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Abstract

Many patterns in nature exhibit self-similarity: they can be compactly described
via self-referential transformations. Said patterns commonly appear in natural
and artificial objects, such as molecules, shorelines, galaxies and even images.
In this work, we investigate the role of learning in the automated discovery of
self-similarity and in its utilization for downstream tasks. To this end, we design a
novel class of implicit neural operators, Neural Collages, which (1) represent data
as the parameters of a self-referential, structured transformation, and (2) employ
hypernetworks to amortize the cost of finding these parameters to a single forward
pass. We detail how to leverage the representations produced by Neural Collages
in various tasks, including data compression and generation. Neural Collage
image compressors are orders of magnitude faster than other self–similarity–based
algorithms during encoding and offer compression rates competitive with implicit
methods. Finally, we showcase applications of Neural Collages in fractal art and
as deep generative models.

1 Introduction

Given a specified image, can one come up with a dynamical system with it as its attractor? (Welstead, 1999)

Scientific fields are underpinned by a search for structure. Geometry, sparsity and invariances, when
appropriately introduced in a mechanistic model, allow us to concisely describe phenomena. To this
end, machine learning has been introduced as a means to fix partial priors in a model, and discover
the rest through data (Rackauckas et al., 2020; Dao et al., 2020; Bronstein et al., 2021). In general,
the notion of structure is also essential for compression: through a suitable choice of language, one
can explain phenomena in fewer symbols, yielding shorter representations of the observables (Tishby
et al., 2000; Lee et al., 2007). Objects exhibiting self-similarity structure are composed of patterns
that appear similar to themselves at multiple scales, as shown in Figure 1. This type of structure
frequently appears in nature, at different degrees: shorelines, molecules, plants, turbulent flows and
basins of attraction of dynamical systems all display elements of self-similarity (Mandelbrot and
Mandelbrot, 1982; Song et al., 2005; Vulpiani et al., 2009; Barnsley, 2014). In this work, we explore
the role of learning in the automatic discovery of self-similarity structure in data, and how it can serve
as an inductive bias in machine learning models.

The mathematical embodiment of this idea is found in fractal patterns, which often arise by charac-
terizing limit sets of nonlinear maps e.g. iterations of complex numbers for Julia and Mandelbrot
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sets (Julia, 1918; Mandelbrot, 1980). Fractals are scale-invariant: they can be "zoomed in" by
increasing the resolution of the limit sets, and manifest arbitrarily similar patterns at different scales.
Despite their apparent infinite complexity, a fractal can be uniquely and compactly described by its
generating nonlinear map.

Figure 1: [Top] MNIST digit fractalized via a Collage.
The image is represented as the coefficients of a Collage,
and decoded as its attractor. Magnification is done by
decoding at higher resolutions. [Bottom] The Mandelbrot
set (Mandelbrot, 1980), an example of a fractal displaying
self-similarity.

A method to discover self-similar structure in
data (not necessarily of fractal nature) can then
be formalized as an optimization problem: after
choosing an appropriate class of contractive, pa-
rameterized maps, one searches for parameters
such that a given data point can be (approxi-
mately) recovered as the (unique) fixed-point
of the chosen map. This approach, pioneered
in (Barnsley et al., 1986), paved the way for
one of the most successful algorithmic appli-
cations of self-similarity, fractal image com-
pression (Jacquin et al., 1992; Jacquin, 1993;
Barnsley et al., 1996; Welstead, 1999; Fisher,
2012). First, an encoding step carries out a
search to solve the inverse problem of data to
operator parameters via extensive search, or
by restricting the class of operators such that a
closed-form solution may be found. Then, given the parameters, the decoding step solves for the
fixed-point of the operator, corresponding to a corrupted version of the original data. The quality of
decoded images i.e. the loss of the fractal compression method is directly tied with the expressivity
of the class of operators considered, which are often designed to seek self-similarities in pixel space.
Yet, larger classes induce more challenging optimization problems, leading to long encoding times.

