
A Proof for Theorem 1

Suppose (M, µ) is the base manifold of dimension n with respect to graph G and GNN model f✓,
and �µ(G, f✓) is the associated weighted Laplace operator with respect to G and f✓ (in the following
shortened as �µ). We leverage a Sobolev inequality on manifolds as Lemma 1.

Lemma 1. [43] Let x be a function from the local Sobolev space W2�
loc(M) for a positive integer

� > n/4. Then, for any relatively compact open set ⌦ ⇢M and any set K b ⌦, there is a constant
C such that

sup
K

|x|  CkxkW2�(⌦). (24)

where the norm k · kW2� is defined as

kxk2W2� =
kX

l=0

���l
µx
��2
L2 (25)

Suppose � is the smallest integer larger than n/4, and Pt = e
�tL is the heat kernel semigroup, where

L = � �µ|W 2
0

is the Dirichlet Laplace operator for the base manifold regarding graph G and GNN
model f✓, we have the following lemma.
Lemma 2. For any function x 2 L

2(M), t > 0, and set K b M, it holds that

sup
K

|Ptx|  C
�
1 + t

��
�
kxkL2(M), (26)

where C is a constant depending on K,g, µ, n.

Proof. Suppose {E�} is the spectral resolution of the Dirichlet operator L for the base manifold.
Consider the function �(�) = �

k
e
�t�, where t > 0 and k 2 Z

+. We have
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Using the definition of k · kW2� in Eqn. (25) and the result of Eqn. (28), we obtain
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(29)

Substituting Ptx into Lemma. 1 and using the result of Eqn. 29 yields Eqn. 26, and thus completes
the proof.
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Consider the following equivalent expressions describing heat diffusion and feature propagation
respectively,

H
(l+1) = f✓(H

(l)
,G), X(t+ ⌧) = e

�⌧�(f✓,G)X(t) (30)
where ⌧ is a constant dependent on f✓ and l. We can rewrite the single-layer NHK as a function p⌧,vi

such that for any vj 2 V (or equivalently vj 2M)

p⌧,vi(vj) = 
(l)
✓ (vi, vj). (31)

We define g : V ! R
d as a function that outputs the feature of a node in l-th layer, which is clearly

Lebesgue integrable by thinking of nodes embedded on the manifold, i.e., g 2 L
2(M).

Proof for the existence of unique single-layer NHK boils down to proof that for any vi 2M, l > 0
(i.e., ⌧ > 0), there exists a unique function p⌧,vi 2 L

2(M) such that, for all g✓,

P⌧g✓(vi) =

Z

vj

p⌧,vig✓(vj)dvj . (32)

Fix a relatively compact set K b M. By Lemma 2, for all ⌧ > 0 and g✓ 2 L
2(M), the function

P⌧g✓(vi) admits the estimate
|P⌧g✓(vi)|  C

�
1 + ⌧

��
�
kg✓(vi)kL2(M). (33)

Therefore, for fixed l and GNN model f✓, the mapping g✓ 7! P⌧g✓ is a bounded linear functional on
L
2(M). By the Riesz representation theorem, there exists a function p⌧,vi 2 L

2(M) such that
P⌧g✓ = (p⌧,vi , g✓)L2 for all g✓ 2 L

2(M), (34)
where (·, ·)L2 denotes inner product in L

2, whence Eqn. (32) follows. The uniqueness of p⌧,vi is
evident from Eqn. (32) since for any point vi 2 M there is a compact set K containing vi, the
function p⌧,v is defined for all ⌧ > 0 and v 2M.

B Proof for Theorem 2

Lemma 3. For all vi, vj 2 M and t > 0, the inner product (ps,x, pt�s,y) does not depend on
s 2 (0, t].

Proof. Using Pt+s = PsPt (by the definition of Pt), Eqn. (34), and the symmetry of Pt, we obtain
that for all v 2M, t, s > 0, and g✓ 2 L

2(M), it holds that
Pt+sg✓(vi) = Ps (Ptg✓) (vi)

= (Ps,vi ,Ptg✓) = (PtPs,vi , g✓)

=

Z

M
PtPs,vi(z)g✓(vj)dµ(vj)

=

Z

M

�
Pt,vj ,Ps,vi

�
g✓(vj)dµ(vj),

(35)

Lemma 3 implies that, for all vi, vj 2M and 0 < s  t

pt(vi, vk) = (ps,vi , pt�s,vk) . (36)
Hence, it holds that Z

M
pt(vi, vj)ps(vj , vk)dµ(vj)

= (pt(vi, ·), ps(vk, ·)) = pt+s(vi, vk).
(37)

By letting
s = min{⌧ (l+1)

, ⌧
(l+2)}, t = max{⌧ (l+1)

