the gradients together, we can get another invariant in this backpropagation rule:∑
i

∑
tk

∂L

∂tk(s
(l)
i )

=
∑
j

∑
tm

∂L

∂tm(s
(l−1)
j )

, (8)

which means the sum of gradients
∑

i

∑
tk

∂L

∂tk(s
(l)
i )

never changes between layers under this rule.

Gradient sum invariance for pooling layers. The above equations determine the gradient propaga-
tion in fully-connected and convolution layers (which contain neurons). The case for pooling layers
(which do not contain neurons) is illustrated in Fig. 3.

1

4

1

4
1

4

1

4

1
1

0
1

1

2
1

2

1

Average pooling Max pooling Adjusted average pooling

Spike

No Spike

Layer 𝒍 Layer 𝒍 − 𝟏 Layer 𝒍 Layer 𝒍 − 𝟏 Layer 𝒍 Layer 𝒍 − 𝟏

Figure 3: Different pooling strategies. In average pooling (left), the gradients are propagated to
neurons not emitting spikes, which will cause gradient vanishing problem. Meanwhile, max pooling
(middle) passes all gradients to one of the neurons emitting spikes in the backward stage, keeping the
total gradient unchanged. The average pooling can be adjusted (right) to pass gradients to all neurons
emitting spikes in the last layer to avoid the gradient vanishing problem.

In average pooling with kernel size k, the gradient of one spike (at time t) in layer l is averagely
propagated to k× k neurons in layer l− 1 connected to it. Some of these k× k neurons may not emit
spikes at time t. However, the gradients are also propagated to those neurons, which cannot further
propagate the gradients to the previous layers. For instance, the two white squares (neurons) in layer
l− 1 in Fig. 3 receive gradients, but they will not further propagate the gradients to layer l− 2. Thus,
a part of the gradients is lost in the backpropagation of the average pooling layer, which might cause
the gradient vanishing problem. Meanwhile, the sum of gradients carried by the spikes is not kept
among layers in this case. We can adjust the backpropagation stage in average pooling to satisfy
the gradient sum invariance requirement by increasing the multiplier from 1/k2 to 1/nspike, where
nspike is the number of spikes emitted by the k × k neurons in layer l − 1 at the current time step.

5



𝑡𝑡𝑘𝑘 𝑡𝑡𝑘𝑘′

𝑡𝑡𝑚𝑚 + 𝛥𝛥𝑡𝑡𝑡𝑡𝑚𝑚

𝜖𝜖 ∗ 𝑠𝑠

𝑡𝑡

Input

Output

Figure 4: A comparison of temporal gradient direction in backpropagation between two different
cases. Consider moving one of its input spike moving from time tm to tm +∆t for an SRM neuron.
Without loss of generality, we assume the weight multiplied on this input spike is positive. If the
next output spike is fired at time tk, moving the input spike from tm to tm +∆t will decrease the
membrane potential of this neuron at time tk, which causes this spike to fire later. As a result, the
gradient direction from the output spike at time tk will be kept. In opposite, if the next output spike is
fired at time t′k, moving the input spike from tm to tm +∆t will cause this spike to fire earlier, so the
gradient direction from the output spike at time t′k will be reversed.

On the contrary, in max pooling, the gradient of a spike in layer l is entirely propagated to one of the
spikes emitted by its connected neurons in layer l− 1 (shown in the middle of Fig. 3). This maintains
the property of the invariable sum of gradients.

It should be noticed that, although the backpropagation stage of max pooling is different from adjusted
average pooling in discrete simulation, they are almost surely the same in the continuous simulation
since (almost surely) no two spikes emit at exactly the same time in this case.

3.3 Deficiencies of The Typical Time-based Gradient Propagation and A New Approach

In this section, we first point out the reverse gradient problem in event-driven learning: the gradient
direction for spike timing gets wrong when the spike response kernel is decreasing. Then we propose
a backward kernel that can not only solve the reverse gradient problem but also keep the property of
the invariable sum of gradients.