Here, we propose a novel learning-based technique to extract and utilize self-similar representations
of data. We develop Neural Collages, a family of differentiable, parametrized operators structured
to capture self-similarity between partitions of data. The inverse problem of Neural Collages is
solved with a single forward pass of a hypernetwork (Ha et al., 2016) trained to generate a set of
parameters as the fractal code. This amortized approach is orders of magnitude faster than traditional
search based methods. Collage operators are composable with neural network architectures and
have wide applicability beyond compression, as they can be optimized end-to-end for a variety of
tasks including generative modeling.

In data compression, Neural Collages preserve advantages of fractal compression methods, with up
to 10× (accounting for training time) and 100× (at test time) speedups during encoding. Further,
we investigate deep generative models based on Neural Collages, where Collage parameters
assume the role of latent variables of a hierarchical variational autoencoder (VAE) (Kingma and
Welling, 2013). Collage VAEs can sample at resolutions unseen during training by decoding at
higher resolutions through their Collage operator, revealing additional detail over upsampling via
interpolation. Finally, we showcase applications for fractal art, where an image can be "fractalized"
i.e. reconstructed as a collage of smaller copies of itself at different scales (see Figure 1, top).

2 Problem Setting

We start with an example related to a core idea behind fractal compression and Neural Collages:
representing data as the parameters of a function that converges to it.

2.1 Representing Data as a Fixed-Point of an Iterated Function

Consider a value x that happens to be of interest for a downstream task, for example regression.
Rather than performing computation on it directly, we can use the parameters ω of a contractive
map with x as its fixed-point, for example a simple affine function with parameters ω := (a, b),
a ∈ R, b ∈ R:

xk+1 = axk + b, |a| < 1

2



Given ω, the value x can be recovered by repeatedly applying the map starting from any other initial
condition, that is

x∗ : x∗ = ax∗ + b.

Parameters ω can then replace x as an alternative representation, using two values (a, b) instead of x.

Other classes of functions, if chosen appropriately, can represent data with less parameters than
its dimensionality. In general, encoding through a function is a lossy process: the original data is
recovered up to a degree of accuracy. The insight behind fractal compression and Neural Collages
is to view data as sets, and define iterated functions as ensembles of simple scalar linear functions
acting on different subsets. Below, we introduce background required to make these notions precise.

2.2 Fractal Compression Background

We proceed by formalizing fractal data encoding as an optimization problem (Barnsley and Demko,
1985; Fisher, 2012; Barnsley, 2014).

Let (X, d) be a complete metric space and (H(X), dH) its corresponding Haussdorff metric space,
i.e. H(X) = {A ⊂ X : A is compact}. We represent a data point as a set S ∈ H(X). This choice of
space supports an data modality-agnostic treatment of fractal data encoding. A concrete realization
is discussed for image domains in Section 3. Results on metric spaces are provided as reference in
Appendix A.
Example 1. Consider binary images on a square domain. Then, X is a finite compact subset of
R2. An image S is the finite set of coordinates of either black or white pixels. Further, each image
corresponds to a point in H(X).

Let {f1, f2, . . . , fK} be a collection of maps on X, fk : X → X. This is colloquially referred to as
iterated function system (IFS) (Barnsley, 2014). We can then define a map F : H(X) → H(X) by

F (A) =
⋃K

k=1 fk(A) ∀A ∈ H(X)
where fk(A) is intended as fk(A) = {fk(a) : a ∈ A}. An interpretation is the following: F produces
as output a composition, or collage, of transformations applied to a subset A of X.

2.3 The Inverse Problem: Data to IFS

Given data S, can we find a map F with S as its fixed point? This can be achieved by identifying a
collection of maps fk : X → X such that the following conditions hold

i. F : H(X) → H(X);A 7→
⋃K

k=1 fk(A) is contractive;

ii. S is the fixed point of F , S = F (S) =
⋃K

k=1 fk(S);
Note that, F is contractive w.r.t the Hausdorff metric with Lipsichitz constant L < 1 iff all the maps
fk are contractive w.r.t d with constant ℓk < 1. In such a case it holds L = maxk{ℓk} and F admits
a unique fixed point. A classical result provides an indirect method to find such F .
Theorem 1 (Collage Theorem (CT) (Barnsley and Demko, 1985)). Let (X, d) be a complete metric
space and let f : X → X be a ℓ-Lipschitz contractive map with fixed point x∗ ∈ X. Then,

d(x, x∗) ≤ 1

1− ℓ
d(x, f(x)) (2.1)

