
A Repository and documentation

The repository for this project can be found at https://github.com/nikihowe/myriad.

The documentation for this project can be found at https://nikihowe.github.io/myriad/
html/myriad.

B Implemented in Myriad

Here we give scores for 17 real-world environments, as well as for a “simple case” environment,
which is a toy setting to be used for initial algorithm testing.

B.1 Environments

Name Brief Description Fixed xT Terminal Cost

Bacteria* Manage bacteria population levels No Yes
Bear Populations* Manage metapopulation of bears No No
Bioreactor* Grow bacteria population No No
Cancer Treatment* Decrease tumour size via chemotherapy No No
Cart-Pole Swing-Up Swing up pendulum by translating pivot Yes No
Epidemic* Control epidemic via vaccination No No
Glucose* Manage blood glucose via insulin injections No No
Harvest* Maximize harvest yield No No
HIV Treatment* Manage HIV via chemotherapy No No
Mould Fungicide* Control mould population via fungicide No No
Mountain Car Drive up valley with limited force Yes No
Pendulum Swing up pendulum by rotating pivot Yes No
Predator Prey* Minimize pest population Yes Yes
Rocket Landing Land a rocket Yes No
Simple Case Use for initial algorithm testing No No
Timber Harvest* Optimize tree harvesting No No
Tumour* Block tumour blood supply No Yes
Van Der Pol Forced Van der Pol oscillator Yes No

Table 1: The environments currently available in the Myriad repository. Environments with an (*) were inspired
by corresponding examples described by Lenhart and Workman (2007). Some environments require that the
system end up in a specific state at the end of an episode. Also, some environments impose a final cost in
addition to the instantaneous cost, calculated based on the system’s final state. For a detailed description and
motivation of each environment, see the documentation linked to in the Myriad repository.

16

https://github.com/nikihowe/myriad
https://nikihowe.github.io/myriad/html/myriad
https://nikihowe.github.io/myriad/html/myriad

B.2 Optimizers and integration methods

Method Name Direct / Indirect Sequential / Parallel Integration Method

Single Shooting Direct Sequential Any
Multiple Shooting Direct Partially Parallel Any
Trapezoidal Collocation Direct Parallel Trapezoidal Rule
Hermite-Simpson Collocation Direct Parallel Simpson’s Rule
Forward-Backward Sweep Indirect Sequential Runge-Kutta 4th Order

Table 2: The trajectory optimization techniques available in the Myriad repository. Direct techniques discretize
the control problem and solve the resulting nonlinear program. Indirect methods first augment the problem with
an adjoint equation, before discretizing and solving.

Integration Method Explicit / Implicit Gradient Evaluations

Euler Explicit 1
Heun Explicit 2
Midpoint Explicit 2
Runge-Kutta 4th Order Explicit 4
Trapezoidal Implicit NA
Simpson Implicit NA

Table 3: The integration methods available in the Myriad repository.

17

C Benchmark scores

We provide tables of benchmark scores for several different algorithms.

C.1 Trajectory optimization on true dynamics

To begin with, in Table 4 we show the scores achieved by a trajectory optimization algorithm on all 17
real-world environments, as well as for the “simple case” environment. The cost is the integrated cost
over the time horizon of the problem, plus any terminal cost. The defect is the difference between
the final state and the desired final state of the system. To reproduce these results, choose a system
in config.py and uncomment run_trajectory_opt in run.py. Note that for this setting, no
training occurs: we simply run trajectory optimization on the true dynamics model.

System Parameters Cost Defect

Bacteria A: 1, B: 1, C: 1 �7.98 NA
Bear Populations r: 0.1, K: 0.75, mf : 0.5, mp: 0.5 12.28 NA
Bioreactor G: 1, D: 1 �1.39 NA
Cancer Treatment �: 0.45, r: 0.3 20.57 NA

Cart-Pole Swing-Up g: 9.81, m1: 1, m2: 0.3, `: 0.5 87.78 [0 0 0 0]
>

Epidemic see repository 13.40 NA
Glucose a: 1, b: 1, c: 1 1354.02 NA
Harvest A: 5, k: 10, m: 0.2, M : 1 �6.51 NA
HIV Treatment s: 10, m1: 0.02, m2: 0.5, m3: 4.4, r: 0.03,