, ⌧
(l+2)}, (38)

we can rewrite Eqn. (37) as the expression of semigroup identity property of layer-wise NHK
✓(vi, vj , l 7! l + 2) =

X

vk2V

(l+1)
✓ (vi, vk)

(l+2)
✓ (vk, vj)dµ(vk). (39)

The proof also generalizes to the cross-layer case, inducing cross-layer NHK ✓(vi, vj , l 7! l + k).
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C Proof for Theorem 3

Let {'k}1k=1 be an orthonormal basis of eigenfunctions of L with an increasing sequence of non-
negative eigenvalues {�k}1k=1, where �k ! +1. In consideration of

(p⌧,vi ,'k)L2 = P⌧'k(vi) = e
�⌧L

'k(vi) = e
�⌧�k'k(vi), (40)

we have the following expansion of pt,vi by referring to results in literature [48]

pt,vi =
X

k

e
�t�k'k(vi)'k. (41)

Let T be the accumulated time interval from l-th layer to (l + k)-th layer, in consideration of the
equivalence shown in Eqn. (31), we could write Eqn. (41) as

✓(vi, vj , l 7! l + k) =
1X

k0=0

e
��k0T

'k0(vi)
>
'k0(vj) (42)

completing the proof.

D Justification for Parametric GKD

We justify parametric GKD from a variational inference perspective. From Eqn. (18), the forward
GNN model f✓ defines a model distribution

p✓(H
(l)
,H

(l+k)
,K) = p✓(H

(l))p✓(K|H(l))p✓(H
(l+k)|K,H

(l)), (43)

where p✓(K|H(l)) is intractable, hindering the proceeding distillation. In this light, the variational
inverse-NHK model †

� is proposed with a variational distribution

q�(H
(l)
,H

(l+k)
,K) = q�(H

(l+k))q�(K|H(l+k))q�(H
(l)|H(l+k)

,K), (44)

which has a tractable posterior q�(K|H(l+k)). Now, we justify our training scheme with iterative
optimization for Eqn. (22) and (23) by the following proposition.

Proposition 1. The optimization in Eqn. (22) and (23) essentially minimizes the following Kull-
back–Leibler (KL) divergence,

min
✓,�

Dkl

⇣
q�(K,H

(l)
,H

(l+k)) k p✓(K,H
(l)
,H

(l+k))
⌘
, (45)

and hence attempts to establish equivalence between two latent variable models p✓ and q�.

Proof. In the following, we use X, Y, K to denote H
(l), H(l+k), K(G, l 7! l + k) for brevity.

By definition in Section 4.2 we have a forward GNN model f✓ with the joint distribution of latent
variables

p✓(X,Y,K) = p✓(X) p✓(K|X)| {z }
Intractable

p✓(Y|X,K), (46)

and a variational inverse-NHK model †
� with the joint distribution of latent variables

q�(X,Y,K) = q�(Y) q�(K|Y)
| {z }

Tractable

q�(X|Y,K). (47)
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Based on these equations, we can write the KL-divergence between joint distributions of p✓ and q� as

DKL(q�(X,Y,K) k p✓(X,Y,K))

=

ZZZ
q�(X,Y,K) log

q�(X,Y,K)
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ii
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h
DKL(q�(X|Y,K) k p✓(X))
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Reconstruction Loss

�Eq�(X|Y,K)[log p✓(K,Y|X)]
| {z }

Prediction Loss

ii
.

(48)

The first term C is a constant entropy with respect to q�. The second term is the KL-divergence
between the variational posterior q�(X|Y,K) and the prior p✓(X), which corresponds to the recon-
struction loss in Eqn. (22) that attempts to learn a NHK that faithfully reflects the latent heat diffusion
process describing the GNN feature propagation. The third term is negative log-likelihood, which
corresponds to the prediction loss in Eqn. (23) that attempts to fit the dataset. Therefore, minimizing
this KL-divergence amounts to the iterative optimization scheme of Eqn. (22) and (23).

E More Discussions on the Equivalence of Eqn.7

The equivalence of two equations in Eqn. 7 is based on recent works [8; 7; 51; 13; 12] that built
connection between heat equation and GNN. The main result of these works is that by treating node
features H as signal X (corresponding to x(u, t) in heat equation Eqn. 2) on the graph, solving the
heat equation with Euler scheme yields the formulation of a GNN layer. In other words, the GNN
can be seen as the discretisations of the continuous diffusion process described by the heat equation.
Correspondingly in Eqn. 7, the left equation is a general GNN layer (corresponding to discretized
diffusion process), and the right equation is directly derived from Eqn. 7 (corresponding to continuous
diffusion process).

