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Abstract

Personalized Federated Learning faces many challenges such as expensive com-
munication costs, training-time adversarial attacks, and performance unfairness
across devices. Recent developments witness a trade-off between a reference model
and local models to achieve personalization. We follow the avenue and propose
a personalized FL method towards the three goals. When it is time to communi-
cate, our method projects local models into a shared-and-fixed low-dimensional
random subspace and uses infimal convolution to control the deviation between the
reference model and projected local models. We theoretically show our method
converges for smooth objectives with square regularizers and the convergence
dependence on the projection dimension is mild. We also illustrate the benefits
of robustness and fairness on a class of linear problems. Finally, we conduct a
large number of experiments to show the empirical superiority of our method over
several state-of-the-art methods on the three aspects.

1 Introduction
Federated Learning (FL) emerges as a new distributed computing paradigm that would perform
privately distributed optimization in large-scale networks of remote clients [51]. For the sake of
privacy protection, data are generated locally and are kept in the original location during training,
which incurs a discrepancy among local data distributions. Furthermore, the nature that FL works as
a decentralized system poses greater challenges to its communication efficiency, robustness against
adversarial attacks, and fairness on resource allocation [32].

To detour the data heterogeneity issue, one considers to personalize local models [35]. A key feature
that any personalization method has is to differ local models from the global model. The simplest
way for personalization is training purely with local data on each device. Chen et al. [10] showed
that when the degree of data heterogeneity is above some threshold value, pure local training is
minimax optimal; otherwise, the global model is minimax optimal. In practice, we prefer a method
that intervenes between the two extremes. It brings out another popular approach that interpolates
between a reference model and local models [19, 20, 12, 13, 26, 64]. Recently, Li et al. [44] suggested
that personalization can be leveraged not only to improve accuracy, but also to allow for competing
constraints such as robustness and fairness. Inspired by their work, we would explore the following
question:

Can we balance different constraints of interest (i.e., communication efficiency, robustness and
fairness) simultaneously?

In this paper, we give an affirmative answer to the question by proposing a personalized FL method
named as lp-proj, whose core is Lp-regularization and low-dimensional random projection. We
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employ the idea of controlling the dissimilarity between the global model and local models via a
smoothing kernel of infimal convolution. Towards the three goals, the smoothing kernel is designed
to regularize the projection of local models in a shared low-dimensional random subspace rather than
the original space. In this way, each client only communicates the projected models each time and
the server maintains a low-dimensional reference model for regularization. The random subspace is
generated once and will not change during training. It makes local models share a similar part in the
random subspace and adapt to their local data using components beyond that.

Theoretically, we give convergence analysis for smooth objectives with square regularizer, and show
that the convergence dependence on the projection dimension is mild. By analyzing test losses and the
corresponding variances across the network on federated linear regression, we show that our proposed
method is at least as good as two SOTA methods [13, 44] in terms of Byzantine robustness [37] and
performance fairness (see Definition 1).

Finally, we conduct a large number of experiments to show the empirical superiority of our method.
It not only shows expectant personalization but also promotes fairness by achieving higher test
accuracy more uniformly over clients. It significantly improves communication efficiency, because
the subspace dimension is often no more than one-hundredth of the original dimension. Furthermore,
it is more resistant to training-time adversarial attacks.

In summary, we propose a personalized FL algorithm and explore its performance in aspects of
communication efficiency, robustness and fairness. Our results show that low-dimensional projection
brings multiple benefits and is helpful for algorithm design.

2 Related Work
There are many works studying personalization and a survey can be found in [35]. It has been studied
via multi-task learning [57, 28], meta-learning [9, 31, 16], knowledge distillation [41, 70] and transfer
learning [63, 49]. Hanzely et al. [21] provided convergence analysis for a general personalized
framework that requires jointly strongly convex and smooth objectives.

Communication Efficiency To reduce the cost of communication in FL with large-scale networks,
existing works could be categorized as gradient compression, model compression and reducing the
communication frequency. On gradient compression, sparsification [29, 47], quantization [1] and
low-rank approximation [3] are three main directions investigated in the current research. On model
compression, Liang et al. [46] suggested learning local representations and a global model only
operates on the local representations, Li et al. [38] extended the lottery ticket hypothesis and used
network pruning in the FL setting. On communication frequency, Wang et al. [62] used momentum
to delay the global aggregation; McMahan et al. [51], Karimireddy et al. [33] performed multiple
local updates to lessen the communication rounds. Shahid et al. [56] presented a survey on current
progress on communication efficiency in FL. Our proposed method is a model compression approach.
Differing from previous works that compress the model each time with different basis, our work focus
on a shared-and-fixed low-dimensional subspace which is determined at the beginning of training
and will not change later on.