Tmax: 1500, k: 0.000024, N : 300, A: 0.05
�823.13 NA

Mould Fungicide r: 0.3, M : 10 23.50 NA

Mountain Car g: 0.0025, p: 0.0015 8.57 [0 0]
>

Pendulum g: 10, m: 1, `: 1 25.75 [0 0]
>

Predator Prey d1: 0.1, d2: 0.1 1.79 0

Rocket Landing g: 9.81, m: 100000, `: 50, w: 10 178.02

2

666664

�172.78
0

�1413.87
�195.49
�36.04
�2.28

3

777775

Simple Case A: 1, B: 1, C: 4 �1.35 NA
Timber Harvest K: 1 �5104.67 NA
Tumour ⇠: 0.084, b: 5.85, d: 0.00873, G: 0.15,

µ: 0.02
7571.67 NA

Van Der Pol a: 1 2.87 [0 0]
>

Table 4: Summary of performance of direct single shooting on the various environments. For these experiments,
we used one shooting trajectory with 100 controls. The Heun method was used for integration. We used ipopt
to solve the resulting nonlinear program.

18

C.2 Trajectory optimization on learned dynamics

In addition to performance results using trajectory optimization on the true dynamics models, we also
provide benchmark scores of trajectory optimization on models which have been learned from data.

C.2.1 Parametric models

Table 5 shows the results of performing optimization on structured parametric models (known
dynamics, unknown coefficients) of which the parameters are learned from data, for 12 of the 17
real-world environments, and for the “simple case” environment. For convenience, the corresponding
performance achieved using trajectory optimization on the true model is also provided (to the left of
the “/”). To reproduce these results, choose a system in config.py and uncomment run_mle_sysid
in run.py. Run with the default hyperparameters in config.py, which were chosen via a small
amount of trial-and-error. In this setting, we found that a much smaller data regime (train set of 10
trajectories instead of 100) also led to good performance, indicating that using a structured model
significantly simplifies the system identification problem.

System Parameters
(true/learned)

Cost
(best/achieved)

Defect
(best/achieved)

Bacteria A: 1/1, B: 1/1, C: 1/1 �7.98/�7.98 NA
Bear Populations r: 0.1/0.1, K: 0.75/0.75,

mf : 0.5/0.5, mp: 0.5/0.5
12.28/12.28 NA

Bioreactor G: 1/1, D: 1/1 �1.39/�1.39 NA
Cancer Treatment �: 0.45/0.45, r: 0.3/0.3 20.57/20.57 NA

Cart-Pole Swing-Up g: 9.81/9.81, m1: 1/1,
m2: 0.3/0.3, `: 0.5/0.5

87.78/87.78

2

64

0/0
0/0
0/0
0/0

3

75

Glucose a: 1/1, b: 1/1, c: 1/1 1354.02/1354.02 NA
Mould Fungicide r: 0.3/0.3, M : 10/10 23.50/23.50 NA

Mountain Car g: 0.0025/0.0025,
p: 0.0015/0.0015

8.57/8.57 [0/0 0/0]
>

Pendulum g: 10/11.943, m: 1/0.701,
`: 1/1.194

25.75/25.49 [0/0.04 0/0.04]
>

Predator Prey d1: 0.1/0.1, d2: 0.1/0.1 1.79/1.79 0/0
Timber Harvest K: 1/1 �5104.67/�5104.67 NA
Tumour ⇠: 0.084/0.084,

b: 5.85/5.170,
d: 0.00873/0.00873,
G: 0.15/0.15,
µ: 0.02/�0.660

7571.67/7571.73 NA

Van Der Pol a: 1/1 2.87/2.87 [0/0 0/0]
>

Table 5: Summary of performance of trajectory optimization on parametric models with parameters learned
from data on a variety of environments. The first column lists the environment, followed by the true and learned
parameters, and then the cost (and if applicable, defect) resulting from those parameters.