The reverse gradient problem. Fig. 4 illustrates the membrane potential response of a neuron (with
index i) to one of its input spikes (with a positive weight) from presynaptic neuron j. As in equation
(3), the spike response kernel is a double-exponentail function. Notice that this is not the whole
membrane potential of the neuron i as it also receives the inputs from other presynaptic neurons. We
consider two spike times (tk and t′k) of neuron i and one spike time tm of presynaptic neuron j. If the
next spike of neuron i fires at time tk, moving the presynaptic spike from tm to tm+∆t will decrease
membrane potential at time tk, which means postponing the spike at time tk (tm ↑⇒ u[tk] ↓⇒ tk ↑).
This result shows that if the presynaptic neuron fires earlier, the postsynaptic neuron will fire earlier
in this case.

Oppositely, if the next spike of neuron i fires at time t′k, moving the input spike from tm to tm +∆t
will cause a increase of u[t′k], which further moves t′k leftward (tm ↑⇒ u[t′k] ↑⇒ t′k ↓). As a result,
if we want to move the output spike at t′k leftward, we should move the input spike at tm rightward,
which reverses the direction. This might cause a problem: When we want to move t′k leftward,
we want the neuron to emit more spikes. However, in gradient backpropagation, it moves tm

6



rightward (assume weight wij > 0), which may cause the neuron in the last layer to spike fewer,
further causing neurons in the current layer to spike fewer.

More formally, we assume the neuron i receives a input spike at time tm from presynaptic neuron j
with synaptic weight wij , then the membrane potential of neuron i at time tk is:

ui(tk) = wij · ϵ(tk − tm) + C, (9)

where ϵ(t) denotes the spike response kernel (Eq. 3). C denotes the influence of other spikes, which
is not in our concern here. In backward pass, according to Eqs. (4)-(5), we have

∂L

∂tm(sj)
=

∂L

∂tk(si)
· ∂tk(si)
∂ui(tk)

· ∂ui(tk)

∂tm(sj)
=

∂L

∂tk(si)
· −1

dui(tk)/dt
· wij ·

∂ϵ(tk − tm)

∂tm
. (10)

Note that when a spike is emitted by neuron i at time tk, the slope of ui(t) > 0 at time tk, which
means −1

dui(tk)/dt
has a negative sign. Considering ∂ϵ(tk−tm)

∂tm
= −dϵ(τ)

dτ , where τ = tk − tm, we get:

sign

(
∂L

∂tm(sj)

)
= sign

(
∂L

∂tk(si)

)
· sign

(
wij

)
· sign

(
dϵ(τ)

dτ

)
. (11)

When sign
(
dϵ(τ)/dτ

)
= −1, which is the part of the spike response kernel that decreases (see the

case at t′k in Fig. 4), the gradient direction of tm can be classified into two cases: When wij > 0,

sign
(

∂L
∂tm(sj)

)
= −sign

(
∂L

∂tk(si)

)
, which means the gradient direction is reversed. When wij < 0,

sign
(

∂L
∂tm(sj)

)
= sign

(
∂L

∂tk(si)

)
, which means the gradient direction is kept.

In both cases, the sign of the gradient gets wrong in propagation between layers. Thus, the commonly
used double-exponential spike response kernel is incompatible with the time-based gradient in
event-driven learning.

A smoother gradient assigning approach. Inspired by the above gradient inconsistency as well
as the invariance of gradient sum, we propose a new gradient backpropagation approach here.
Specifically, we replace the function ∂ϵ(tk−tm)

∂tm
in Eqs. (4) and (5) with a new function h(tk − tm).

Therefore, the backpropagation formula between layers turns into:

∂tk(si)

∂tm(sj)
=

∂tk(si)

∂ui(tk)
· ∂ui(tk)

∂tm(sj)
(12)

=

 0, if tm(sj) ≤ tk,last(si) or tm(sj) > tk(si),(∑
tk,last(si)<tm(s′j)≤tk(si)

wij · h(tk − tm)
)−1

· wij · h(tk − tm), otherwise.

It can be see from Eq. 12 that ∂tk(si)
∂tm(sj)

will not change if we multiply h(t) by an arbitrary constant,
so we do not need to care about the scale of h(t). Meanwhile, the property of invariable sum of
gradients is kept after this replacement.