Fairness in FL Zhou et al. [71] suggested that there are three types of fairness in FL: performance
fairness, collaboration fairness and model fairness. On performance fairness, an FL system usually
promotes uniform accuracy distribution across participants, which is closely related to resource
allocation by viewing FL as a joint optimization system over a heterogeneous network. Li et al. [44]
gave a formal definition (Definition 1) and some efficient methods have been proposed towards this
goal [44, 27].
Definition 1 (Performance Fairness [44]). A model w1 is more fair than w2 if the test perfor-
mance distribution of w1 across the network with N clients is more uniform than that of w2, i.e.
var {Fk(w1)}k∈[N ] < var {Fk(w2)}k∈[N ], where Fk(·) denotes the test loss of client k ∈ [N ] and
var denotes the variance2.
On collaboration fairness, one expects that each participant receives a reward that can fairly reflect
its contribution to the FL system, in which way one can build a sound incentive mechanism. Lyu
et al. [48] formalized this idea; Yu et al. [69], Xu and Lyu [67] explored on this aspect. On model
fairness, one usually concerns ethical issues and seeks to protect some sensitive attributes [15, 22, 36].
Liang et al. [46] suggested learning a fair representation for each client to achieve fairness, Du et al.

2Equivalently, we can use the standard deviation (std) to measure fairness across the network.
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[14] proposed reweighing the objective functions under fairness constraint. In our work, we focus
on performance fairness, illustrating the benefits of our method through theoretical analysis and
numerical experiments.

Robust FL Typical adversarial attacks include data poisoning and model update poisoning (Byzan-
tine attacks). The former injects abnormal sample points into the training dataset [5, 30, 39, 55, 59,
65, 17], while the latter manipulates communication messages by sending arbitrary updates to the
server, both attacks hindering the training processes. In this paper, we mainly aim to defend model
update poisoning attacks and achieve Byzantine robustness [37]. An extension to a data poisoning
attack is also considered in numerical experiments. Prior works favor Byzantine-robust SGD variants
where the server alleviates the attack of Byzantine clients via robust aggregation rules [11, 68, 66, 7].
Beyond that, Li et al. [42] developed a robust distributed method by incorporating the Lp-norm
regularizer to robustify the objective function. Li et al. [44] used robust aggregation rules to achieve
robustness and fairness. Our work leverages the ideas from [42] and [44], but differs from them
by embedding the update process in a low-dimensional fixed random subspace. Theoretical anal-
ysis shows that with commonly used regularization parameters, our method is no worse than two
SOTA methods [13, 44] (see Figure 1). Extensive experiments manifest our method of achieving
state-of-the-art performance under various types and intensities of adversarial attacks.

3 Methodology
In this section, we present our method which is based on infimal convolution and subspace regular-
ization. Conventional FL that trains a single global model to fit the “average client” suffers from
statistical heterogeneity among massive devices. To enhance accuracy performance, we hope not only
to leverage the global model, but also stylize it to fit the local data for each client. To this end, we
use infimal convolution, which is originally proposed to smooth some extended real-valued convex
function f with a sufficiently smooth kernel function g [52]. We apply this technique in FL to bridge
local models and global model. Here, f is the usual objective function in the vanilla case, and g is
designed to characterize the relationship between local and global models. Given a general function
g as the smoothing kernel, the personalized FL using infimal convolution is then formulated as a
bi-level problem:

min
w∈Rd

F (w) := G {F1(w), . . . , FN (w)} , (1)

where G(·) is the aggregation function at the server side3. For k ∈ {1, · · · , N},

Fk(w) = {fk ⊗ λg} (w) := min
xk∈Rd

fk(xk) + λg(w − xk) with fk(xk) = Eξk
[
f̃k(xk; ξk)

]
. (2)

Here, ⊗ denotes infimal convolution operator, ξk is an independent sample drawn from the distribution
Dk, and f̃k (xk; ξk) is the loss function corresponding to this sample. w and xk represent the
global and local model parameters, respectively. λ is a hyperparameter controlling the degree of
personalization. Problem (1) is pure local training if λ = 0, and is synchronized training when
λ→ ∞.

The smoothing kernel function g is task-specific. Many previous personalized methods can be cast
into our infimal convolution framework by setting a proper g. For example, Dinh et al. [13], Li
et al. [44] used Moreau Envelopes as the regularizer, which is equivalent to g(·) = 1

2∥ · ∥
2
2. Li et al.