By applying the CT directly to F using the Hausdorff metric dH, we have dH(S,A∗) ≤
1

1−LdH

(
S,
⋃K

k=1 fk(S)
)
. This means that we can upper bound the distance dH(S,A∗) between

data S and attractor A∗ of F via d(S, F (S)), which requires a single application of F and is thus
cheaper to evaluate. Even if it is not possible to stitch together transformed copies fk(S) to perfectly
reconstruct the data S, i.e. dH

(
S,
⋃K

k=1 fk(S)
)

̸= 0 (⇔ S ̸= F (S)), a smaller IFS Lipschitz
constant L of the IFS implies a lower distance between the data S and the attractor A∗ of F , given
a mismatch dH(S, F (S)). This, in turn, implicitly promotes the use of “very contractive” maps fk
(i.e. with low ℓk). We refer to the procedure of searching for an F that minimizes the r.h.s of the CT
bound as the fractal data encoding problem.
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A learning perspective of fractal data encoding Fractal data encoding problem can be translated
into finding a parametric representation fk( · ;wk),w ∈ Rnw for functions fk(·) (e.g. neural networks
with parameters wk) where w = (w1, . . . , wK) ∈ W are optimized to minimize a Hausdorff metric
loss function dH(S, F (S;w)) naturally induced by the CT,

min
w∈W

dH(S,
⋃K

k=1 fk(S;wk)) (2.2)

To decode the data encoded in parameters w of F encodes in one samples any initial condition A0,
and iterates At+1 = F (At) until convergence to A∗ ≈ S.

IFS, PIFS and Beyond Partitioned iterated function systems (PIFS) (Jacquin et al., 1992) are
a generalization of IFSs that can capture localized self-similarity by allowing each domain of a
contraction map fk to be a different subset Ak ⊂ S. his introduces a significant challenge in 2.2: the
optimization problem need now determine optimal (as measured by dH) domains Ak for each fk by
searching across all possible subsets of S, yielding an exploding combinatorial problem.

Solving for affine IFS As with traditional approximation problems, there is a tension in the
objective of fractal data encoding between the "expressiveness" of the class of functions, and the
tractability of the optimization problem. The solution w of (2.2) is an equivalent representation for S
(up to dH(S,A∗)).

Existing methods based on the idea of (Barnsley and Demko, 1985) resolve this tension by considering
(a) compression as a task, such that w should be encodeable in the least number of bits possible
and (b) affine functions fk(x;wk) = akx + bk. With these choices, a solution to (2.2) can be
found in closed-form (Fisher, 2012), and the parametrization w results compact enough to be a valid
compression code - only two floats for each fk in F , i.e. wk = (ak, bk) ∈ R2.

There are a number of limitations we aim to address:

• Fractal data encoding is only considered as an intermediate step towards compression. We develop
a learning-based approach to the solution of (2.2) for tasks beyond compression.

• Solving (2.2) on a collection of data as per (Fisher, 2012) is computationally expensive. We directly
solve a collection of fractal data encoding problems in parallel via hypernetworks (Ha et al., 2016),
effectively amortizing the cost.

• As noted by (Welstead, 1999; Fisher, 2012), for an (affine) IFS to provide a satisfactory solution to
(2.2), the self-similarity property has to be global across the set S. That is, the entire set S is made
up of smaller copies of itself, or a part of itself, property that is rather rare in natural data: indeed,
most images are only self-similar to a degree. To alleviate these restrictions, we develop Collage
operators, a generalization of IFSs which can be broadly categorized as a soft-partitioned iterated
function system (PIFS) (Jacquin et al., 1992).