To guarantee that the gradients are not reversed between layers, we should expect h(t) > 0 always

hold when t > 0. Therefore, we choose h(t) = e
− t

τgrad to simplify the calculation, where τgrad is a
tunable parameter. Notice that the function h(t) is only used in backward propagation, which means
the spike response kernel in the forward propagation is not necessarily the integral of h(t).

3.4 Overall Learning Rule

The loss function we use in this work is the counting loss function, which has the form L =

1
N

∑Nout

i=1

(
1
T

(
N target

i −
∫ T

0
si(t)dt

))2

, where Nout is the number of output neurons and equals

to the number of classes, si(t) represents the spike train emitted by neuron i. Besides, N target
i is the

target of the spike number outputted by neuron i and typically we set N target
i larger when i is the

correct answer.

7



During the learning process, the gradient is first propagated from the loss function to the firing time of
each spike from the last layer to the first layer. The formula for this stage is (please refer to Appendix
for the detailed deduction):

∂L

∂tm(s
(l−1)
j )

=
∑
i

∂L

∂tk,next(s
(l)
i )

·

 ∑
tlast
i (s

(l)
i )<tm(s

(l−1)
j )≤tk,next(s

(l)
i )

w
(l)
ij · h(tk,next − tm)


−1

· w(l)
ij · h(tk,next − tm), (13)

where tk,next(s
(l)
i ) is the firing time of the first spike emitted by neuron i after time tm.

After this, the gradient to weights in each layer is calculated by summing up the multiplication of the
gradients of spike firing times in the same layer and the derivative of weights with respect to spike
firing times. The learning rule for this stage is

∂L

∂w
(l)
ij

=
∑

tm(s
(l−1)
j )

∂L

∂tk,next(s
(l)
i )

· −1

∂u
(l)
i (tk,next)

∂t

· ϵ(tk,next − tm). (14)

4 Experiments

In this section, we validate the effectiveness of our method on MNIST [48], Fashion-MNIST [49],
N-MNIST [50], CIFAR10 [51], and CIFAR100 [51] datasets. This section is organized as follows:
We first introduce the training details, then evaluate the performance of our algorithm and compare it
with the state-of-the-art event-driven learning approaches. At last, we conduct ablation studies to
illustrate the effectiveness of our proposed modules. More details of the configurations can be found
in the Appendix.

4.1 Training Details

Initialization: When training in an event-driven fashion, gradient information is only carried by
spikes. Therefore, the gradient information will be completely blocked by a layer when there are
no spikes in that layer. To solve this problem, we start with layers of arbitrarily initialized weights
and scale them by certain multiples, which can make the average firing rate to be a certain number
for each layer. We obtain these multiple parameters by binary search and this strategy works well in
practice.

Supervisory signals: Another problem we face is that output neurons corresponding to certain classes
do not fire anymore after certain epochs of training. This problems makes corresponding gradients
difficult to propagate in the network, further leading to these neurons no longer fire afterwards,
resulting recognizing those classes correctly impossible in the following epochs. To address this
problem, we utilize supervisory signals. For each neuron in the output layer corresponding to the
ground-truth label, we force it to fire at the end of the simulation.

Experiment settings: In our experiments, we use the real-valued spike current representing the pixel
intensities of the image as inputs. We list the network architecture each work uses and the accuracy
they achieves on each dataset in table 2. Notice that the output layer is, by default, a fully-connected
layer containing the same number of neurons as the number of classes in the dataset, and omitted
from the architecture representation. We run all experiments on a single Nvidia A100 GPU.

4.2 Comparison with the State-of-the-Art

Tab. 2 reports the accuracies of the proposed method and other comparing methods. The performance
of our algorithm is lower than TSSL-BP by 0.06% on the MNIST dataset and 0.01% on the N-MNIST
dataset. However, the output of their network is real-valued postsynaptic currents while the output
of our network is binary spikes. In addition, they use RNN-like gradients to assist learning. On the
remaining datasets, we have achieved state-of-the-art performance among these works with temporal
gradients. For the Fashion-MNIST dataset, our algorithm performs 0.45% higher than the previous
SOTA. On the CIFAR10 dataset, we achieve 92.45% accuracy with a 14-layer SEW-Resnet and

8



Table 2: Performance comparison

Dataset Model Gradient Type Architecture Accuracy

MNIST

Mostafa [43] Temporal 784-800 97.5%
Cosma [34] Temporal 784-340 97.9%
S4NN [35] Temporal 784-600 97.4%