[42] proposed the Lp-norm regularization g(·) = ∥ · ∥p instead. Motivated by the fact that high-
dimensional data usually has low-dimensional representation that retains meaningful properties [60],
and random projection would preserve similarity of data vectors [6], we propose to regularize the
projection of local models in a shared low-dimensional space, which is equivalent to the following
smoothing kernel

g(·) = 1

p
∥P (·)∥pp , (3)

where p ≥ 1 and P is a dsub × d random matrix that is generated initially and will not vary anymore.
dsub is the dimension of the shared-and-fixed random subspace. The choice for P is flexible as the
only requirement in our theory is that all the singular values of P are bounded from both sides. In this
paper, we consider that P is generated with i.i.d. Gaussian entries and then normalized to have unit L2

norm for each row as suggested by [40]. We comment that with this g, Fk(w) is actually a function

3For simplicity, we set G(·) as the simple average 1
N

∑N
k=1 Fk(w), but it can also generalize to other forms.
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Algorithm 1 lp-proj: Projection-based Lp Regularized Personalized Federated Learning
1: Input: Communication rounds T , local update rounds R, client sampling size S, regularization

coefficient λ, lower-level problem accuracy ν, step size η, initial global model w̃0, projection
matrix P , speedup control parameter β.

2: for t = 0 to T − 1 do
3: Server sends w̃t to all clients.
4: for all k = 1 to N clients do
5: w̃t

k,0 = w̃t.
6: for r = 0 to R− 1 do
7: Independently sample a fresh mini-batch D̃k and minimize the loss function (4) up to

accuracy level ν to get xtk,r.
8: Update the local model w̃t

k,r+1 by (5).
9: end for

10: end for
11: Server uniformly samples a subset of clients St of size S. Each client sends w̃t

k,R to the server.

12: Server updates the global model via w̃t+1 = (1− β)w̃t + β
∑
k∈St

w̃t
k,R

S .
13: end for

of w̃ = Pw since P (w − xk) = w̃ − Pxk. It implies we can only focus on the low-dimensional
parameter w̃ ∈ Rdsub at the global level for algorithm description and theoretical analysis.4

3.1 The Algorithm
In this section, we introduce the algorithm lp-proj (see Algorithm 1) for the bi-level optimization
problem (1) with smoothing kernel g given by Eqn. (3).

The algorithm lp-proj is essentially an alternative minimization method on bi-level optimization.
Each client k maintains two parameters: their local parameter xtk,r and a copy of the global parameter
w̃t
k,r with additional subscript r denoting inner iterations and superscript t the communication round.

At round t, the server broadcasts the latest global model w̃t to all clients. Then each client initializes
their version of global model w̃t

k,0 as w̃t (line 5) and starts to solve the problem via alternative
minimization (lines 6-9).
• (line 7) Given a local version of global model w̃t

k,r, we use gradient descent (GD) to obtain an
approximate solution xtk,r that minimizes h̃k up to accuracy level ν, where

h̃k(xk; D̃k, w̃t
k,r) =

1

|D̃k|

∑
ξk,i∈D̃k

f̃k(xk; ξk,i) + λ
1

p

∥∥w̃t
k,r − Pxk

∥∥p
p
. (4)

Here D̃k is a mini-batch sampled uniformly and ξk,i refers to a sample from D̃k. The GD iteration

is terminated when
∥∥∥∇h̃k(xtk,r; D̃k, w̃t

k,r)
∥∥∥2
2
≤ ν is satisfied.

• (line 8) Given a local parameter xtk,r, the local version of global model w̃t
k,r is updated by one-step

gradient descent:

w̃t
k,r+1 = w̃t

k,r −
ηλ

p
∂w̃t

k,r

∥∥w̃t
k,r−Pxtk,r

∥∥p
p
. (5)

After R steps of the alternative updates, each client has its own version of the global model w̃t
k,R.

Then the server accesses a random set of S clients and produces the next global model by a linear
combination of the latest w̃t and the average of {w̃t

k,R}k∈St . Here, a hyperparameter β, which could
be viewed as a global step-size, is introduced to control the global update process. Our theorem shows
a proper β can speed up convergence, but in practice, we find that the test performance only varies
moderately for different choices of β. For simplicity, we only consider β = 1 in our experiments.

