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A Assumptions1

We first make explicit the assumptions on the distribution of weights and biases.2

A1: The conditional distribution of any set of biases bz1 , ..., bzk given all other weights and3

biases has a density ρz1,...,zk(b1, ..., bk) with respect to Lebesgue measure on Rk.4

A2: The joint distribution of all weights has a density with respect to Lebesgue measure on5

R#weights.6

A3: The data manifold M is smooth.7

A4: (Only needed for Theorem 3) the diameter of M defined by dM =8

supx,y∈M distanceM (x, y) is finite.9

A5: (Only needed for Theorem 3) a geodesic ball in manifold M has polynomial volume growth10

of order m.11

B Additional Background on Manifolds12

We provide further background on the theory of manifolds. In this section we first provide the13

background, definition and an interpretation for the scalar curvature of a manifold at a point. Every14

smooth manifold is also equipped with a Riemannian metric tensor (or metric tensor in short). Given15

any two vectors, v and w, in the tangent space of a point x on a manifold M , the metric tensor defines16

a parallel to the dot product in Euclidean spaces. The metric tensor, at a point x, is defined by the17

smooth functions gij : M → R, i, j ∈ {1, ..., k}. Where the matrix defined by18

Gx = [gij(x)] =

g11(x) . . . g1n(x)
...

. . .
...

gn1(x) . . . gnn(x)


is symmetric and invertible. The inner product of u, v ∈ TxM is then defined by ⟨u, v⟩M = uTGxv.19

the inner product is symmetric, non-degenerate, and bilinear, i.e.20

⟨ku, v⟩M =k⟨u, v⟩M = ⟨u, kv⟩M ,

⟨u+ w, v⟩M =⟨u, v⟩M + ⟨w, v⟩M ,

⟨u, v⟩M =⟨v, u⟩M .

As can be seen, these properties also hold for the Euclidean inner product (with Gx = I for all x).21

Let the inverse of G = [gij(x)] be denoted by [gij(x)]. Building on this definition of the metric22
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Figure 1: The geodesic circle on S2 (blue region in (a)) does not have the same area as the flat circle
(b), both of radius ϵ. One can imagine cutting the blue top off the sphere’s surface and trying to
“flatten” it. Such an effort will lead to failure, if the material of the sphere does not ”stretch”, since
the geodesic ball, on S2, cannot be mapped to a circle in R2 in a distance preserving manner. Thus,
the area of the two blue regions in (a) and (b) vary. This deviation in the area spanned by the two
spheres, despite their radii being the same, is proportional to the scalar curvature.

tensor the Ricci curvature tensor is defined as23

Rij =− 1

2

n∑
a,b=1

( ∂2gij
∂xa∂xb

+
∂2gab
∂xi∂xj

− ∂2gib
∂xj∂xa

− ∂2gjb
∂xi∂xa

)
gab

+

n∑
a,b,c,d=1

(1
2

∂gac
∂xi

∂gbd
∂xj

+
∂gic
∂xa

∂gjd
∂xb

− ∂gic
∂xa

∂gjb
∂xd

)
gabgcd

− 1

4

n∑
a,b,c,d=1

(∂gjc
∂xi

+
∂gic
∂xj

− ∂gij
∂xc

)
gabgcd.

For geometric interpretations of the above tensors we refer the reader to the work by Loveridge24

[2004].25

Another quantity, from the theory of manifolds, which we utilise in our proofs and theorems, is scalar26

curvature (or Ricci curvature). The curvature is a measure how much the volume of a geodisic ball27

on the manifold M, e.g. S2, deviates from a d− 1 sphere in the flat space, e.g. R3. The volume on28

the manifold deviates by an amount proportional to the curvature. We illustrate this idea in figure29

1. We refer the reader to works by Gray [1974] and Wan [2016] for further technical details. Since30

our main theorems relate to the volume of linear regions the scalar curvature plays an important role.31

Formally, the scalar curvature of a manifold M at a point x with metric tensor [gij ] and Ricci tensor32

[Rij ] is defined as33

C =

n∑
i,j=1

gijRij .

Another important concept is that of Hausdorff measure. Since the volumes are “distorted” on34

a manifold it requires careful consideration when defining a measure and integrating using it on a35

manifold. The m−dimensional Hausdorff measure, of a set S, is defined as36

Hm(S) := sup
δ>0

inf
{ ∞∑

i=1

(diam Ui)
d|S ⊆ ∪∞

i=1Ui, diam Ui < δ
}
.