19

C.2.2 Neural ODE models

In general when acting in real-world environments, we do not know the system dynamics – or even
a parametric model describing the general form of the system dynamics – beforehand. As such, it
is desirable to be able to learn system dynamics entirely from data. Table 6 shows the performance
of trajectory optimization on a Neural ODE model learned from data, for 12 of the 17 real-world
environments, and for the “simple case” environment. To reproduce these results, choose a system in
config.py and uncomment run_node_mle_sysid in run.py. Use the default hyperparameters,
except as indicated in the final two columns of Table 6, which show the number of trajectories per
dataset and total number of datasets used during training. To select these hyperparameters, we ran
training with train sets of size 10 and 100 with up to 5 datasets trained on sequentially (except in
Cart-Pole Swing-Up, where we used up to 10 datasets). We then chose the dataset size and number
of datasets which led to the best performance when performing trajectory optimization on the learned
model.

System Cost
(best/achieved)

Defect
(best/achieved) # Traj.s/D.set # D.sets

Bacteria �7.98/�2.72 NA 10 5
Bear Populations 12.28/12.29 NA 10 4
Bioreactor �1.39/�1.39 NA 10 1
Cancer Treatment 20.57/20.57 NA 10 1

Cart-Pole Swing-Up 87.78/242.25

2

64

0/�0.95
0/0.23
0/�0.85
0/6.63

3

75 100 7

Glucose 1354.02/1354.02 NA 10 1
Mould Fungicide 23.50/23.50 NA 10 1

Mountain Car 8.57/15.87

0/0.03
0/�0.01

�
100 5

Pendulum 25.42/20.88

�0.01/0.37
�0.01/0.61

�
100 1

Predator Prey 1.79/1.95 0/0.14 100 5
Timber Harvest �5104.67/�3928.77 NA 100 1
Tumour 7571.67/8468.68 NA 100 2

Van Der Pol 2.87/11.12

0/�0.35
0/�1.76

�
10 3

Table 6: Summary of performance of trajectory optimization on Neural ODE models learned from data on
a variety of environments. The layout is the same as the previous table, except that parameters are omitted,
since there is no way to directly compare the true parameters with the weights and biases of the neural network.
Instead, the fourth column shows the number of trajectories per dataset used in training, and the fifth column
shows the total number of datasets used to train the model.

20

D End-to-end algorithm performance

In Table 7 we present the performance of running the end-to-end implicit planning imitation learning
algorithm described in Section 7, for 13 of the 17 real-world environments, and for the “simple
case” environment. To reproduce these results, choose a system in config.py and uncomment
run_node_endtoend in run.py. Use default hyperparameters, except as indicated in the final table
column, which shows the size of the two hidden layers of the Neural ODE. To choose a hidden layer
size, we tried running smaller (50, 50) and larger (100, 100) networks, and selected the one that
achieved better performance on the given environment. One other important hyperparameter is the
number of implicit planning steps to perform at each iteration. We found 5 steps (default in the code;
found via manual search) to strike a good balance in providing a planning inductive bias while still
enabling fast propagation of gradients.

System Cost (best/achieved) Defect (best/achieved) Neurons/Layer

Bacteria �7.98/�7.60 NA 100
Bear Populations 12.28/12.40 NA 100
Bioreactor �1.39/�1.39 NA 100
Cancer Treatment 20.57/20.58 NA 50

Cart-Pole Swing-Up 87.78/36.90

2

64

0/1.21
0/�4.88
0/�0.29
0/�3.28

3

75 100

Glucose 1354.02/1354.12 NA 100
HIV Treatment �823.13/�822.96 NA 100
Mould Fungicide 23.50/23.54 NA 50

Mountain Car 8.57/3000

0/�0.39
0/�0.02

�
50

Pendulum 25.53/1.90

0/�2.69
0/�0.08

�
100

Predator Prey 1.79/1.04 0/�1.84 100
Timber Harvest �5104.67/�500.00 NA 50
Tumour 7571.67/9161.23 NA 50

Van Der Pol 2.87/16.81

0/0.54
0/�1.75

�
100

Table 7: Summary of performance of end-to-end learning and planning with Neural ODE models on a variety
of environments. The first column lists the environment. The second column indicates the cost of applying the
controls solved for with the model, applied in the true environment. The third column shows the defect of the
final state from the desired final state, if any. The fourth column shows the size of the hidden layers of the neural
network that was used for the model.