Communication Efficiency In Algorithm 1, we restrict the global model w̃t to lie in a fixed low-
dimensional subspace, only w̃t

k,R of dimension dsub, instead of the full model xtk,r of dimension d,
is communicated to the server during each round, which leads to much fewer bits for communication

4Without ambiguity, we term w̃ as the global model.
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compared to vanilla FL. Besides, we remark on the difference between our method and other
projection/sketching-based methods. On one hand, distributed sketching [4], which directly projects
the data in a low-dimensional space at the start of training, is “one-shot” rather than iterative, while
our method projects local models every communication round and the local training proceeds with
the full model. On the other hand, sketched-SGD [29] compresses the transmitted messages with
different basis every time, while our random subspace is specified at the beginning and would not
change after that.

Robustness and Fairness For one thing, by applying projection into a low-dimensional sub-
space, our method only requires (near) consensus of model parameters of different clients in the
low-dimensional subspace, leaving flexibility for the system towards personalization and better
generalization to the local data distribution, which could improve performance fairness and robust-
ness when facing adversarial attacks. For the other, introducing Lp-norm regularized term to the
objective function is equivalent to launching an uncertainty set to the model parameter by rewriting
the objective as a constrained optimization problem (e.g., L1-norm is the diamond-shaped uncertainty
and L2-norm is the spherical uncertainty), in which way we can enhance accuracy by searching for
a model adaptive to the local data distribution in the uncertainty set. Formal analysis on a class of
linear problems is provided in Section 4.2.

4 Theoretical Analysis
4.1 Convergence
In this subsection, we establish the convergence of our algorithm for the case p = 2. We first present
the assumptions and then state our main results.

Assumption 1 (Smoothness). f̃k is L-smooth, that is, for any xk,x
′
k ∈ Rd and ξk, we have∥∥∥∇f̃k(x′

k; ξk)−∇f̃k(xk; ξk)
∥∥∥
2
≤ L ∥x′

k − xk∥2.

Assumption 2 (Bounded variance). The variance of stochastic gradients in each client is bounded,

i.e., Eξk
∥∥∥∇f̃k(xk; ξk)−∇fk(xk)

∥∥∥2
2
≤ γ2f .

Assumption 3 (Bounded diversity). The variance of local gradients to global gradient is bounded,
i.e., 1

N

∑N
k=1 ∥∇fk(w)−∇f(w)∥22 ≤ σ2

f .

Assumptions 1, 2 and 3 are standard for convergence analysis. Assumption 1 also guarantees the
smoothness of fk. From the generation of P , we can show that P has full row rank with high
probability (see Proposition 7). Then there exists a d× (d− dsub) matrix Q such that (P⊤,Q) is an
invertible matrix and PQ = 0dsub×(d−dsub).

Assumption 4 (Low-dimensional condition). f̃k has a low-dimensional structure, that is, f̃k(P⊤yk+

Qỹk; ξk) = f̃k(P
⊤yk; ξk) for any yk ∈ Rdsub , ỹk ∈ Rd−dsub . As a consequence, the same equality

also holds with f̃k replaced by fk.

Assumption 4 implies that minxk∈Rd f̃k(xk; ξk) = minxk∈col(P⊤) f̃k(xk; ξk), where col(A) denotes
the subspace spanned by the column vectors of A. This means we can focus on the low-dimensional
subspace spanned by the row vectors of P . We give an example satisfying the assumption. Suppose
ξk and xk have the same dimensions and f̃k(xk; ξk) = l(ξ⊤k xk)

5. If ξk ∈ col(P⊤), then there exists
an ak such that ξk = P⊤ak. Decompose xk = P⊤yk +Qỹk. Then l(ξ⊤k xk) = l(akP (P⊤yk +
Qỹk)) = l(akP

⊤yk). This implies that for linear models with data lying in col(P⊤), Assumption 4
holds.

For the general case, it is not easy to verify Assumption 4 directly. Intuitively, we can interpret
Assumption 4 as that the data concentrate on a low-dimensional subspace. Then with the total
parameters denoted by xk = P⊤yk + Qỹk, only a low-dimensional linear combination yk =
(PP⊤)−1Pxk can affect the value of f̃k.

Recall that we can view Fk as a function of w̃ instead of w, with some abuse of notation, we write
Fk as Fk(w̃) = minxk∈Rd

{
fk(xk) +

λ
2 ∥w̃ − Pxk∥22

}
. Then we have the following result.

5For example, when we fit generalized linear models via maximum likelihood method, the negative (log)
likelihood function has this form.
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Lemma 1. Suppose that Assumptions 1, 2 and 4 hold and λ > 4L. With probability at least
1− 2 exp(−cdsub), we have

1

λ2
E
[∥∥∇Fk(w̃t

k,r)− λ(w̃t
k,r − Pxtk,r)

∥∥2
2

]
≤ δ2 :=

2
(
1 + C

√
dsub
d

)6 ( γ2
f

|D̃k|
+ ν
)

[(
1− C

√
dsub
d

)4
λ−

(
1 + C

√
dsub
d

)2
L
]2 ,

as long as C
√

dsub

d < 1/30, where C, c are positive constants.