3 Neural Collages

Moving forward, we treat Neural Collages algebraically. This allows us to discuss in detail the
properties of a Neural Collage, including algorithmic differences with other iterated function
systems. To do so we consider, instead of generic sets, data that can be expressed as simple ordered
sets: in other words, as vectors. Images will be our recurring example, with the understanding that
the entire discussion can readily be adapted to other modalities e.g. sequences.

From generic sets to vectors Following the PIFS treatment of Øien and Lepsøy (1995), we focus
our analysis on Collage composed of affine maps, operating on the space of discrete images of a
given resolution with a total number m of pixels each taking values in R. Pixels of different channels
are treated without loss of generality as different elements. This allows us to collect all m pixel
values in an ordered2 vector z ∈ Rm.

A type of subsets on images involves the formation of square patches. Let us assume that each image
is partitioned into (1) K non-overlapping range cells and (2) N possibly-overlapping domain cells.

2with a specific predefined criterion, e.g. row-major ordering.

4



A range cell Rk is then of size nr,k × nr,k, such that m =
∑K

k=1 n
2
r,k, and domain cells Dn are of

size nd,n × nd,n. With such coordinatization, the (affine) fixed-point map F reduces to a structured
affine contraction on Rm.

Definition 1 (Neural Collage Operator). Consider a m-pixel image represented by the ordered
vector z ∈ Rm. Then, a Collage Operator is defined as the parametric linear map:

F (z;w) =
∑
k,n

γk,nak,nTkPk,nSnz +
∑
k,n

γk,nbk,nTk1 (3.1)

• Sn ∈ Rn2
d,n×m selects a domain cell Dn of nd,n × nd,n pixels.

• Pk,n ∈ Rn2
r,k×n2

d,n is a pooling operator that shrinks the domain cell Dk into the size of the
corresponding range cell Rk, i.e. from nd,n × nd,n to nr,k × nr,k pixels;

• Tk ∈ Rm×n2
r,k positions the pooled domain cell in the correct range cell location and zeroes out

the rest;

• ak,n, bk,n ∈ R scales and translates the value in each pixel of the pooled domain cell, respectively.

• γk,n ∈ R; convex combination of affine outputs produced from all N domains.

The parameters w is the collection of all ak,n, bk,n and the mixing weights γk,n.

Collage operators represent each range cell Rk as a convex combination of pooled and scaled
versions of all domain cells Dn translated block-wise by bn. On individual range cells comprising the
output, a symbolic representation can be given as

Rk =
∑
n

γk,nak,nDn +
∑
n

γk,nbk,n. (3.2)

In the generic set formulation, these maps correspond to functions fk of F . Differently from a PIFS,
each fk does not act on a different subset (domain cell) to produce Rk. Instead, all fk aggregate affine
transformations – parametrized by ak,n, bk,n – on domains via γk,n. However, each fk is equipped
with different mixing weights and different affine maps. Hence, a Collage in this form can be seen
as a soft-PIFS.

Introducing auxiliary domains A Collage step maps mixtures of all domains to each range, and
assembles the ranges into its output. As Neural Collages are often optimized on datasets, rather
than single data points, we posit that improvements in the expressiveness can be readily achieved by
mixing additional dataset-level information through auxiliary domains Uv .

Definition 2 (Collage operator with auxiliary domains).

R̂k = Rk +

V∑
v=1

γk,vak,vUv

In coordinates this translates to

F̂ (z, u;w) = Fw(z;w) +

K∑
k=1

V∑
v=1

γk,vak,vTkPk,vSvu

where Fw(z) is (3.1) and Rk is (3.2), and the parameters w include the coefficients γk,v, ak,v of the
auxiliary domains Uv , as well as γk,n, ak,n, bk,n.