21

E Description of the direct multiple shooting algorithm

The direct single shooting approach does not allow us to impose constraints on the state trajectory,
and is inherently sequential. Direct multiple shooting addresses both these shortcomings by breaking
the problem into a sequence of shooting intervals on which direct single shooting can be applied in
parallel. As such, it is sometimes advantageous to employ direct multiple shooting instead of direct
single shooting.

The nonlinear program resulting from direct multiple shooting is presented below, followed by a
comparison of the two direct shooting techniques in Figure 5, on the same toy problem presented in
Section 4.

decision variables x̂0, x̂k, x̂2k, . . . , x̂N�k, x̂N , û0, û1, û2, . . . , ûN

objective

2

4
N/kX

j=1

Z tjk

t(j�1)k

faug

✓
x(t)
c(t)

�
, (û(j�1)k:jk, t), t

◆
dt

3

5 [-1]

equality constraints x̂ik = x̂(i�1)k +

Z tik

t(i�1)k

f(x(t), (û(i�1)k:ik, t)) for i = 1, 2, . . . , N/k

x̂0 = xs

⇤ x̂N = xf

inequality constraints* xlower
ik x̂ik xupper

ik for i = 0, 1, . . . , N/k

⇤ ulower
i ûi uupper

i for i = 0, 1, . . . , N
(14)

0 20 40 60 80 100
time [s]

�400

�300

�200

�100

0

100

200

he
ig

ht
[m

]

Single shooting, 100 steps

it 0
it 1
it 2
it 3
it 4

(a) Trajectories resulting from 0 to 4 iterations of direct
single shooting.

0 20 40 60 80 100
time [s]

0

50

100

150

he
ig

ht
[m

]

Multiple shooting, 5 intervals of 20 steps

it 0
it 1
it 2
it 3
it 4
it 5

(b) Trajectories resulting from 0 to 5 iterations of direct
multiple shooting.

Figure 5: Comparison of direct single shooting (a) and direct multiple shooting (b), applied to a toy dynamics
problem. While direct single shooting converges in fewer iterations, each iteration takes longer than those
performed in direct multiple shooting. Additionally, the parallelism of direct multiple shooting might enable it to
tackle problems with longer time horizons.

22

F Incorporating inequality constraints

For real-world systems, we usually would like to restrict the agent to only take certain paths through
state space, avoiding dangerous or otherwise undesirable areas. Such restrictions can be expressed as
bounds on the state variables in the nonlinear program resulting from transcription of the trajectory
optimization problem. Note that in the single shooting setting, there are no state decision variables;
this technique is only possible when using multiple shooting or collocation techniques.

Once we have inequality constraints in the nonlinear program, we must find a solution which satisfies
these constraints. When using a Lagrangian-based approach, there are at least two straightforward
ways of doing this. The first approach, which is implemented in Myriad, is projection. Over the
course of optimization, after a gradient step is taken, the resulting iterate is projected back into the
feasible set. With fixed bounds, this can be implemented as a clip operation (Bertsekas, 1999).

An alternative approach, which can be included directly in the system definition, is that of
reparametrization. Instead of stepping and then modifying the iterate to satisfy the bounds, we instead
modify the space in which we are performing the optimization, so that any point in the space will be
feasible (Niculae, 2020). For example, if our feasible set is xlower x xupper, a viable reparametriza-
tion would be to use a sigmoid of the form �(x, xlower, xupper) = (xupper �xlower)/(1+e�↵x)�xlower,
where ↵ is a temperature constant which can be decreased over time.

G Compute

All experiments were performed on a personal laptop with the following specifications:

• 2.7 GHz Quad-Core Inter Core i7
• Intel Iris Plus Graphics 665 1536 MB
• 16 GB 2133 MHz LPDDR3
• 500 GB PCI-Express SSD

The average runtime for experiments is presented in Table 8.

Experiment Runtime

Trajectory Optimization ⇠ 1 minute per environment
System Identification (Parametrized) ⇠ 2 minutes per environment
System Identification (Neural ODE) ⇠ 2 hours per environment
End-to-end Control (Parametrized) ⇠ 0.5 hours per environment
End-to-end Control (Neural ODE) ⇠ 10 hours per environment
Total for all experiments (above times 18) ⇠ 300 hours

Table 8: The approximate amount of compute used for all experiments.

23