Lemma 1 quantifies the error between the exact gradient ∇Fk(w̃t
k,r) and the approximate gradient

λ(w̃t
k,r − Pxtk,r) due to mini-batch sampling and optimization error of the inner loop. From the

expression of δ2, we can see that this error has a mild dependence on dsub.

Based on Lemma 1, we can establish the convergence of the global model and personalized parameters
of Algorithm 1. By the smoothness of fk, we can show that Fk is LF -smooth with LF = λ6. Then
the convergence of Algorithm 1 is guaranteed by Theorem 1.

Theorem 1. Suppose that Assumptions 1 to 4 hold and dsub/d is sufficiently small. Let η̂0 = 1
90λ2LF

with λ ≥ max{
√
10L2 + 1, 4L}, β ≥ 1 and ∆F = F (w̃0)−minw̃∈Rdsub F (w̃). If t∗ is uniformly

sampled from {0, 1, . . . , T−1}, then with probability at least 1−2 exp(−cdsub), there exists η ≤ η̂0
βR

such that

E
[
∥∇F (w̃t∗)∥22

]
≤ O

(
∆F

η̂0T

)
︸ ︷︷ ︸

due to initialization

+O
(
(∆FLFσ

2
F (N/S − 1))1/2√
TN

)
︸ ︷︷ ︸

due to client sampling

+ O
(
(∆FLF )

2/3(σ2
F + λ2δ2)1/3

(βT )2/3

)
+O

(
λ2δ2

)
︸ ︷︷ ︸

due to client drift with multiple local updates and approximation errors

=: O0,

(6)

where c is a positive constant number, σ2
F =

λ2σ2
f

λ2−10L2 measures the bounded diversity of Fk,
δ2 defined in Lemma 1 is the approximation error of the inner loop, the expectation is w.r.t. all
the randomness except for P and O hides constants. Moreover, suppose that xtk is a solution to∥∥∥∇h̃k(x; D̃k, w̃t)

∥∥∥2
2
≤ ν. Then with probability at least 1− 2 exp(−cdsub), we have

1

N

N∑
k=1

E
[∥∥∥Pxt

∗

k − w̃t∗

∥∥∥2
2

]
≤ O0 +O

(
σ2
F

λ2
+ δ2

)
.

When there is no client sampling, choosing β = Θ(NR) leads to a sublinear speedup
O
(
1/(TRN)2/3

)
. Eqn. (6) shows the average over indices k and t of the distance between

personalized parameters (after a linear transformation) and global model parameters converges to
O
(
λ2δ2 +

σ2
F

λ2 + δ2
)
. Here λ can be chosen to trade off different terms.

Our Theorem 1 shares similar forms as Theorem 2 in [13]. The constant term O
(
λ2δ2

)
appears in

both theorems and is caused by biased gradients, i.e., we only get a biased estimate of ∇Fk due to
inexact inner optimization (non-zero ν) and batch data (small |D̃k|).

4.2 Robustness and fairness
In this subsection, we explore the robustness and fairness benefits of lp-proj on a class of linear
problems and compare lp-proj with Ditto [44] and pFedMe [13]. For ease of analysis, we assume
the rows of P are orthogonal. In practice, we can directly use the random matrix generated as
in Section 3 without explicit orthogonalization, since high-dimensional random vectors are nearly
orthogonal.

6See Proposition 9 in Appendix A.2 for the details.
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Figure 1: Test losses of pFedMe,
Ditto and lp-proj under different
values of λ. In our settings, the losses
of pFedMe and Ditto coincide.
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Figure 2: Accuracy-Fairness trade-off of competing methods. (The
point closer to the bottom right corner is better.)

Our Setting We focus on a simplified setting where the number of local update steps is infinite, there
is only one round of communication and all clients participate in the communication. Then it is natural
to set β = 1. Suppose that the true parameter on client k is wk, there are n samples on each client and
the covariate on client k is {ξk,i}ni=1 and fixed. The observations are generated by yk,i = ξ⊤k,iwk+zk,i

where the noises zk,i
i.i.d.∼ N (0, σ2). For simplicity, we assume

∑n
i=1 ξk,iξ

⊤
k,i = bnId. Then the test

loss on client k is f te
k (xk) =

1
2n

∑n
i=1(ξ

⊤
k,iwk + z′k,i − ξ⊤k,ixk)

2, where z′k,i ∼ N (0, σ2) and are
independent of zk,i.