Moreover, different definitions of Laplace-Beltrami operator � yield different GNNs. To be more
specific, the simplest definition [8; 51] of � is by letting the gradient operator r denote assigning
each edge the difference of adjacent nodes’ features, and the divergence operator r⇤ denote the
summation of edge features obtained from last step. In this case, setting ⌧ in Eqn. 2 as 1 yields
SGC [53], and since it is being pointed out to be a potential cause of over-smoothing (which is one
example to show the thermodynamic and geometric perspective is helpful for understanding GNNs),
the authors in [51] further set smaller ⌧ which yields DGC. Reinterpreting r⇤ as weighted sum of
edge features yields GAT [8; 49] and any other GNN following the message passing scheme:

MessagePassing(hu,G) =
X

v2Nu[u

s(hu,hv) · hv, (49)

where Nu denotes neighbored nodes of u, and s denotes a parametric or non-parametric similarity
score. The neighborhood summation could also be modified by changing the definition of r,
which yields GNNs based on learned structures (e.g., GDC [30]) and those with residual links (e.g.,
APPNP [29]). Further considering different discretization schemes (e.g., implicit scheme, multi-
step schemes) yields different variants of GRAND [8; 7; 45] that are found more powerful than its
simplification (presumably because it better matches the continuous diffusion process).
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Unfortunately, not all GNNs have a simple form of �, and for some of them, whether there exists
such � is an open research question. Therefore, we write the operator as �(f✓,G) to associate
it with model f✓ and use equivalence in Eqn. 2 as an analytical assumption. The thermodynamic
and geometric perspective used in the paper is fundamental and useful for studying the geometry
property of GNNs, which has also been adopted by other works [3; 46; 51; 45; 8; 7]. For example,
[3] attempts to explain heterophily and oversmoothing problems in GNNs by connecting GNNs
to the heat equation defined by the sheaf Laplace-Beltrami operator �F and propose new GNN
architectures based on the theory. Similarly, [45; 8; 7] propose new GNN architectures / rewiring
methods from the same thermodynamic perspective, [51] explains over-smoothing issue of SGC based
on the same equivalence of GNN and solve of heat equation, and [46] explains the over-squashing
issue from a geometric perspective by analyzing the curvature. A common trait of these works is to
draw analogies between GNNs and differential geometry / diffusion process to obtain meaningful
theoretical results (ours: NHK as a characterization of GNN’s underlying geometry) that are used to
guide implementation (ours: GKD for geometric knowledge transfer).

F Implementation Details

We present implementation details for our experiments for reproducibility. We implement our model
as well as the baselines with Python 3.7, Pytorch 1.8 and Pytorch Geometric 1.7. All experiments
are conducted on NVIDIA V100 with 16 GB memory. All parameters are initialized with Xavier
initialization procedure. We train the model by Adam optimizer. Both teacher and student models
are trained from scratch. For the main results reported in Tab. 1 and 2, we choose the backbone
model as a 3-layer GCN with hidden size 32. In case that the graph is too large, we use mini-batch
training (draw a mini-batch of nodes from the vertex set V) for computing the distillation loss. All
the experiments are repeated five times with random initialization.

F.1 Dataset Description

We choose three benchmark citation network datasets, i.e., Cora, Citeseer and Pubmed, and a large-
scale network dataset OGB-Arxivfor node classification. For citation networks, we randomly split
them into train/valid/test data according to the ratio 2:1:1. For OGB dataset, we follow the original
splitting [23] for evaluation. The statistics of these datasets are summarized in Tab. 6.

Dataset # Classes # Nodes # Edges Metric

Cora [35] 7 2,485 5,069 Accuracy
Citeseer [44] 6 2,120 3,679 Accuracy
PubMed [39] 3 19,717 44,324 Accuracy
OGB-Arxiv [23] 40 169,343 1,166,243 Accuracy

Table 6: Statistics of Datasets.

F.2 Hyper-Parameter Tuning

For parameter tuning, we adopt grid search method to search for hyper-parameters on validation set.
Since our model is only sensitive to ↵, one can use other more efficient searching strategies instead
of grid search (e.g., coordinate descent, Bayesian optimization) to achieve very similar results. The
descriptions for several hyper-parameters and their search spaces are shown in Tab. 7.

Notation Description Search Space

T accumulated time interval [0.25, 0.5, 1, 2, 4]
↵ weight of the geometric distillation loss [0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 300.0, 1000.0]
↵kd weight of the label-based distillation loss [0.0, 0.2, 0.4, 0.6, 0.8]
⌧ temperature for label-based distillation loss [0.25, 0.5, 1, 2, 4]
� weight for non-connection entries for distillation loss [0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2]
� learning rate [0.0001, 0.001, 0.01, 0.1]

Table 7: Parameter searching space for GKD and its variants.
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F.3 Implementation of non-parametric GKD

For Gauss-Weierstrass NHK in Eqn. (13), we treat the accumulated time interval T as a hyper-
parameter that is consistent for all layers. For sigmoid NHK in Eqn. (13), we let a = 1, b = 0 and
the NHK is simple dot-product with activation. For randomized NHK in Eqn. (16), we let s = 2d for
the random transformation matrix W, and we use tanh(·) as activation function for �(·).