Next we introduce the definition of the differential map that is used in Definition 3.1, for the37

determinant of the Jacobian. The differential map of a smooth function H from a manifold M to38
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a manifold S at a point x ∈ M is the smooth map dH : TxM → TxS such that the tangent vector39

corresponding to any smooth curve γ : I → M at x, γ′(0) ∈ TxM , maps to the tangent vector of40

H ◦ γ in TH(x)N . This is the analog of the total derivative of “vanilla calculus”. More intuitively,41

the differential map captures how the function changes along different directions on N as its input42

changes along different directions on M , this also has an analog to how rows of the Jacobian matrix43

are viewed in calculus. In Definition 3.1 we use the specific case where the function H maps from44

manifold M to the Euclidean space Rk and the tangent space of a Euclidean space is the Euclidean45

space itself. Finally, a paralellepiped’s, P in TxM , mapping via the differential map gives us the46

points in Rk that correspond to this set P .47

C Related Work48

There have been various approaches to explain the efficacy of DNNs in approximating arbitrarily49

complex functions. We briefly touch upon two such promising approaches. Broadly, the theory of50

DNNs can be viewed from two lenses: expressive power [Hornik et al., 1989, Bartlett et al., 1998,51

Poole et al., 2016, Raghu et al., 2017, Kawaguchi et al., 2017, Neyshabur et al., 2018, Hanin, 2019]52

and learning dynamics [Saxe et al., 2014, Su et al., 2016, Smith and Le, 2018, Jacot et al., 2018,53

Lee et al., 2019, Arora et al., 2019a,b]. These approaches are not independent of one another but54

complementary. For example, Kawaguchi et al. [2017] argue theoretically how the family of DNNs55

generalize well despite the large capacity of the function class. Neyshabur et al. [2018] provide56

PAC-Bayes generalization bounds which are improved upon by Arora et al. [2018]. Hanin [2019]57

shows that Deep ReLU networks of finite width can approximate any continuous, convex or smooth58

functions on a unit cube. These works look at DNNs from the lens of expressive power. More recently,59

there has been a surge in explaining how various algorithms arrive at these almost accurate function60

approximations by applying different theoretical models of DNNs. Jacot et al. [2018] provide results61

for convergence and generalization of DNNs in the infinite width limit by introducing a the neural62

tangent kernel (NTK). Hanin and Nica [2020] provide finite depth and width corrections for the NTK.63

Another line of work within the learning dynamics literature looks at implicit regularization that64

emerge from the learning algorithm and over-parametrised DNNs [Arora et al., 2019a,b, Du et al.,65

2018, Liang et al., 2019].66

Researchers have begun to incorporate data geometry into the theoretical analyses of DNNs by67

applying the assumption that the data lies on a general manifold. First we note the works looking68

at DNNs from the lens of expressive power combined with the idea of data geometry. Shaham69

et al. [2015] demonstrate that the size of the neural network depends on the curvature of the data70

manifold and the complexity of the function, whilst depending weakly on the input data dimension,71

for their construction of sparsely-connected 4-layer neural networks. Cloninger and Klock [2020]72

show that their construction of deep ReLU nets achieve near optimal approximation rates which73

depend only on the intrinsic dimensionality of the data. Chen et al. [2019] exploit the low dimensional74

structure of data to enhance the function approximation capacity of Deep ReLU networks by means75

of theoretical guarantees. Schmidt-Hieber [2019] shows that sparsely connected deep ReLU networks76

can approximate a Holder function on a low dimensional manifold embedded in a high dimensional77

space. Simultaneously, researchers have incorporated data geometry into the learning dynamics line78

of work [Goldt et al., 2020, Paccolat et al., 2020, Buchanan et al., 2021, Wang et al., 2021]. Buchanan79

et al. [2021] apply the NTK model to study how DNNs can separate two curves, representing the80

data manifolds of two separate classes, on the unit sphere. Goldt et al. [2020] introduce the Hidden81

Manifold Model for structured data sets to capture the dynamics of two-layer neural networks trained82

with stochastic gradient descent. Rahaman et al. [2019] provide empirical results on which data83

manifolds are learned faster. Finally, the work by Novak et al. [2018] comes the closes in studying the84

number of linear regions on the data manifold. They study the change in input output Jacobian, and85

as a consequence the number of linear regions, for DNNs with piece-wise linearities. They provide86

empirical studies by counting the number of linear regions along lines connecting data points as a87

proxy for number of linear regions on the data manifold.88

Our work fits into the study of expressive power of DNNs. The number of linear regions is a89

good proxy for the practical expressive power or approximation capacity of Deep ReLU networks90

[Montúfar et al., 2014]. The results surrounding the density of linear regions make the fewest91

simplifying assumptions both on the data and the architecture of the DNN. The results by Hanin and92

Rolnick [2019] bound the number of linear regions orders of magnitude tighter than previous results93
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by deriving bounds for the average case and not the worst case. Moreover, they demonstrate the94

validity empirically in a setting with very few simplifying assumptions. We introduce the manifold95

hypothesis to this setting in order to obtain tighter bounds for the first time. This introduces a toolbox96

of ideas from differential geometry to analyse the approximation capacity of deep ReLU networks.97

In addition to the theoretical works listed above, there has been significant empirical work that applies98

DNNs to non-Euclidean data [Bronstein et al., 2017, 2021]. Here the data is assumed to be sampled99

from manifolds with certain geometric properties. For example, Ganea et al. [2018] design DNNs100

for data sampled from Hyperbolic spaces of arbitrary dimensionality and modify the forward and101

backward passes accordingly. There have been numerous applications of modified DNNs, namely102

graph convolutional networks, to graph data that incorporate the idea that graphs are discrete samples103

from a smooth manifold [Henaff et al., 2015, Monti et al., 2017, Kipf and Welling, 2017], see the104

survey by Wu et al. [2019] for a comprehensive review. Graph convolutional networks have also been105

applied to point cloud data for applications in graphics [Qi et al., 2017, Wang et al., 2019].106