Three Attacks We examine three types of Byzantine attacks. Denote the message delivered by
malicious client k as w̃(ma)

k , then the attacks are listed as follows.

• Same-value attacks: The message sent by a Byzantine client k is set as w̃(ma)
k = c1dsub , where

1dsub
∈ Rdsub is the vector of ones and c ∼ N (0, τ2).

• Sign-flipping attacks: The transmitted messages are sign-flipped and then scaled, i.e., a Byzantine
client k computes the true value w̃k but sends w̃(ma)

k = −|c| ·w̃k to the server where c ∼ N (0, τ2).

• Gaussian attacks: The message sent by a Byzantine client k is set as w̃(ma)
k ∼ N (0dsub , τ

2Idsub).

The analyses for different attacks are similar, thus we only focus on the same-value attacks here
for illustration. Results for other attacks are deferred to Appendix B.3. Suppose that there are
Na malicious clients, and the heterogeneity is uniform in all dimensions in the sense of Eqn.(25)
in Appendix B.3, where we define Σ1 to measure data heterogeneity in a single dimension. Let
λ∗1 = (1−1/N)σ2/n

Σ1+
Na
N2 (τ2−σ2/(bn))

. The numerator of λ∗1 is the variance of noises over the number of samples.

The denominator is the sum of data heterogeneity and variance of attacks. When λ = λ∗1, pFedMe,
Ditto and lp-proj all achieve their corresponding minimal losses. However, we do not know factors
affecting λ∗1 in advance, implying getting the particular value of λ∗1 is possibly hard. Therefore, we
need to compare the performance of these methods under different values of λ.

Proposition 1 (Formal statement in Theorem 2, Appendix B.3). Denote the averaged losses on benign
clients of pFedMe, Ditto and lp-proj by LMe, att1(λ), LDi,att1(λ) and Ll2,att1(λ) respectively. The
explicit forms of losses are in Appendix B.3. Under the same-value attacks, we have (i) LMe,att1(λ) =

LDi,att1(λ), ∀λ > 0 and (ii) if λ∗1 < b, Ll2, att1(λ) ≤ LMe,att1(λ) if and only if λ ≥ 2λ∗
1

1−λ∗
1/b

.

Porposition 1 implies lp-proj outperforms both pFedMe and Ditto once λ is larger than a threshold
value 2λ∗

1

1−λ∗
1/b

, which is slightly larger than 2λ∗1. The pattern is captured by Figure 1, where we set
n = 200, N = 100, Na = 20, d = 100, dsub = 10, b = 1, σ = 1, Σ1 = 0.1 and τ = 100. Then
λ∗1 ≈ 4.9e− 4 , a pretty small value. Even for λ < 2λ∗

1

1−λ∗
1/b

, the gap between lp-proj and pFedMe
/ Ditto is negligible. Thus, lp-proj has comparable or beter performance for any λ > 0.

Now we turn to the performance fairness defined in Definition 1. For simplicity, we further assume
that the true parameters wk are i.i.d. and distributed as N (µw,Σw).

Proposition 2 (Formal statement in Theorem 3, Appendix B.4). Denote the variance of test losses
on different clients of pFedMe, Ditto and lp-proj by V Me(λ), V Di(λ) and V l2(λ) respectively. We
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Figure 3: Personalization performance of lp-proj-1, lp-proj-2 with other methods on EMNIST and CIFAR.
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Figure 4: Robustness comparison of different methods, i.e., average test accuracy of benign clients. The dashed
black line shows the performance of pure local training. A line with less than 5 points implies the algorithm
collapses because the intensity of the given attack exceeds the limit the corresponding algorithm could tolerate.

have for ∀λ > 0, EV l2(λ) ≤ EV Me(λ) = EV Di(λ). More specifically, EV Me(λ) = O(d2) and
EV l2(λ) = O(d2sub), where the expectation is taken w.r.t. the randomness of wk.

Proposition 2 shows lp-proj always brings more uniform test losses, no matter what value λ is.
In particular, EV l2(λ) = O(d2sub) while EV Me(λ) = O(d2). Since it is likely that dsub ≪ d, the
advantage of lp-proj could be much larger. It implies lp-proj is more fair than pFedMe and
Ditto. For the formal theorem, see Appendix B.4.