We consider different variants of Uv, including: deterministic transformations of domain cells Dn

e.g. rotations as per (Jacquin et al., 1992), learned cells directly parametrized and optimized for
an objective, similar to feature maps in (Jaegle et al., 2021), and Uv produced by a neural network
encoder. Specifics are provided in Section 4. A schematic of a single step of Collage is given in
Fig. 3.
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3.1 The Forward Problem: Collage to Data

Given a parametrization w for the Collage operator Fw and an initial image z0, the attractor
z∗ : z∗ = Fw(z

∗) can be recovered by iterating the fixed-point map

zt+1 = F (z;w) = A(w)zt + b(w)

assuming F to be a contraction w.r.t. the standard Euclidean metric on Rm. This can be ensured by
an appropriate choice of the coefficients ak,n, γk,n. In particular, if all the mixing weights are such
that

∑N
n=1 γk,n = 1 and |ak,n| < 1, then contractivity of the collage operator follows as in standard

PIFS (see e.g. Fisher (2012)).

Note that the attractor of a Collage can be also computed in closed-form as z∗ = [I−A(w)]−1b(w).
A similar discussion follows for a general Collage with auxiliary domains. Note that auxiliary
domains U across iterations t are to be chosen such that the sequence {Ut}∞t=0 converges e.g. constant
functions.

Pseudocode for a single step of a Collage is shown below. Figure 2 provides a visualization of the
convergence of a Collage to its fixed-point (after repeated application of the operator).

def collage_operator(self, z, collage_weight, collage_bias):
"""Collage Operator (decoding). Performs the steps described in Def. 3.1, Figure 2."""
# Split the current iterate `z` into source patches according to the partitioning scheme.
domains = img_to_patches(z)
# Pool domains (pre augmentation) to range patch sizes.
pooled_domains = pool(domains)
# If needed, produce additional candidate source patches as augmentations of existing
# domains, or concatenate auxiliary patches parametrized and optimized directly.
if self.n_aug_transforms > 1:

pooled_domains = self.generate_candidates(pooled_domains)
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.num_ranges)
# Apply the affine maps to source patches
range_domains = einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, collage_weight)
range_domains = range_domains + collage_bias[..., None, None]
# Reconstruct data by composing the output patches back together.
z = patches_to_img(range_domains)
return z

Decoding at higher resolutions A Collage can be applied, without change, to images of different
resolutions. Consider scaling the resolution by a factor s > 1, (s ∈ N). Then the magnified image
representation is made up of s2 images zi ∈ Rm. The Collage operator can then be thought to act
singularly on each zi obtaining a forward fixed-point iteration

zit+1 =
∑
k,n

γik,na
i
k,nTkPk,nSnz

i
t +

∑
k,n

γik,nb
i
k,nTk1.

When solving by unrolling the fixed-point iteration, the second term can be precomputed as it does
not depend on zt.

3.2 Amortized Solution of the Inverse Problem

Source

1
Iterations
2 30

Figure 2: Collage forward problem: given w,
different initial conditions decoded to the same z∗.

Although the CT suggests a constructive pro-
cedure via (2.2) to find a valid fractal represen-
tation w, there are no guidelines in case other
objectives are of interest. Further, the class of
PIFS – without modifications – does not lend it-
self well to numerical optimization as it involves
the combinatorial problem of matching domains
to ranges. With their soft aggregation, Neural
Collages can instead be used for task-based
optimization. Given an input image x ∈ Rm,
we can optimize the parameters w (and pixel values u of the auxiliary domains) of the Neu-
ral Collage operator to minimize an objective Jω(x, z∗(w, u)) by solving a nonlinear program
minw,u Jw(x, z

∗(w, u)) with z∗(w, u) obtained by the fixed point iteration on F̂ (z, u;w). Choosing
Jw to be a reconstruction objective yields a problem similar to fractal data encoding (2.2).
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Suppose instead to be given an image dataset whose distribution p is known only through i.i.d.
samples x ∈ Rm, x ∼ p(x). In this context, the fractal data encoding problem in standard form
needs to be solved for each sample x. Instead, we introduce an hypernetwork (Ha et al., 2016) E with
weights θ, generating a fractal code w given an input image x, i.e. parametrizing a map x 7→ wθ(x),

∀x ∼ p(x) wθ(x) = E(x; θ)

The hypernetwork is trained to solve the following empirical risk minimization problem, effectively
amortizing the cost over the full dataset:

min
θ,u

Ex∼p(x) [J(x, z
∗(θ, u))]

subject to wθ(x) = E(x; θ)
z∗(θ, u) = F̂ (z∗(θ, u), u;wθ(x))

u ∈ U.