D Proof Sketch107

In this section we provide an overview of how the three main theorems are proved. Theorem 3.2108

provides an equality for measuring the volume of m − k dimensional boundary regions on the109

manifold. To this effect, we introduce the idea of viewing boundary regions as submanifolds on110

the data manifold instead of hyperplanes (Proposition 6). We then prove an equality between the111

volume of boundary regions and the Jacobian of the neurons over the manifold. We utilise the smooth112

coarea formula that, intuitively, is applied to integrate a function using level sets on a manifold. This113

completes the proof for Theorem 3.2.114

To prove Theorem 3.3 we first prove that the Jacobian of a function on a manifold can be denoted115

using the volume of paralellepiped of vectors in the ambient space subject to a linear transform116

(Proposition 8). Using this result and combining it with Theorem 3.2 we can then give an inequality117

for the density of linear regions. As can be expected this volume depends on the aforementioned118

projection, which in turn is related to the geometry of the manifold.119

Finally, for proving Theorem 3.4 we first provide an inequality over the tubular neighbourhood of the120

boundary region. We then use this result to lower bound the geodesic distance between the boundary121

region and any random point on the manifold. The proof strategy follows that of Hanin and Rolnick122

[2019] but there are major deviations when it comes to accounting for the geometry of the data123

manifold. To the best of our knowledge, we are utilising elements of differential topology that are124

unique to machine learning when it comes to developing a theoretical understanding of DNNs.125

E Proof of Theorem 3.2126

We follow the proof strategy used by Hanin and Rolnick [2019] but deviate from it to account for our127

setting where x ∈ M . Let Sz be the set of values at which the neuron z has a discontinuity in the128

differential of its output (or the neuron switches between the two linear regions of the piece-wise129

linear activation σ),130

Sz := {x ∈ Rnin |z(x)− bz = 0}.
We also have131

O :=
{
x ∈ Rnin |∀j = 1, ..., L ∃ neuron z with l(z) = j s.t. σ′(z(x)− bz) ̸= 0

}
.

Further,132

S̃z := Sz ∩ O.

We state propositions 9 and 10 by Hanin and Rolnick [2019] as we apply them to prove Theorem 3.2,133

relabeling them as needed.134

Proposition E.1. (Proposition 9 by Hanin and Rolnick [2019]) Under assumptions A1 and A2, we135

have, with probability 1,136

BF =
⋃

neurons z

S̃z.
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By extending the notion of Sz to multiple neurons we have137

S̃z1,...,zk :=

k⋂
j=1

S̃zj ,

meaning that the set S̃z1,...,zk is, intuitively, the collection of inputs in Rin where the neurons138

zj , j = 1, ..., k, switch between linear regions for σ and at which the output of F is affected by the139

outputs of these neurons. We refer the reader to section B of the appendix in the work by Hanin140

and Rolnick [2019] for an intuitive explanation of proposition E.1. Before proceeding we provide a141

formal definition and intuition for the set BF,k,142

BF,k = {x|x ∈ BF \ {BF,0 ∪ ... ∪ BF,k−1} = BF,−k and for any ball of radius ϵ > 0,

B(x, ϵ) ∩ BF,−k is subset to a n− k dimensional hyperplane}.

Following the explanation provided by Hanin and Rolnick [2019], BF,k is the nin − k dimensional143

piece of BF . Suppose the boundaries of linear regions for nin = 2 are unions of polygon boundaries,144

as depicted in Figure 2 of the main body of the paper, then BF,1 are all the open line segments of145

these polygons and BF,2 are the end points. Next we state Proposition 10 by Hanin and Rolnick146

[2019].147

Proposition E.2. (Prosposition 10 by Hanin and Rolnick [2019]) Fix k = 1, ..., nin, and k distinct148

neurons z1, ..., zk in F . Then, with probability 1, for every x ∈ BF,k there exists a neighbourhood in149

which BF,k coincides with a nin−k−dimensional hyperplane.150

We now present Proposition E.4, and its proof, which incorporates the additional constraint that151

x ∈ M , which is an m-dimensional manifold in Rnin . To prove the proposition we need the definition152

of tranversal intersection of two manifolds [Guillemin and Pollack, 1974].153

Definition E.3. Two submanifolds, M1 and M2, of S are said to intersect transversally if at every154

point of intersection their tangent spaces, at that point, together generate the tangent space of the155

manifold, S, by means of linear combinations. Formally, for all x ∈ M1 ∩M2156

TxS = TxM1 + TxM2,

if and only if M1 and M2 intersect transversally.157

For example, given a 2D hyperplane, P , and the surface of a 3D sphere, S2, intersect in the ambient158

space R3. We have that this intersection is transverse if and only if P is not tangent to S2. For the159

case where a 2D hyperplane, P̄ , intersects with S2 at a point p but does not intersect tranversally it160

coincides exactly with the tangent plane of S2 at point {p} = S2 ∩ P , i.e. TpS = P . Note that in161

either case the tangent space of the 2D hyperplane P at any point of intersection is the plane itself.162