5 Numerical Experiments
In this section, we demonstrate lp-proj has the desirable properties through numerical experiments.
Experimental Setup We test lp-proj as well as other comparable algorithms on six datasets from
common ML and FL benchmarks [50, 8]. We consider both convex and non-convex models. For the
latter, we consider neural networks including both MLP and CNN. Details about datasets, models
and basic information about the FL system are provided in Table 2 in Appendix C. To better model
the statistical heterogeneity, we distribute the dataset among clients in a non-iid fashion such that
each client only contains partial classes of the data in multi-classification problems.

For each client, the training and testing data are pre-specified as in the ML community, and 20% of
training data is randomly extracted to construct a validation set, keeping the remaining 80% as the
training set. The training set is used for model fitting and parameter estimation. For each competing
method, we use the accuracy performance on the validation set as the tuning criterion and conduct
a grid search to choose the best hyper-parameter combination among a prescribed candidate set.
All reported results are evaluated on the test dataset. More details about hyperparameter tuning are
provided in Appendix C.2. Furthermore, to incorporate partial participation [51, 45], we randomly
select 10% of the clients for aggregation at each communication round. The projection dimension
of the random subspace for each dataset is chosen based on the full model size and communication
budget (see Appendix C.2). Source code for the reproduction of numerical results is available at
https://github.com/desternylin/perfed.

Personalization Accuracy Performance In order to highlight the empirical performance of our
proposed method, we compare lp-proj with several state-of-the-art personalization methods in
the literature, together with a global method and a pure local method. Specifically, we consider
the case when p = 1 (lp-proj-1) and p = 2 (lp-proj-2). For SOTA methods, we consider
Ditto [44], pFedMe [13], Per-fedavg [16], LG-FedAvg [46] and RSA [42]. A brief description of
these approaches is provided in Appendix C.1.

Due to space limitations, we only show the comparisons on training loss and test accuracy on two
standard datasets (EMNIST and CIFAR) in Figure 3. Results on the other datasets are left in Table 3
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Table 1: Communication performance on Synthetic(0, 0) and EMNIST datasets. Two aspects are considered:
test accuracy on a given byte budget and bytes used to achieve a target test accuracy. A ⋆ on the column “Test
Acc” refers to the situation that bytes used in the first iteration of the algorithm have exceeded the budget, and a
⋆ on the column “Used Bytes” means the algorithm could not provide a solution that reaches the target accuracy.

Synthetic(0, 0) EMNIST

Method Bytes Budget Test Acc Target Acc Used Bytes Bytes Budget Test Acc Target Acc Used Bytes

FedAvg 328020 0.625 0.6 597800 4236900 ⋆ 0.7 445851400
Sketch 328020 0.456 0.6 ⋆ 4236900 ⋆ 0.7 ⋆

lp-proj-1 328020 0.885 0.6 4620 4236900 0.906 0.7 174720
lp-proj-2 328020 0.888 0.6 4620 4236900 0.906 0.7 196560
LBGM 328020 0.538 0.6 365002 4236900 ⋆ 0.7 769902776
QSGD 328020 0.115 0.6 923350 4236900 ⋆ 0.7 673302175
DGC 328020 ⋆ 0.6 391800 4236900 ⋆ 0.7 ⋆it

LG-FedAvg \ \ \ \ 4236900 0.071 0.7 230786010

and Figure 5 in Appendix C.3. From these figures, we see that lp-proj-1 and lp-proj-2 have
comparable or even superior performance than other methods. Furthermore, the training process is
more stable as the loss and accuracy curves have less fluctuation.

Communication Efficiency We compare lp-proj with the global baseline FedAvg [51] and five
standard approaches using gradient and model compression, namely Sketch [29], LBGM [3], QSGD [1],
DGC [47] and LG-FedAvg [46]. We quantify the communication cost via total bytes written and read
by active clients each round and capture the relation between test accuracy and communicated bytes.
Due to space limitations, we only show the results on two datasets in Table 1 (Synthetic(0, 0)
and EMNIST) with the full results left in Table 4 in Appendix C.4.

It is clear that our method is more communication efficient since we only communicate low-
dimensional messages. Given a communication budget of bytes, lp-proj obtains ∼ 26.3% and
∼ 83.5% test accuracy improvement on Synthetic(0, 0) and EMNIST datasets respectively. On
the other hand, given a target test accuracy, our proposed method needs much fewer bits than the rest
and saves the communication cost by 79x and 1320x on the two datasets compared with the best
competing method. Besides, our method owns flexibility on the choice of the projection dimension
dsub, because the convergence dependence of our method on dsub is mild as predicted by Lemma 1.
The compression rate of our proposed methods can be 1000x or even higher, while that of sketching
or gradient compression methods typically is no larger than tens.