(3.3)

4 Collages in Learning Tasks

x encoder w

decoder

Collage

z∗

u

Figure 3: Schematic of a Neural Collage. In
yellow, computation unique to the compres-
sor variant; x is deterministically encoded into
Collage parameters w, then used to decode.
Similarly, blue indicates computation done by
the fractalizer, and red by the generative variant,
where w takes the role of a latent variable.

We showcase applications of Neural Collages
as decoders for deep generative models, as neural
compressors for images and as a method to gen-
erate fractal art. All variants of the model share
a common structure, outlined in Figure 3. The
code is available at github.com/ermongroup/
self-similarity-prior.

4.1 Generative Neural Collages

We investigate application of Neural Collages as
deep generative models for distributions p(x) of
images. In this context, w assume the role of latent
variables. In particular, we consider a hierarchical
variational autoencoder (VDVAE) (Kingma and Welling, 2013; Child, 2020) model based on Neural
Collages.

Magnifying samples via Collage VAEs VAE models seek to data x into a latent representation w
such that the following lower bound (ELBO) on data log-likelihood be maximized

Eqϕ [log pθ(x|w)︸ ︷︷ ︸
−distortion

]−DKL[qϕ(w|x)||pϕ(w)]︸ ︷︷ ︸
rate

≤ log p(x; θ, ϕ)

where approximate posterior qϕ(w|x), prior pϕ(w), and generator pθ(x|w) are implemented as neural
networks. A multiplicative hyperparameter β is often introduce to control the relative weight between

VDVAE

Collage
VAE

Resolution: (28× 28) Resolution: (1120× 1120)

Direct Sample Sample + interp.

1

0.05 0.10 0.15 0.20 0.25 0.30

0.02

0.04

0.06

0.08

0.10

Rate

D
is
to
rt
io
n

Rate–Distortion Curve

VDVAE
Collage VAE

0.0

0.1

0.2

0.3

0.4
β ∈ [0.5, 0.7, 1.0, 1.2, 1.5]

Figure 4: [Left] Samples obtained from VDVAEs and Collage VAEs on dynamically binarized
MNIST. Collage VAEs can generate samples at resolutions unseen during training, adding detail
that cannot be obtained by (1) sampling first (2) upscaling via bicubic interpolation, as done in the
first row. [Right] Rate-distortion curve on dynamically binarized MNIST, with a curve obtained by
sweeping β in a range. Collage VAEs are less sensitive to the tuning of β, and pay a marginal price
in Pareto suboptimality to gain the ability to sample at different resolutions.
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rate and distortion (Higgins et al., 2016). In a Collage VAE, qϕ(w|x) and pϕ(w) are parameterized
as per (Child, 2020), except the approximate posterior qϕ(w|x) need not produce large feature
maps but scalar Collage codes w. Moreover, pθ(x|w) is a Collage such that by leveraging the
consideration of Section 3.1, samples can be decoded at any resolution.

Results To investigate the properties of Collage VAEs, including quality of magnified samples,
we compare VDVAEs and Collage VAEs on dynamically binarized MNIST. We report both test
rate and distortion, following the analysis of (Alemi et al., 2018). This supports a more detailed
evaluation of model behavior at different β weights for the rate. We train several Collage VAEs and
VDVAEs with β ranging in [0.5, 0.7, 1.0, 1.2, 1.5], and report the rate-distortion curve in Figure 4
(right). Collage VAEs are only marginally Pareto suboptimal, but are shown to be less sensitive
to training under different β, which is a common strategy employed to stabilize VAE training ("KL
warmup"). Furthermore, Collage VAEs can generate samples at resolution unseen during training,
as showcased in Figure 4 (left). Direct samples at a magnification factor of 40× reveal additional
details over VDVAE samples that are magnified via bicubic interpolation. We note that as discussed
in Section 5.1, the detail introduced by magnification is entirely dependent on the Collage class;
future designs may be developed to introduce types of detail expected in a given dataset.