Proposition E.4. Fix k = 1, ...,m and k distinct neurons z1, ..., zk in F . Then, with probability163

1, for every x ∈ BF,k ∩M there exists a neighbourhood in which BF,k coincides with an m − k164

dimensional submanifold in Rin.165

Proof. From Proposition E.2 we already know that BF,k is a nin − k-dimensional hyperplane in166

some neighbourhood of x, with probability 1, for any x ∈ BF,k ∩M . Let this hyperplane be denoted167

by Pk. This is an n − k dimensional submanifold of Rnin . The tangent space of this hyperplane168

at x is the hyperplane itself. Therefore, from assumptions A1 and A2 we have that the probability169

that this hyperplane intersects the manifold M transversally with probability 1. In other words the170

probability that this plane Pk contains or is contained in TxM is 0. Finally, we have the intersection,171

M ∩Hk, has dimension dim(M) + dim(Hk)− nin [Guillemin and Pollack, 1974], which is equal172

to m− k.173

One implication of Proposition E.4 is that for any k ≤ m the m− (k + 1) dimensional volume of174

BF,k ∩M is 0. In addition to that, Proposition E.4 implies that, with probability 1,175

volm−k(BF,k) =
∑

distinct neurons z1,...,zk

volm−k(S̃z1,...,zk ∩M). (1)

The final step in the proof of Theorem 3.2 is to prove the following result.176
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Proposition E.5. Let z1, ..., zk be distinct neurons in F and k ≤ m. Then for a bounded177

m−Hausdorff measurable manifold M embedded in Rnin ,178

E
[
volm−k

(
S̃z1,...,zk ∩M

)]
=

∫
M

E
[
Yz1,...,zk(x)

]
dx,

where Yz1,...,zk(x) equals179

JM
m,Hk

(x)ρb1,...,bk(z1(x), ..., zk(x)),

times the indicator function of the event that zj , for j = 1, ..., k, is good at x for every j and180

Hk : Rnin → Rk is such that Hk(x) = [z1(x), ..., zk(x)]
T . The expectation is over the distribution181

of weights and biases.182

Proof. Let z1, ..., zk be distinct neurons in F and M be an m−dimensional compact Haudorff183

measurable manifold. We seek to compute the mean of volm−k(S̃z1,...,zk ∩M) over the distribution184

of weights and biases. We can rewrite this expression as185 ∫
Sz1,...,zk

∩M

1zj is good at xdvolm−k(x). (2)

The map Hk is Lipschitz and C1 almost everywhere. We first note the smooth coarea formula186

(theorem 5.3.9 by Krantz and Parks [2008]) in context of our notation. Suppose m ≥ k and187

Hk : Rnin → Rk is C1 and M ⊆ Rnin is an m−dimensional C1 manifold in Rnin , then188 ∫
M

g(x)JM
k,Hk

(x)dvolm(x) =

∫
Rk

∫
M∩H−1

k (y)

g(y)dvolm−k(y)dvolk(x), (3)

for every Hm-measurable function g where JM
k,Hk

is as defined in Definition 3.1.189

We denote preactivations and biases of neurons as z(x) = [z1(x), ..., zk(x)]
T and bz = [bz1 , ..., bzk ]

T .190

From the notation in A1, we have that191

ρbz = ρbz1 ,...,bzk ,

is the joint conditional density of bz1 , ..., bzk given all other weights and biases. The mean of the term192

in equation 2 over the conditional distribution of bz1 , ..., bzk , ρbz , is therefore193 ∫
Rk

bdvolk(b)
∫
{z=b}∩M

1zj is good at xdvolm−k(x), (4)

where we denote [b1, ..., bk]
T as b. Thus applying the smooth co-area formula (Equation 3) to the194

expression in 4 shows that the average 2 is equal to195 ∫
M

Yz1,...,zk(x)dx.

Finally, we take the average over the remaining weights and biases and commute the expectation with196

the dx integral. We can do this since the integrand is non-negative. This gives us the result:197

E
[
volm−k

(
S̃z1,...,zk ∩M

)]
=

∫
M

E
[
Yz1,...,zk(x)

]
dx, (5)

as required.198

Finally, taking the summation over all possible sets of distinct neurons z1, ..., zk and combining199

equation 1 with Proposition E.5 completes the proof for Theorem 3.2.200

F Proof of Theorem 3.3201

To prove the upper bound in Theorem 3.3 we first show that the (determinant of) Jacobian for the202

function Hk : M → Rk, Hk(x) = [z1(x), ..., zk(x)]
T , as defined in 3.1 is equal to the volume of203

the parallelopiped defined by the vectors ϕHk
(∇zj(x)), for j = 1, ..., k, where ϕHk

: Rk → TxM is204

an orthogonal projection onto the orthogonal complement of the kernel of the differential DMHk.205

Intuitively, this shows that with the added assumption x ∈ M in Theorem 3.3 how exactly we can206

incorporate the geometry of the data manifold M into the upper bound provided by Hanin and207

