
A Proofs of Main Upper and Lower Bounds

A.1 Proof of the Lipschitz Upper Bound

Proof of Theorem 4.1. We use the Euclidean-LSH construction of Lemma 4.2 with parameter ✏/L.
In any sub-region of the k-dimensional subspace that has a small diameter, the Lipschitz nature
of the function together with Lemma 4.2 will imply that we can approximate it by just a constant
and incur only ✏ error in `1. In particular, given a point x1 belonging to an LSH bucket, we can
set f̂(x) = f(x1) everywhere in that bucket. For any x2 also mapping to the same bucket, from
Lemma 4.2, we have that kx1 � x2k2  ✏/L. Since f is L-Lipschitz,

|f̂(x2)� f(x2)| = |f(x1)� f(x2)|  Lkx1 � x2k2  ✏. (2)

Next we look at how many samples we need to obtain the guarantee kf̂ � fk1  ✏. A rare scenario
that we have to deal with for the sake of completeness is when there exist buckets of such small
volume that no training data point has mapped to them and consequently we don’t learn any values
in those buckets. At test time, if we encounter this rare scenario of mapping to a bucket with no
value learnt in it, we simply run an approximate nearest neighbor search among the train points.
For our prediction, we use the bucket value associated with the bucket that the approximate nearest
neighbor maps to. To control the error when doing such a procedure, we take enough samples to
approximately form an ✏/�L cover of � for a large enough constant �. The size of an ✏/�L cover of
� is O((2�L

p
d/✏)k). This implies that, via a coupon collector argument, when the input distribution

is uniform over the region �, O(k(2�L
p
d/✏)k log(2�L

p
d/✏)) samples will ensure that with very

high probability, for every test point x there exists a train example xi such that kx� xik2  2✏/�L.
The test error is |f(x)� f̂(xi)|  |f(x)� f(xi)|+ |f(xi)� f̂(xi)| = O(✏). Computing the exact
nearest neighbor is a slow process. Instead we can compute the approximate nearest neighbor using
LSH very quickly. We lose another O(✏) error due to this approximation. Choosing � appropriately
we can make the final error bound exactly ✏. This leads to our stated sample complexity bound.

This implies that kf � f̂k1  ✏. Hence using an Euclidean LSH with O(k) hyperplanes we can
learn an ✏-approximation to f . The time to compute f̂(x) for a new example is the time required to
compute the bucket id where it maps to. Since there are k hyperplanes and our input is d-dimensional,
computing the projections of x on the k hyperplanes takes O(dk) time. Then we need to perform a
division by the width parameter ✏/L. This takes time equal to the number of bits required to represent
L/✏. Hence the total time taken would be O(dk log(L/✏)).

The above theorem uses a lemma about Euclidean LSH, which we prove next.

Proof of Lemma 4.2. Let K = Ck. Let the random hyperplanes chosen by the Euclidean LSH be
a1, . . . , aK . Let the width parameter used by the LSH be ✏LSH . The value of ✏LSH we choose will
be determined later. Since the distribution of entries is spherically symmetric, the projection of the
vectors onto the k-dimensional subspace will also form a Euclidean-LSH model. Henceforth in our
analysis we can assume that all our inputs are projected onto the k-dimensional space � and that we
are performing LSH in a k-dimensional space instead of a d-dimensional one. Let A = [a1, . . . , aK ]>

be the matrix whose columns are the vectors perpendicular to the hyperplanes chosen by the LSH.
Note that A 2 RK⇥k. Then we have, from tail properties of the smallest singular value distribution
of Gaussian random matrices (e.g. see [10, 35]), for a large enough constant c,

Pr[�min(A) � c

p
k] � 9/10. (3)

For two points x1, x2 2 � to map to the same LSH bucket, kA(x1 � x2)k1  ✏LSH . This implies
that kA(x1 � x2)k2  ✏LSH

p
k. Together with (3), this implies that kx1 � x2k2  ✏LSH/c with

probability � 9/10. At the same time, since we x1, x2 2 [�1, 1]d, the maximum distance along
any direction is at most the length of any diagonal, which is 2

p
d. Moreover, along any hyperplane

direction sampled by the LSH, we grid using a width ✏LSH . Since the total number of hyperplanes is

Ck the maximum number of LSH buckets possible is
⇣

2
p
d

✏LSH

⌘O(k)
. We set ✏LSH = c✏. Then, the

diameter of any bucket  ✏LSH/c = ✏. The upper bound on the maximum number of LSH buckets
required to cover the region � also follows.
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A.2 Proof of the Dense Lower Bound

Proof of Theorem 4.3. Assuming B bits per parameter, in our dense layer model we have 2Bw

distinct possible configurations. We lower bound the width w by constructing a class of functions F
defined on a k-dimensional subspace within [�1, 1]d such that three properties simultaneously hold:

1. each f 2 F is L-Lipschitz,

2. the number of functions in F is at least ⌦(2(2
p
dL/C✏)k)

3. for f1 6= f2 2 F , we have kf1 � f2k1 > ✏.