BS4NN [52] Temporal 784-600 97.0%
STiDi-BP [36] Temporal 784-500 97.4%
TSSL-BP [39] Temporal 15C5-P2-40C5-P2-300a 99.53%
STDBP [38] Temporal 16C5-P2-32C5-P2-800-128 99.4%

Ours Temporal 15C5-P2-40C5-P2-300 99.47%

Fashion-MNIST

S4NN [35] Temporal 784-1000 88.0%
BS4NN [52] Temporal 784-1000 87.3%
STDBP [38] Temporal 16C5-P2-32C5-P2-800-128 90.1%

TSSL-BP [39] Temporal 32C5-P2-64C5-P2-1024 92.83%
Ours Temporal 32C5-P2-64C5-P2-1024 93.28%

N-MNIST TSSL-BP [39] Temporal 12C5-P2-64C5-P2 99.40%
Ours Temporal 12C5-P2-64C5-P2 99.39%

CIFAR10 TSSL-BP [39] Temporal CIFARNetb 91.41%
Ours Temporal VGG11c 92.10%
Ours Temporal SEW-Resnet14 92.45%

CIFAR100 Ours Temporal VGG11 63.97%
a 15C5: convolution layer with 15 channels of 5× 5 filters. P2: pooling layer with 2× 2 filters.
b CIFARNet: 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512
c VGG11: 128C3-128C3-P2-256C3-256C3-256C3-P2-512C3-512C3-512C3-P2-2048-2048

92.10% with VGG11, which are all better than the current SOTA, 91.41%. For the CIFAR100 dataset,
we are the first work to successfully train SNNs with time-based gradients in an event-driven fashion.
We have achieved a performance of 63.97% on this dataset.

4.3 Ablation Studies

To show the effect of our proposed modules, we conduct ablation experiments on the CIFAR10
dataset. Specifically, two proposed components are taken into consideration: (1) As mentioned in
Section 3.3, we compare the proposed gradient assignment functions h(t) = e−βt in (12) with the
commonly used one h(t) = dϵ(t)

dt . (2) We compare the results of three different types of pooling
layers (average pooling, adjusted average pooling and max pooling) mentioned in Section 3.2. We
have tried all combinations of gradient assignment functions and pooling layers. The test accuracy of
these different settings is shown in Tab. 3.

Table 3: Test accuracy comparison between different settings on CIFAR10

Average pooling Adjusted average pooling Max pooling
dϵ(t)
dt 89.58% 91.52% 91.64%

e−βt 89.80% 91.88% 91.79%

The results in Tab. 3 meets our expectation. For the pooling layer, max pooling and adjusted average
pooling have much better performance than the average pooling. This accords with the conclusion
in Section 3.2 that pooling layers keeping the property of invariant sum of gradients are better than
those that do not.

The proposed gradient assignment function h(t) = e−βt is also better than the commonly used one
h(t) = dϵ(t)

dt for all three types of pooling layers. In addition, as shown in Fig. 5, h(t) = e−βt

converges faster than h(t) = dϵ(t)
dt in early stage.

9



0 50 100 150 200 250 300 350 400

epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

exponential gradient adjusted avg pooling

exponential gradient avg pooling

exponential gradient max pooling

original gradient adjusted avg pooling

original gradient avg pooling

original gradient max pooling

Figure 5: Test accuracy curve comparison between different settings on CIFAR10 (exponential
gradient denotes h(t) = e−βt and original gradient denotes h(t) = dϵ(t)

dt ).

5 Conclusion and Discussion

In this work, we analyze the commonly-used SNN temporal backpropagation training approach and
find that it follows the gradient assignment rule. We also find the average pooling layer does not obey
this rule while the max pooling layer does. We show that the direction of the temporal gradient will be
reversed when the spike kernel is decreasing and avoid it with an increasing kernel in backpropagation.
Our algorithm achieves state-of-the-art performance on CIFAR10 among time-based SNN learning
approaches and successfully learns the parameters of SNN on CIFAR100 for the first time.