Rolnick [2019] in corollary 7.208
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Proposition F.1. Given Hk : M → Rk such that Hk(x) = [z1(x), ..., zk(x)]
T and the differential209

DMHk is surjective at x then210

JM
k,Hk

(x) =
√
det(Gram(ϕHk

(∇z1(x)), ..., ϕHk
(∇zk(x)))), (6)

where ϕHk
: Rn → Rk is a linear map and Gram denotes the Gramian matrix.211

Proof. We first define the orthogonal complement of the kernel of the differential DMHk. For a212

manifold M ⊂ Rn and a fixed point x we have that TxM is a m−dimensional hyperplane. If we213

choose an orthonormal basis e1, ..., en of Rn such that e1, ..., em spans TxM for a fixed x we can214

denote all vectors in TxM using m coordinates corresponding to this basis. Therefore, for any215

vector y ∈ Rk we can get the orthogonal projection of y onto TxM using a m× n matrix which we216

denote as Px, where Pxy (matrix multiplied by a vector) represents a vector in TxM corresponding217

to the basis e1, ..., em. For any manifold M in Rn and function Hk : M → Rk we have that218

DMHk : TxM → Rk at a fixed point x is linear function. Therefore we can write DMHk(v) = Av219

where v ∈ TxM is denoted using the aforementioned basis of TxM . This implies that A is a k ×m220

matrix. Therefore, the kernel of DMHk for a fixed point x ∈ M is221

ker(DMHk) =
{
z|Az = 0 and z ∈ TxM

}
.

Since we can create a canonical basis for the space ker(DMHk) starting from the basis e1, ..., em in222

Rn using the Gram-Schmidt process given the matrix A we have that for any y ∈ Rn we can project223

it orthogonally onto ker(DMHk). The orthogonal complement of ker(DMHk) is therefore defined224

by225

ker(DMHk)
⊥ =

{
a|a · z = 0 for all z ∈ ker(DMHk) and a ∈ TxM

}
.

Similar to the previous argument, we construct a canonical basis starting from e1, ..., em for226

ker(DMHk)
⊥ and therefore we can denote the orthogonal projection onto ker(DMHk)

⊥ as a227

linear transformation. We denote this linear projection for fixed x using ϕk.228

We denote the basis vectors e1, ...., em as a m × n matrix E where each row i corresponds to the229

vector ei. Therefore, the orthogonal projection of any vector y ∈ Rn is Ey. Now we can get the230

matrix A using E∇zj(x) corresponding to each row j for j = 1, ...,m. This uses the fact that the231

direction of steepest ascent on zj(x) restricted to the tangent space TxM of the manifold M is an232

orthogonal projection of the direction of steepest ascent in Rn.233

Finally, from lemma 5.3.5 by Guillemin and Pollack [1974] we have that234

JM
k,Hk

(x) = Hk(DMHk(P ))/Hk(P ),

for any parallelepiped P contained in (ker(DMHk))
⊥. Arguing similar to the proof of lemma 5.3.5235

by Guillemin and Pollack [1974] we get that236

JM
k,Hk

(x) =
√
det((A)TA) =

√
detGram(E∇z1(x), ..., E∇zk(x)),

thereby showing that ϕHk
(y) = Ey is a linear mapping.237

Although we state Proposition F.1 for neurons zj(x), j = 1, ..., k in the proof, it applies to any238

function that satisfy the conditions laid out in the proposition. Equipped with Proposition F.1 we239

prove Theorem 3.3. When the weights and biases of F are independent obtain an upper bound on240

ρbz1 ,...,bzk (b1, ..., bk) as241

Πk
j=1ρbzj (b1, ..., bk) ≤

(
sup

neurons z
ρbz (b)

)k

= Ck
bias.

Hence,242

Yz1,...,zk ≤ Ck
biasJ

M
k,Hk

.

From Proposition 6 we have that JM
k,Hk

is equal to the k-dimensional volume of the paralellopiped243

spanned by ϕx(∇zj(x)) for j = 1, ..., k. Therefore, we have244

JM
k,Hk

≤ Πk
j=1||E∇zj(x)|| ≤ ||E||kΠk

j=1||∇zj(x)||, (7)
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(a) (b)

Figure 2: We illustrate how vectors project differently on tangent planes of two different manifolds:
circle (a) and tractrix (b). In case of the tractrix the tangents (and the projection of vectors onto them)
are on the inside of the tractrix whereas for the sphere the tangents are always on the outside of the
sphere. Since the projections of vectors onto the tangent space are an essential aspect of our proof we
end up with the term CM , which quantifies the “shrinking” of these vectors upon projection, in the
inequalities for Theorems 3.3 and 3.4.

where ||E|| denotes the matrix norm which is defined as245

||E|| = sup
{
||Ey||

∣∣∣y ∈ Rk, ||y|| = 1
}
.