Robustness In addition to the three Byzantine attacks introduced in Section 4.2, we consider a
stronger data poisoning attack in the following experiments.
• Data poisoning attacks: The training samples on malicious clients are poisoned with uniformly

randomly chosen noisy labels. Furthermore, when communicating, these clients would scale their
transmitted messages to dominate the aggregate update.

For the former three Byzantine attacks, the noise variance τ is set as 100, 10 and 100 respectively.
The corruption levels, i.e., the fractions of malicious clients, are set as {0.1, 0.2, 0.5, 0.8}. For data
poisoning attack, the scaling factor is randomly sampled from N (0, 202) and the corruption levels
are from {0.02, 0.05, 0.1, 0.2}. Under different types of attacks and different levels of corruption, we
compare the average test accuracy performance on benign clients of lp-proj-1 and lp-proj-2
with various defense baselines, including global training augmented with different robust aggregation
techniques, such as median and Krum [7], Ditto and RSA.

Due to space limitations, we show only a representative figure for each attack in Figure 4. For full
results, please refer to Appendix C.5. From Figure 4, we find that under relatively weak attacks, e.g.,
same-value and Gaussian attacks, the test accuracy of lp-proj-1 and lp-proj-2 rarely decays as
the fraction of malicious clients increases, while we observe significant drops on the test accuracy
for other algorithms once malicious clients exist. On the other hand, under strong attacks, e.g.
sign-flipping and data poisoning, an increasing fraction of malicious clients deteriorates the accuracy
performance continuously and even collapses the local model if the attack intensity is too large.
For example, under the sign-flipping attack, when the fraction of malicious clients exceeds 20%,
only lp-proj-1, RSA and Global+Krum work, while all other methods fail to produce a solution.
When the attack intensity further increases to 80%, the only robust methods that achieve the desired
accuracy are lp-proj-1 and RSA.

The numerical results show that our method is resistant to standard malicious attacks, which roots in
the combination of projection and L1-norm subspace regularization that attribute to the robustness.
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Consider an extreme example: if the subspace dimension is chosen as 0, then the joint optimization
is reduced to pure local training. No matter how serious the adversarial attack is, the local test
performance would not be affected. Therefore, random projection helps alleviate the attacks applied
in the original space, while the L1-norm helps eliminate outliers further [34].

Fairness To illustrate the accuracy and performance fairness trade-off, we plot the variances of
accuracies across the system against the corresponding test accuracies for lp-proj and several other
different approaches in Figure 2. To examine the performance fairness in isolation, the numerical
experiments are performed without adversarial attacks in this part. Furthermore, for each competing
method, we select the optimal achievable test accuracy after the 20th communication round, and the
corresponding variance is picked up. Due to space limitations, we show the results on two datasets
here with the full results left in Figure 6 in Appendix C.6.

The results with respect to performance fairness show that lp-proj-1 and lp-proj-2 provide
accurate and fair solutions that are comparable to other SOTA methods. In particular, on CIFAR,
lp-proj-1 achieves the highest test accuracy of 79.22% with the lowest variance of 0.0097 among
all the competitors. Although RSA achieves the same variance as lp-proj-1, its corresponding test
accuracy is only 77.68%, which is 1.54% lower than lp-proj-1. On the other hand, on EMNIST,
despite the optimal approach is Ditto, with a test accuracy of 90.89% and the corresponding variance
of 0.0016, our proposed method shows comparable performance, e.g., lp-proj-2 achieves a test
accuracy of 90.70% with a variance of 0.0016, which is only slightly inferior to the previous method.
Theoretical analysis in Proposition 2 implies that under the linear model, the dependence of the
variance on the projection dimension is of squared order, indicating low-dimensional projection helps
reduce the variance of test losses among clients. Numerical results suggest that this conclusion may
be generalized to broader settings.

6 Concluding Remarks
In this paper, we have proposed a simple but powerful personalized FL approach based on infimal
convolution and subspace projection that we call lp-proj. We have presented the convergence
results for smooth objectives with square regularizers. Inherent benefits of robustness and fairness of
our method are also illustrated on a class of linear problems. Empirical results show that our approach
could significantly save communication costs, improve robustness under various kinds of adversarial
attacks, and promote performance fairness. In future work, we would be interested in establishing
convergence results for general Lp regularizers and strongly convex objectives, exploring numerical
applications on other ML tasks and large-scale datasets, and considering additional constraints, e.g.,
differential privacy.
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