These three properties together will imply that w � 1
B (̇2

p
d/C✏)k as otherwise by there would have

to be two functions f1 6= f2 2 F that are approximated simultaneously by the same dense network,
which is impossible since kf1 � f2k1 > ✏. We construct F as follows. Given the d-dimensional
cube [�1, 1]d, we pick a subset of k diagonals of the cube such that they are linearly independent.
We consider the k-dimensional region defined by the intersection of the subspace generated by
these diagonals and the cube [�1, 1]d. Denote the region we obtain by G. Let e1, . . . , ek form an
orthonormal basis for the subspace G lies in. We grid G into k-dimensional cubes of side length 2✏/L
aligned along its bases {ei}ki=1. For the center of every cube we pick a random assignment from
{+✏,�✏}. Then we interpolate the function everywhere in G such that (i) it satisfies the assigned
values at the centers of the cubes and (ii) its value decreases linearly to 0 with radial distance from
the center. That is, given the set of cube centers V

f(x) =
X

v2V

max(0, f(v)� L sgn(f(v))kx� vk2)

To understand the Lipschitz properties of such an interpolation, note that the slope at any given point
in G is either 0 or L, which bounds the Lipschitz constant by L. The total number of cubes that lie
within G is at least (

p
dL/C✏)k for some constant C and hence F contains a total of (2)(

p
dL/C✏)k

functions. Moreover, given any f1, f2 2 F such that f1 6= f2, there exists a cube center where their
values differ by 2✏ giving us the third desired property as well. Consequently, we get that to attain
✏-uniform error successfully on F we need

2Bw � 2(
p
dL/(C✏))k

,

which implies that w = ⌦((
p
dL)k/(C✏)k).

B LSH Models Can Also Learn Lipschitz Functions on k-Manifolds

A k-dimensional manifold (referred to as a k-manifold) can loosely be thought of as a k-dimensional
surface living in a higher dimensional space. For example the surface of a sphere in 3-dimensions is a
2-dimensional manifold. We consider k-manifolds in Rd that are homeomorphic to a k-dimensional
subspace in Rd. We assume that our k-dimensional manifold Mk is given by a transform f : Rk !
R

k applied on k-dimensional subspace of Rd
Lk. To control the amount of distortion that can occur

when going from Lk to Mk, the Jacobian of f is assumed to have a constant condition number for all
x 2 Lk. We now state our main upper bound for manifolds, showing that LSH models can adapt and
perform well even with non-linear manifolds of a bounded distortion from a linear subspace.
Theorem B.1. For any f : [�1, 1]d ! R that is 1-Lipschitz, and for an input distribution D
that is uniform on a k-manifold in [�1, 1]d, an LSH model can learn f to ✏-uniform error with
O(k

p
dk

k
log(

p
dk/✏)/✏k) samples using a hash table of size O(

p
dk

k
/✏

k) with probability � 0.8.
The total time required for a forward pass on a new test sample is O(dk log(1/✏)).

Proof. The main idea of the proof is to follow similar arguments from Theorem 4.1 on the subspace
Lk and try to bound the amount of distortion the arguments face when mapped to the manifold
Mk. Since we are no longer dealing with a subspace (linear manifold), the argument that an LSH in
d-dimensions can be viewed as an equivalent LSH in k-dimensions does not hold. We use Euclidean-
LSH models with O(d) hyperplanes. Furthermore, we will use multiple LSH models each defined
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using O(d) hyperplanes. The main challenge in the proof is to show that the total number of buckets
used in approximating f do not grow exponentially in d, which is a possibility now as we use O(d)
hyperplanes.

Lemma B.2. For any x 2 Rd, a d-dimensional sphere of radius O(✏/d) centered at x is fully
contained in the bucket where the center of the sphere maps to with probability � 0.9.

Proof. Along any hyperplane direction the gap between parallel hyperplanes is ✏. Since any point
is randomly shifted before being mapped to a bucket we get that with probability 1�O(1/d), x is
more than ⌦(1/d) away from each of the two parallel hyperplanes on either side. So with probability
(1�O(1/d))O(d) = ⌦(1) the entire sphere is contained inside the LSH bucket x maps to.

Lemma B.3. Using O(k log d) Euclidean-LSH functions, we get that every x 2 Lk, there exists a
bucket in at least one of the O(k log d) buckets x gets mapped to such that the entire k-dimensional
sphere of radius O(✏/d) centered at x is contained within the bucket.