Note that E does not depend on F (or z1, ..., zk) but only on TxM or more generally the geometry of246

M at any point x. From Theorem 3.2 by Hanin and Nica [2018] we have, for any fixed x,247

E
[
Πk

j=1||∇zj(x)||
]
≤

(
Cgrad

)k

, (8)

where,248

Cgrad = sup
z

sup
x∈Rnin

E[||∇z(x)||2k]1/k ≤ Ce
C

∑d
j=1

1
nj ,

wherein C > 0 depends only on µ and not on the architecture of F and nj is the width of the hidden249

layer j. Let CM be defined as250

CM := sup
{
C| there exists a set, S, of non zero m− k-dimensional Hausdorff measure

such that ||Ex|| ≥ C∀x ∈ S
}

Therefore, combining equations 8, 7 and result from Theorem 3.2 we have251

E[volm−k(BF,k ∩M)]

volm(M)
≤

(
number of neurons

k

)
(2CgradCbiasCM )k,

where the expectation is over the distribution of weights and biases.252

G Proof of Theorem 3.4253

We first prove the following proposition254

Proposition G.1. For a compact m-dimensional submanifold M in Rn, m,n ≥ 1 and m < n let255

S ⊆ Rn be a compact fixed continuous piece-wise linear submanifold with finitely many pieces and256

given any U > 0. Let S0 = ∅ and let Sk be the union of the interiors of all k-dimensional pieces of257

S \ (S0 ∪ ... ∪ Sk−1). Denote by Tϵ the ϵ-tubuluar neighbourhood of any X ⊂ M such that258

Tϵ(X) =
{
y|dM (y,X) < ϵ and y ∈ M

}
,
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where ϵ ∈ (0, U), dM is the geodesic distance between the point y and set X on the manifold M , we259

have260

volm(Tϵ(S)) ≤
d∑

k=n−m

volk(Sk ∩M)ωn−kϵ
n−kCk,κ,U ,

where Ck,κ,U > 0 is a constant that depends on the average scalar curvature κ(Sk∩M)⊥ and U , and261

ωn−k is the volume of the unit ball in Rn−k.262

Proof. Define d to be the maximal dimension of linear pieces in S. Let x ∈ Tϵ(X ∩M). Suppose263

x /∈ Tϵ(X ∩M) for all k = n −m, ..., d − 1. Then the intersection of a geodesic ball of radius ϵ264

around s with S is a ball inside Sd ∩M . Using the convexity of this ball, with respect to the manifold265

M [Robbin et al., 2011], there exists a point y in Sd ∩M such that the geodesic γ : [0, 1] → M with266

γ(0) = y and γ(1) = x is perpendicular to Sd ∩M at y. Formally, TSd∩MM at y is perpendicular267

to ˙γ(0) ∈ TM at y. Let Bϵ(N
∗(Sd ∩ M)) be the union of all the ϵ balls along the fiber of the268

submanifold Sd ∩M . Therefore, we have269

volm(Tϵ(S ∩M) ≤ volm(Bϵ(N
∗(Sd ∩M)) + volm(Tϵ(S≤d−1 ∩M)), (9)

where S≤d−1 := ∪d−1
k=0Sk. We also note that270

volm(Bϵ(N
∗(Sd ∩M)) = volm+d−n(Sd ∩M)voln−d(Bϵ((M ∩ Sd)

⊥)),

where Bϵ((M ∩ Sd)
⊥) is the average volume of an ϵ ball in the submanifold of M orthogonal271

to M ∩ Sd. This volume depends on the average scalar curvature, κ(M∩Sd)⊥ of the submanifold272

(M ∩ Sd)
⊥. As shown by Wan [2016], for a fixed point x ∈ (M ∩ Sd)

⊥273

voln−d(Bϵ(x, (M ∩ Sd)
⊥)) = ωn−dϵ

n−d
(
1−

κ(x)(M∩Sd)⊥

n− d+ 2
ϵ2 +O(ϵ4)

)
,

where ωn−d is the volume of the unit ball of dimension n− d, Bϵ(x, (M ∩Sd)
⊥) is the geodesic ball274

of radius ϵ in the manifold (M ∩ Sd)
⊥ centered at x and κ(M∩Sd)⊥(x) denotes the scalar curvature275

at point x. Gray [1974] provides the second order expansion of the formula above. Given that276

ϵ ∈ (0, U), for all k ∈ {n−m,n−m+ 1, ..., d}, then we have a smallest Ck,κ,U such that277

volk(Bϵ(x, (M ∩ Sk)
⊥)) ≤ Ck,κ,U ϵ

k. (10)

The above inequality follows from assumption A5. Using the above inequalities 9, 10 and repeating278

the argument d− 1− n+m times we get the result of the proposition.279

We also note that Ck,κ,U increases monotonically with U , this also follows from the volume being280

monotonically increasing and positive for ϵ > 0. Finally, we can now prove Theorem 3.4. Let x ∈ M281

be uniformly chosen. Then, for all ϵ ∈ (0, U), using Markov’s inequality and Proposition G.1, we282

have283

E[distanceM (x,Bf ∩M)] ≥ ϵPr(distanceM (x,BF ∩M) > ϵ)

= ϵ(1− Pr(distanceM (x,BF ∩M) <= ϵ))

≥ ϵ(1−
nin∑

k=nin−m

volk(Sk ∩M)ωn−kϵ
nin−kCnin−k,κ,U

)
≥ ϵ(1−

nin∑
k=nin−m

Cnin−k,κ,U (CgradCbiasCM ϵ{#neurons})k
)
.