Compared with RNN-like methods, the proposed event-based learning algorithm has a lower compu-
tational cost and memory occupation when there are many time steps. Besides, our algorithm also
does not need bias between layers. Meanwhile, gradient propagation between spikes instead of time
steps can mitigate the gradient explosion/vanishing problem along the time axis.

However, there is still a gap between event-driven backpropagation and biological plausible learning,
since event-driven backpropagation processes the spike train in reverse time, which conflicts with the
online learning in the real world and desires for future research.

6 Acknowledgements

This work was supported by the National Natural Science Foundation of China Grants 62176003 and
62088102.

References
[1] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,

plasticity. Cambridge University Press, 2002.

[2] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

[3] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal
ANN-SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In
International Conference on Learning Representations, 2022.

10



[4] Qi Xu, Yu Qi, Hang Yu, Jiangrong Shen, Huajin Tang, Gang Pan, et al. Csnn: an augmented
spiking based framework with perceptron-inception. In International Joint Conference on
Artificial Intelligence, pages 1646–1652, 2018.

[5] Youngeun Kim, Yeshwanth Venkatesha, and Priyadarshini Panda. Privatesnn: Privacy-
preserving spiking neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 1192–1200, 2022.

[6] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan
Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan
Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and
Hong Wang. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro,
38(1):82–99, 2018.

[7] Steve B. Furber, Francesco Galluppi, Steve Temple, and Luis A. Plana. The spinnaker project.
Proceedings of the IEEE, 102(5):652–665, 2014.

[8] De Ma, Juncheng Shen, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaoqiang Xu, Qi Xu, Yangjing
Shen, and Gang Pan. Darwin: A neuromorphic hardware co-processor based on spiking neural
networks. Journal of Systems Architecture, 77:43 – 51, 2017.

[9] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan
Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner,
William P. Risk, Rajit Manohar, and Dharmendra S. Modha. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science, 345(6197):668–673,
2014.

[10] Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
neural networks through gradient rewiring. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, pages 1713–1721, 2021.

[11] Nicolas Perez-Nieves and Dan Goodman. Sparse spiking gradient descent. Advances in Neural
Information Processing Systems, 34, 2021.

[12] Friedemann Zenke and Emre O Neftci. Brain-inspired learning on neuromorphic substrates.
Proceedings of the IEEE, 109(5):935–950, 2021.

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[14] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks,
14(6):1569–1572, 2003.

[15] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine
intelligence with neuromorphic computing. Nature, 575(7784):607–617, 2019.

[16] Friedemann Zenke, Sander M Bohté, Claudia Clopath, Iulia M Comşa, Julian Göltz, Wolfgang
Maass, Timothée Masquelier, Richard Naud, Emre O Neftci, Mihai A Petrovici, et al. Visual-
izing a joint future of neuroscience and neuromorphic engineering. Neuron, 109(4):571–575,
2021.

[17] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[18] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In
Advances in Neural Information Processing Systems, volume 31, pages 1419–1428, 2018.

[19] Zenke F and Ganguli S. Superspike: Supervised learning in multilayer spiking neural networks.
Neural Computation, 30(6):1514–1541, 2018.

11



[20] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and
Kaushik Roy. Enabling spike-based backpropagation for training deep neural network architec-
tures. Frontiers in Neuroscience, page 119, 2020.

[21] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong
Tian. Incorporating learnable membrane time constant to enhance learning of spiking neural
networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2661–2671, 2021.

[22] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differ-
entiable spike: Rethinking gradient-descent for training spiking neural networks. Advances in
Neural Information Processing Systems, 34:23426–23439, 2021.

[23] Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in Neuroscience, page 1638, 2020.

[24] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
In International Conference on Learning Representations, 2019.

[25] Paul J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

[26] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking
neural networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 1311–1318, 2019.

[27] Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated neighborhood aggregation for
accurate training of spiking neural networks. In International Conference on Machine Learning,
pages 11852–11862. PMLR, 2021.

[28] Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State tran-
sition of dendritic spines improves learning of sparse spiking neural networks. In International
Conference on Machine Learning, pages 3701–3715. PMLR, 2022.

[29] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of
spiking neural network via gradient re-weighting. In International Conference on Learning
Representations, 2021.

[30] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. Advances in Neural Information Processing
Systems, 34:21056–21069, 2021.