Proof. We use a covering number argument. The maximum volume of a k-dimensional subspace
within [�1, 1]d is (2

p
d)k. We cover this entire volume using spheres of radius ✏/d. The total number

of spheres required to do this are O((2d
p
d)k/✏k). We now do a union bound over all the sphere

centers in our cover above. For a single sphere, the probability that it does not go intact into a bucket
in any of the O(k log d) LSH functions is d�⌦(k). By a union bound, we can bound the probability
that there exists a sphere center that does not go into a bucket to be d

�⌦(k). Hence the Lemma
statement holds with exceedingly large probability of 1� d

⌦(k).

Now, we only include buckets with volume at least (⌦(✏/(d
p
k)))k. We can do this procedure using

approximate support estimation algorithms [39]. This takes time and sample complexity S/ logS
where S is the size of the support. With constant probability all points in Lk are mapped to some
such high volume bucket in at least one of the LSH functions. The total number of buckets with
this minimum volume is at most (O((d2

p
k)/✏))k, which is also an upper bound on the sample

complexity and running time of the support estimation procedure. Now, we lift all the above results
when we go to Mk from Lk. Since the Jacobian of the manifold map f has a constant condition
number, its determinant is at most exp(k); so the volume of any region in Lk changes by at most
an exp(±O(k)) multiplicative factor when it goes to Mk. So all volume arguments in the previous
proofs hold with multiplicative factors exp(±O(k)). This concludes our proof.

C Lower Bound for Analytic Functions

Figure 6: On the left we have an example of an analytic function. The function on the right is not
analytic. Both functions have a bounded Lipschitz constant.
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The functions described in the lower bound presented earlier are continuous but not differentiable
everywhere as they are piecewise linear functions. In Theorem C.1 we show that we can make
the lower bound stronger by providing a construction of L-Lipschitz analytic functions (which are
differentiable everywhere). See Figure 6 for an example of analytic vs non-analytic functions.
Theorem C.1. A dense model of width w with a random bottom layer requires

w = ⌦

 
2k

2/2(LC1)k

(
p
k⇡✏)k

!
,

where C1 is a large enough constant, to learn L-Lipschitz analytic functions on [�1, 1]d to `1 error
✏ when the inputs are sampled uniformly over a unknown k-dimensional subspace of Rd \ [�1, 1]d.
Moreover, the number of samples required to learn the above class of functions is

⌦ (w logw) ,

where w = ⌦

✓
2k

2
/2(LC1)

k

(
p
k⇡✏)k

◆
.

Proof of Theorem C.1. We construct a family F of analytic functions that are L-Lipschitz and are
described using the Fourier basis functions. Each f 2 F will be of the form

f(x) =
1X

n1=0

1X

n2=0

· · ·
1X

nk=0

an1n2...nk
exp

�
i⇡n

>
x
�
,

for x 2 [�1, 1]k. We pick a small value of 0 < ✏1 < 1. We assume 1/✏1 is an integer for convenience.
If it is not, we can simply take d1/✏1e instead. For a set of integers (n1, n2, . . . , nk) 2 [1/✏1]k, let
⌘n1n2...nk

2 {±}. We use ⌘n as a shorthand when it is not ambiguous. The family F is defined as
the set of functions f below

f(x) =

1/✏1X

n1,...,nk=0

⌘n✏
↵
1

�
exp(i⇡n>

x) + exp(i⇡n>
x)
�
, (4)

where each ⌘n is chosen to be either ±L/(C
p
k⇡) for a large enough constant C and ↵ will be

determined later. There are (1/✏1)k Fourier bases in each f and the coefficient of each is set to be
±L✏

↵
1 /(C

p
k⇡). Hence we have

|F| = 2((1/✏1)
k)
. (5)

Next we argue that a larger than 0.9 fraction of the functions in F are L-Lipschitz. We have,

rf(x) =

1/✏1X

n1,...,nk=0

⌘n✏
↵
1 i⇡(exp(i⇡n

>
x)� exp(i⇡n>

x))n

=

1/✏1X

n1,...,nk=0

�2⌘n⇡ sin(⇡n>
x)✏↵1n (6)

=) E [rf(x)] = 0, (7)

where the last expectation is over the uniform measure over functions in F . To get a bound on
krf(x)k2 we bound each (rf(x))i with high probability. Each (rf(x))i is a sum of (1/✏1)k inde-
pendent random variables, namely ⌘n. We saw above that E[(rf(x))i] = 0. To bound |(rf(x))i|
with high probability we will use McDiarmid’s inequality. An upper bound on how much the value
of (rf(x))i can change when any one ⌘n flips in value is computed as 4✏(↵�1)