Note that as we increase U the constants Cn−k,κ,U increase, although not strictly, for all k. To284

find the supremum of the expression on the right hand side, of the last inequality, in ϵ ∈ (0, U) we285

multiply and divide the expression by CgradCbiasCM#neurons to get the polynomial286

pU (ζ) = ζ
(
1−

nin∑
k=nin−m

Cnin−k,κ,Uζ
k
)
,
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Figure 3: We plot the optima for a simplified
polynomial as described in Section G.1. The in-
dividual plots correspond to nin increasing from
nin = 2 to nin = 30 (left to right) with m varying
from 1 to nin − 1 on the x-axis.

Figure 4: We plot the optima for a simplified
polynomial as described in Section G.1. The in-
dividual plots correspond to m increasing from
m = 1 to m = 29 (left to right) with nin varying
from m+ 1 to 30 on the x-axis.

where ζ = ϵCgradCbiasCM#neurons and ζ ∈ (0, U ′) where U ′ = UCgradCbiasCM#neurons. Let287

dM be the diameter of the manifold M , defined by dM = supx,y∈M distanceM (x, y). We assume288

that dM is finite. Taking the supremum over all U ∈ (0, dM ] or U ′ ∈ (0, d′M ], where d′M =289

dMCgradCbiasCM#neurons, gives us the constant CM,κ290

CM,κ = sup
U ′∈(0,d′

M ]

{ sup
ζ∈(0,U ′)

{pU (ζ)}}.

Since dM is finite the constant above exists and is finite. We make a note on the existence of this291

constant CM,κ in the absence of the constraint that the diameter of manifold M is finite. As U292

increases the constants Cnin−k,κ,U also increase and are all positive. The solution for p′U (ζ) =293

0, ζ > 0, which we denote by ζU , is unique and keeps decreasing as U increases. The uniqueness294

of the solution follows from the fact that the coefficients Cnin−k,κ,U are all positive. We also note295

that pU (ζU ) need not be equal to supζ∈(0,U ′){pU (ζ)} because ζU need not lie in (0, U ′). In all296

such cases supζ∈(0,U ′){pU (ζ)} = pU (U
′). Given the polynomial pU (ζ) above if we can assert297

that there exists a CU , and the corresponding CU ′ , such that for all U > CU , and corresponding298

U ′ > CU ′ , we have supζ∈(0,U ′){pU (ζ)} = pU (ζU ) < ∞ and for all 0 < U ≤ CU we have299

supζ∈(0,U ′){pU (ζ)} = pU (U
′) < ∞. Therefore, CM,κ exists and is finite if the previous assertion300

holds, proving this assertion is beyond the scope of our current work and particularly challenging.301

Finally, taking the average over distribution of weights gives us the inequality302

E[distanceM (x,Bf ∩M)] ≥ CM,κ

CgradCbiasCM#neurons
,

where CM,κ is a constant which depends on the average scalar curvature of the manifold M . This303

completes the proof of Theorem 3.4.304

G.1 Variations in Supremum of pU305

We illustrate the dependence of the the constant CM,κ on varying values of nin,m using a simple306

example. We fix the coefficient of the polynomial p(ζ) to be all 1, this not always the case but we do307

so to illustrate the relationship between the optima and the exponents for simplest such polynomial:308

psimplified(ζ) = ζ
(
1−

nin∑
k=nin−m

ζk
)

We plot the supremums of this simplified polcynomial Csimplified = supζ∈(0,1) psimplified(ζ) for each309

nin from the {2, ..., 30} and varying m in Figure 3. Similarly, we vary nin with fixed m and report310
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Figure 5: The test errors for the cases where data is sampled from the tractrix (blue) and the circle
(green). We see that the tractrix converges slower but the magnitude of the errors remains comparable
as training progresses across the two manifolds.

the supremums Csimplified in Figure 4. We notice that for a fixed nin the supremum decreases with m311

and for a fixed m the supremum increases with nin.312

We programatically calculate the supremum being reported by restricting the domain of psimplified313

to (0, 1). We solve for the supremum by using the fminbound method from the scipy package314

[Virtanen et al., 2020]. The function uses Brent’s method [Brent, 1971] to find the supremum.315

H Toy Supervised Learning Problems316

For the two supervised learning tasks with different geometries (tractrix and sphere), we uniformly317

sample 1000 data points from each 1D manifold to come up with samples of (xi, yi) pairs. We then318

add Gaussian noise to y. We train a DNN with 2 hidden layers, with 10 and 16 neurons in each319

layer and a single linear output neuron, for a total of 26 neurons with piece-wise linearity, using the320

PyTorch library. The optimization is performed using the Adam optimizer [Kingma and Ba, 2015]321

with a learning rate of 0.01. We ensure a reasonable fit of the model by reducing the test time mean322

squared error (see Figure 5). We then calculate the exact number of linear regions on the respective323

domains by finding the points where z(x(t)) = bz for every neuron z and x is on the 1D manifold.324