[31] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11062–11070, 2021.

[32] Sander M. Bohte, Joost N. Kok, and Han La Poutré. Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

[33] Olaf Booij and Hieu tat Nguyen. A gradient descent rule for spiking neurons emitting multiple
spikes. Information Processing Letters, 95(6):552–558, 2005.

[34] Iulia-Maria Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo,
and Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function:
Learning with backpropagation. IEEE Transactions on Neural Networks and Learning Systems,
pages 1–14, 2021.

[35] Saeed Reza Kheradpisheh and Timothée Masquelier. S4NN: Temporal backpropagation for
spiking neural networks with one spike per neuron. International Journal of Neural Systems,
30(06):2050027, 2020.

[36] Maryam Mirsadeghi, Majid Shalchian, Saeed Reza Kheradpisheh, and Timothée Masquelier.
STiDi-BP: Spike time displacement based error backpropagation in multilayer spiking neural
networks. Neurocomputing, 427:131–140, 2021.

12



[37] Timo C. Wunderlich and Christian Pehle. Event-based backpropagation can compute exact
gradients for spiking neural networks. Scientific Reports, 11(1):12829, 2021.

[38] Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan
Zhang, Venkata Pavan Kumar Miriyala, Hong Qu, Yansong Chua, Trevor E. Carlson, and
Haizhou Li. Rectified linear postsynaptic potential function for backpropagation in deep spiking
neural networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–12,
2021.

[39] Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep
spiking neural networks. Advances in Neural Information Processing Systems, pages 12022–
12033, 2020.

[40] Chaofei Hong, Xile Wei, Jiang Wang, Bin Deng, Haitao Yu, and Yanqiu Che. Training spiking
neural networks for cognitive tasks: A versatile framework compatible with various temporal
codes. IEEE Transactions on Neural Networks and Learning Systems, 31(4):1285–1296, 2019.

[41] Yan Xu, Xiaoqin Zeng, Lixin Han, and Jing Yang. A supervised multi-spike learning algorithm
based on gradient descent for spiking neural networks. Neural Networks, 43:99–113, 2013.

[42] Jie Yang, Wenyu Yang, and Wei Wu. A remark on the error-backpropagation learning algorithm
for spiking neural networks. Applied Mathematics Letters, 25(8):1118–1120, 2012.

[43] Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 29(7):3227–3235, 2017.

[44] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 11143–11151, 2021.

[45] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M.
Bower, Markus Diesmann, Abigail Morrison, Philip H. Goodman, Frederick C. Harris, Milind
Zirpe, Thomas Natschläger, Dejan Pecevski, Bard Ermentrout, Mikael Djurfeldt, Anders
Lansner, Olivier Rochel, Thierry Vieville, Eilif Muller, Andrew P. Davison, Sami El Boustani,
and Alain Destexhe. Simulation of networks of spiking neurons: A review of tools and strategies.
Journal of Computational Neuroscience, 23(3):349–398, 2007.

[46] Jinseok Kim, Kyungsu Kim, and Jae-Joon Kim. Unifying activation-and timing-based learning
rules for spiking neural networks. In Advances in Neural Information Processing Systems,
volume 33, pages 19534–19544, 2020.

[47] Yufei Guo, Xinyi Tong, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Zhe Ma, and Xuhui Huang.
RecDis-SNN: Rectifying membrane potential distribution for directly training spiking neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 326–335, 2022.

[48] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[49] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[50] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience,
9:437, 2015.

[51] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[52] Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier. BS4NN: Binarized
spiking neural networks with temporal coding and learning. Neural Processing Letters, pages
1–19, 2021.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No] We use identical seeds to maximize the reproducibility.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] The licence is accessible in the codes’

homepage.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] No need. The datasets we used in this paper are public.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] No need. The datasets we used in this paper are
public.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Backgrounds and Related Work
	Methods
	Forward Formulas
	Rethinking the Classical Time-based Backward Propagation Formula
	Deficiencies of The Typical Time-based Gradient Propagation and A New Approach
	Overall Learning Rule

	Experiments
	Training Details
	 Comparison with the State-of-the-Art
	Ablation Studies

	Conclusion and Discussion
	Acknowledgements