4.2 Neural Collage Compressors

Method ↑ PSNR | bpp ↓
Fractal (no aug.) 31.06 | 0.14 31.68 | 0.36

Fractal (augment.) 30.51 | 0.15 30.80 | 0.39
COIN 25.74 | 0.17 27.34 | 0.33

Neural Collage (ours) 31.30 | 0.13 32.12 | 0.31
block-DCT 33.22 | 0.13 34.65 | 0.32

Table 1: Average peak signal-to-noise ratio (PSNR) at low
(≈ 0.15) and medium (≈ 0.30) bits-per-pixel (bpp) budgets
of baselines (baseline fractal, implicit, spectral) and Neural
Collages compressors. Neural Collages introduces less visi-
ble artifacts than other self-similarity or implicit compression
schemes, narrowing the gap with spectral compression methods
such as JPEG.

Next, we apply Neural Collage
to image compression. We store
images as the parameters w of an
affine Collage produced by a neu-
ral encoder. After training, the en-
coder can be used to compress ad-
ditional images in parallel with a
single forward pass by producing
the corresponding w. Figure 3 pro-
vides an overview of the compu-
tation done by a Neural Collage
compressor. Collage compres-
sors employ learned feature maps
as auxiliary domains.

For compression, the main desider-
atum is visual fidelity: regular do-
mains Dn allow Neural Collages
to capture intra-image self-similarity, whereas auxiliary domains U optimized for image quality
complement them by focusing on inter-image patterns.

Compression of high-resolution aerial images We consider compressing images obtained from the
DOTA large-scale aerial images dataset (Xia et al., 2018). From the DOTA training set, we produce

Figure 5: Visual comparison of decoded images from 1200 × 1200 crops of the DOTA dataset,
obtained from different compression methods (≈ 0.30) bpp. Images decoded from Neural Collage
codes exhibit less noticeable artifacts, with improved color preservation over COIN and more detail
than fractal compression.
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80000 random 40×40 crops as our training dataset. We optimize convolutional encoder parameters θ
and auxiliary sources on the reconstruction objective J(x, z∗(θ, u)) =

∑m
i=1(xi−z∗i (θ, u))2+∥w∥22

The model is trained on the 40× 40 crops and evaluated on 10 held-out 1200× 1200 images. This
is possible as an image of any resolution can be first broken up into blocks of appropriate size, in
this case the training resolution, 40 × 40, passed through the encoder to obtain the corresponding
parameters, then concatenated to construct a valid code for the entire image. This operation can
be performed in parallel by treating each block as an element of a pseudo-batch. Neural Collage
compressor can thus be used to compress images of any resolution at test time, without retraining.

Results We compare peak signal-to-noise ratio (PSNR), in addition encoding and decoding mea-
surements for a variety of compression baselines. We contextualize our results with comparisons to
both non-neural as well as another implicit neural compressor. In particular, we evaluate the perfor-
mance of a standard PIFS-based fractal compression as per (Jacquin, 1993), implemented to exploit
parallelization on GPU, and COIN (Dupont et al., 2021). Fractal compression baselines and Collage
both use non-adaptive tiling partitioning schemes. We evaluate two variants of fractal compression,
one where domain cells are augmented via rotations and color flips (Welstead, 1999), and one without
augmentations. We further compare with block-DCT, the spectral lossy compression backbone of
most JPEG codecs. All compression methods are evaluated at low and medium bpps, with metrics
provided in Table 1. Figure 5 provides a visual comparison of images obtained by decoding the lossy
code of each method. Neural Collages show less noticeable artifacts and improved color retention.
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104
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Figure 6: Wall-clock time (s) measurements of
compression methods applied to the held-out set of
DOTA. For neural compressors, we report encod-
ing times including training, as well as encoding
times on unseen images (after training). At test
time, encoding for Neural Collage compressors
is 100× faster than fractal compression.