We do this by adding neurons, z, one by one at every layer and using the SLSQP [Kraft, 1988] to325

solve for |z(x(t)) − bz| = 0 in t for tractrix and |z(x(θ)) − bz| = 0 in θ for the circle. Note that326

this methodology can be extended to solve for linear regions of a deep ReLU network for any 1D327

curve x(.) in any dimension. We then split a linear region depending on where this solution lies328

compared to previous layers. For every epoch, we then uniformly randomly sample points from the329

1D manifold, by sampling directly from θ and t, to measure average distance to the nearest linear330

boundaries. The experiment was run on CPUs, from training to counting of number of linear regions.331

The intel cpus had access to 4 GB memory per core. A total of, approximately, 24 cpu hours were332

required for all the experiments in this section. This was run on an on demand cloud instance. All333

implementations are in PyTorch, except for SLQSP for which we used sklearn.334

H.1 Varying nin335

The experimental setup, hyperparameters, network architecture, target function and methods are all336

the same as described for the toy supervised learning problem for the case where the geometry is a337

sphere. The only difference is that the input dimension varies, nin.338

I High Dimensional Dataset339

We utilise the official implementation of pretrained StyleGAN generator to generate curves of images340

that lie on the manifold of face images. Specifically, for each curve we sample a random pair of341
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(a) LR: 0.025, momentum: 0.5, BS: 64 (b) LR: 0.005, momentum: 0.75, BS: 64

(c) LR: 0.01, momentum: 0.75, BS: 128

Figure 6: We report the log density of linear regions for various hyperparameters. Lr refers to the
learning rate and BS is the batch size.

latent vectors: z1, z2 ∈ Rk, this gives us the start and end point of the curve using the generator342

g(z1) and g(z2). We then generate 100 images to approximate a curve connecting the two images on343

the image manifold in a piece-wise manner. We do so by taking 100 points on the line connecting344

z1 and z2 in the latent space that are evenly spaced and generate an image from each one of them.345

Therefore, the ith image is generated as: xi = g(((100− i)× z1+ i× z2)/100), using the StyleGAN346

generator g. We qualitatively verify the images to ensure that they lie on the manifold of images of347

faces. 4 examples of these curves, sampled as above, are illustrated in the video here: https://348

drive.google.com/file/d/1p9B8ATVQGQYoiMh3Q22D-jSaI0USsoNx/view?usp=sharing.349

These two constructions allow us to formulate two curves in the high-dimensional setting. The350

straight line, with two fixed points g(z1) and g(z2), is defined as x(t) = (1− t)g(z1) + tg(z2) with351

t ∈ [0, 1]. The approximated curve on the manifold is defined as x′(t) = (1 − t)g(zi) + tg(zi+1)352

where i = floor(100t). This once again gives us two curves and we solve for the zeros of353

|z(x(t))− bz| = 0 and |z(x′(t))− bz| = 0 for t ∈ [0, 1] using SLQSP as described in Appendix H.354

The neural network, used for classification in our MetFaces experiment, is feed forward with ReLU355

activation. There are two hidden layers with 256 and 64 neurons in the first and second layers356

respectively. We downsample the images to 128× 128× 3. We augment the dataset using random357

horizontal flips of the images. All inputs are normalized. We use a batch size of 32. The neural358

network is trained using SGD. The learning rate is 0.01 and the momentum is 0.5. The total time359

required, for these experiments on MetFaces dataset, was approximately 36 GPU hours on a Titan360

RTX GPU that has 24 GB memory. This was run on an on demand cloud instance. We chose361

hyperparameters by trial and error, targeting a better fit for the training data for the results reported in362

Figure 9 of the main body of the paper.363

We report further results for density of linear regions with varying hyperparameters in Figure 6. We364

also report the training and testing accuracy for the various sets of hyperparameters in Figure 7. Note365

that Figure 7(a) corresponds to the test and train accuracies on MetFaces reported in the main body366

of the paper (Figure 9). Note all of these results are for the same architecture as described above.367
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(a) LR: 0.01, momentum: 0.5, BS: 32 (b) LR: 0.025, momentum: 0.5, BS: 64

(c) LR: 0.005, momentum: 0.75, BS: 64 (d) LR: 0.01, momentum: 0.75, BS: 128

Figure 7: We report the test and train accuracies across 5 random seeds above.

J Code, Data and Licenses368

All the code used for our experiments (except the StyleGAN2 code) is enclosed in the folder369

exp/. The instructions to run all the experiments are enclosed in exp/readme.txt. We plan on370

releasing the code as an open github repository under the MIT License (https://opensource.371

org/licenses/MIT). The files changed on the github repository for the official implementation372

of StyleGAN2 (https://github.com/NVlabs/stylegan2-ada-pytorch) are enclosed in the373

folder stylegan2-ada-pytorch. The instructions to run the experiments are documented in374

stylegan2-ada-pytorch/readme.txt.375

Finally, the images we used to sample linear regions on a curve’s piece-wise approximation on the376

manifold of face images, for the MetFaces experiment, are in the zip file https://drive.google.377

com/file/d/1x5t-sc9NlW5N_ZBXUM0WcfX-toUXa85L/view?usp=sharing.378
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