1 L/C
p
k. Then, an

application of McDiarmid’s concentration inequality gives us that,

Pr [|(rf(x))i| > t]  2 exp

 
�t

2
kC

2
✏
(k+2�2↵)
1

16L2

!
,

=) |(rf(x))i| 
L

p
k✏

(k+2�2↵)/2
1

(8)
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with probability � 0.9 for a large enough constant C. This implies that

krf(x)k2  L

✏
(k+2�2↵)/2
1

(9)

with probability � 0.9 for a randomly sampled f 2 F . Now, let ⌘f denote the vector of ⌘n values in
sequence for any f . Using McDiarmid’s (or Hoeffding’s) concentration bound again, we also get that,
with probability � 0.9, the Hamming distance between ⌘f1 and ⌘f2 for two f randomly sampled from
F is at least c(1/✏1)k for a small enough constant c < 1. This implies that for randomly sampled
f1, f2,

f1(x)� f2(x)

=

1/✏1X

n1,...,nk=0

2⌘0n✏
↵
1

�
exp(i⇡n>

x) + exp(i⇡n>
x)
�
, (10)

where ⌘
0
n is non-zero for at least c(1/✏1)k of the terms from the above argument about the Hamming

distance. Parseval’s identity then implies that

1

2k

Z 1

�1
. . .

Z 1

�1
(f1(x)� f2(x))

2
dx1 . . . dxk

� 4L2
✏
2↵
1 c

1

✏k1C
2k⇡2

=) kf1 � f2k1 � 2(k/2+1)
L
p
c✏

(↵�k/2)
1

C
p
k⇡

. (11)

Finally we note that by union bound, at least a 0.8 fraction of the functions in F satisfy both our
Lipschitzness property (9) and (11) simultaneously. Setting ↵ = k/2 + 1 and ✏1 = C

p
k⇡✏

L
p
c2k/2 we get

that to achieve a strictly smaller error than 2✏ in the k.k1 sense, one requires a dense model with a
width of

⌦

 
2k

2/2

✓
LC1p
k⇡✏

◆k
!
.

D Experiment details

D.1 Details of learning random functions

In Section 5, we demonstrated experiments for randomly generated polynomial/hypercube functions.
Here we present the details for the experiment settings.

Random function generation. For the random polynomial functions, we randomly generate coeffi-
cients of the monomials by sampling from a uniform distribution U([�1, 1]) and scale the coefficients
so that their absolute values sum up to 1.0 (this is to ensure the Lipschitz constant of the generated
function is bounded by a constant independent of dimension and degree of the polynomial). For the
random hypercube function, we sample values of the function at each corner independently from a
uniform distribution on �1, 1, and interpolate using the indicator functions.

Train/Test dataset generation. For a given target function f (polynomial or hypercube), we sample
independently from U ([�1, 1]n) (where n is the input dimension) to generate the input features x
and compute target value y = f(x). The train dataset contains 216 (x, y) pairs and the test dataset
contains 214 (x, y) pairs.

Training setting. All the models in Section 5 are trained for 50 epochs using the RMSProp [17]
optimizer with a learning rate of 10�5. For the one dimension example in Section 1, the model is
trained for 200 epochs using the RMSProp optimizer with a learning rate of 5⇥ 10�6.

Random hash sparse model. We discussed the design of DSM and LSH models in Section 2. Here
we present the details of the random hash model, where the sparsity pattern is determined by a random
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hash of the input data (i.e. the same input data would always have the same sparsity pattern). The
following code snippet shows the generation of a random mask that only depends on the input data
using TensorFlow 2.x.

import tensorflow as tf

# seed: a fixed random seed
# inputs: the input tensor
# mask_dim: size of the masked tensor
# num_buckets: a large integer
# k: the dimension after masking

input_dim = inputs.shape[-1]
if input_dim != mask_dim:

proj = tf.random.stateless_normal(
shape=(input_dim, mask_dim),
seed=seed)

inputs = tf.einsum(
’...i,io->...o’, inputs, proj)

hs = tf.strings.to_hash_bucket_fast(
tf.strings.as_string(inputs),
num_buckets=num_buckets)

top_k_hash = tf.expand_dims(
tf.nn.top_k(hs, k).values[..., -1],
axis=-1)

mask = hs >= top_k_hash

D.2 Learning random polynomials under other parameter settings

We present experiment results for learning random polynomial target functions with low intrinsic
dimensions. To be precise, the target polynomial is p(Ax), where p is a polynomial of degree d

with sum of coefficient absolute value < 1, x 2 Rn is a vector, A 2 Rk⇥n is a matrix with random
orthonormal rows, and n > k. Note now the intrinsic dimension of the domain is k, while the inputs
x has higher dimension n. In Figure 7, we compare the mean squared loss for dense models and
DSMs for n = 64, k = 8, and d = 4. We observe similar behavior as Figure 2, where the input
dimension is the same as the intrinsic dimension. This validates our analysis in Section 3.

Figure 7: Scaling behavior of DSM compared with dense models for a random polynomial with
low intrinsic dimensional domain. Similar to Figure 2, DSM outperforms dense models at the same
number of activated units.
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