Finally, Table 1 provides wall-clock time mea-
surements of all methods during the respective
per image encoding and decoding procedures.
Results for COIN and Neural Collage measure
encoding times (including the training proce-
dure), and encoding times after training. Neural
Collages are orders of magnitude faster than
fractal compression and, at test-time, of COIN.
Although spectral lossy compressors common in
state-of-the-art codecs perform with best PSNR
in medium and high bpp settings, Collages nar-
rows the gap in terms of reconstruction quality
as well as encoding speed.

Code length of a Collage The total bits-per-
pixel (bpp) cost of the code w corresponding
to the parameters of a Collage depends on the
coding scheme used to store each numeric entry.
We exploit bounds on a, b, γ, enforced via tanh and softmax, as well as regularization to reduce the
total cost. The L2 regularization term on w is introduced to shrink the range of values assumed by
elements of w, ensuring that less bits can be used for storage. We do not use lossless coding schemes
to store parameters of Collages and other baselines. Further details are provided in the Appendix.

4.3 Neural Collages for Fractal Art

When data is represented through the parameters w of a Collage, it can be arbitrarily magnified
by decoding at any resolution. The type of patterns revealed through magnification need not be
corresponding to real detail missing from the image. In particular, the patterns found depend on how
one generates domains, auxiliary domains and class of operator Fw. Similar phenomena have been
observed in the literature of fractal compression (Mitra et al., 2000). As an example, consider Figure
7, where the fractal pattern of snowflakes within snowflakes does not correspond to reality. We call
this type of globally self-referential magnification as fractalization of an image. Here, we use Neural
Collage fractalizers to generate fractal art.

Experimental details We solve the inverse problem of a Collage, namely image x to w, via
a convolutional architecture parametrized by θ. The objective of the inverse problem (3.3) is a
reconstruction objective J(x, z∗(θ, u)) =

∑m
i=1(xi − z∗i (θ, u))

2 where z∗ is the fixed-point of the
Neural Collage with parameters w computed through the encoder w = Eθ(x). We choose the single
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domain D to be the entire image. Before applying Fw, we augment the domain via rotations of itself,
utilizing those as auxiliary domains. Figure 1 and 7 show example fractalizations possible with
Neural Collages, on greyscale and RGB images. The images can be magnified to any resolution
(up to memory limits), revealing multiple fractal levels.

5 Related Work and Conclusion

Figure 7: Fractalization of greyscale and RGB
images via Collage. The images are compressed
as the coefficients of a Collage, and decoded as
its attractor. Note that the above is a showcase of
global fractalization: no partitioning is performed,
and the entire image itself is taken as the source.

Implicit representations and models Repre-
sentation of data implicitly through functions
is extensively used in simulation (Osher et al.,
2004). (Sitzmann et al., 2020; Mildenhall et al.,
2020; Dupont et al., 2021) parametrize the im-
plicit functions via neural networks for use in
downstream tasks such as compression. Implicit
models, on the other hand, solve optimization
problems within their forward pass (Poli et al.,
2020). Neural Collages belong to both classes
of methods: a fixed–point iteration with param-
eters defining data implicitly. In particular, Neu-
ral Collages can be framed as a compactly–
parametrized operator variant of deep equilib-
rium networks (DEQs) (Bai et al., 2019), with
parameters produced by a hypernetwork (Ha
et al., 2016).

Fractal compression The idea of representing images through iterated function systems (IFS) dates
back to (Barnsley and Demko, 1985; Barnsley, 1986). Jacquin et al. (1992) introduces more flexible
fractal compression schemes for images based on partitioned iterated function systems (PIFSs). Since
then, alternative partitioning schemes i.e. adaptive quadtrees have been proposed. We refer to (Fisher,
2012) for an overview of the main variants. Additional references are provided in the Appendix.

Conclusion This work builds a framework for a learning–based approach to automated discovery
of self–similarity. We introduce Neural Collages, implicit models designed to represent and
manipulate data as the parameters of a structured fixed–point iteration, and showcase their application
to compression and deep generative modeling of images. We envisage future use of Neural Collage
with other data modalities with naturally occurring self–similarity, such as audio, sequences, or
turbulent flows.
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