Algorithm 1: Training Algorithm for GKD.

Input: Complete graph G̃ with labels Ỹ, partial graph G with labels Y, learning rate �, initial
parameters ✓⇤, ✓.

Training Teacher GNN:
while Not converged do

Teacher model conducts feature propagation on G̃
Calculate Lpre(Ŷ✓⇤ , Ỹ) as in Eqn. (17)
✓
⇤  ✓

⇤ � �r✓⇤Lpre(Ŷ✓, Ỹ)

Save teacher model as f✓⇤

Training Student GNN:
Load teacher model f✓⇤

while Not converged do
Teacher model conducts feature propagation on G̃
Student model conducts feature propagation on G
Calculate Lpre and Ldis as in Eqn. (17)
✓  ✓ � �r✓Lpre(Ŷ✓,Y) + ↵

L

PL
l=1 L

(l)
dis

F.4 Implementation of parametric GKD

For the case of parametric GKD, we realize the non-linear mapping g� as a neural network one-layer
feed-forward neural network with tanh(·) activation, and set s = 2d, the same as the non-parametric
setting. In case that the teacher model has larger hidden size than the student model, we follow
standard approaches in feature-based knowledge distillation methods [21] and use independent
mappings for teacher and student models that are customized for their own hidden sizes. We use
an EM-style algorithm for training the student model as in Eqn. (22) and Eqn. (23). For variants of
GKD+KD and PGKD+KD, we consider additional standard label-based distillation loss in [22] with
respect to labeled nodes, inducing an additional hyper-parameter ↵kd that controls its importance.

F.5 Descriptions and Implementations of Baselines

KD [22]: is the seminal work of knowledge distillation, which uses the predictions of the teacher
model as soft labels to teach the student model.

FitNets [42]: is the representative work of feature-based knowledge distillation, using the intermediate
layers of training instances to teach the student model.

FSP [64]: is a relation-based knowledge distillation method, using the Gram matrix between two
intermediate layers to explore the relationships between different feature maps.

LSP [63]: is a knowledge distillation method for graph convolutional networks, which aims to match
the local distribution (similarity with adjacent nodes) of teacher and student models.

Note that some of these baselines (FitNets and FSP) are originally designed specifically for computer
vision tasks, we adapt them to the setting of graph neural networks with slight modifications. While
FSP is designed for graph neural networks, its original formulation of distillation loss does not
account for the difference of graph topology for teacher and student models. To make it compatible
with the settings considered in this paper, we fix the definition of local structures with respect to
either student or teacher graph topology, and choose the best result for report. We refer to the
hyper-parameter settings in their papers and also finetune them on different datasets.
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Algorithm 2: Training Algorithm for PGKD.

Input: Complete graph G̃ with labels Ỹ, partial graph G with labels Y, learning rate �1 and �2,
initial parameters ✓⇤, ✓, �.

Training Teacher GNN:
while Not converged do

Teacher model conducts feature propagation on G̃
Calculate Lpre(Ŷ✓⇤ , Ỹ) as in Eqn. (17)
✓
⇤  ✓

⇤ � �1r✓⇤Lpre(Ŷ✓, Ỹ)

Save teacher model as f✓⇤

Training Student GNN:
Load teacher model f✓⇤

while Not converged do
Teacher model conducts feature propagation on G̃
Optimization for �

Student model conducts feature propagation on G
Calculate reconstruction loss Lrec as in Eqn. (22)
� �� �2r�Lrec

Optimization for ✓

Calculate Lpre and Ldis as in Eqn. (23)
✓  ✓ � �1r✓

⇣
Lpre(Ŷ✓⇤ ,Y) + ↵Ldis

⌘

G More Related Works

Knowledge Distillation. There are mainly four different types of distilling strategies [17], namely
response-based KD [22] (which uses output layer of the teacher model to teach student), feature-
based KD [42; 66; 21; 26] (which matches intermediate layers of teacher and student), relation-based
KD [64; 65; 40; 62] (which aligns the relationship between different layers or samples), and graph-
based KD [60; 63] (which considers the graph information or designed for GNN). For experiments,
we choose representative method from each category as baselines. While these existing distillation
strategies have shown remarkable success in distillation tasks such as model compression, they rarely
(carefully) study the role of graph geometry in GNN iterations. For geometric knowledge transfer
task, it is crucial to find a fundamental and principled way to track how graph topology affects the
behavior of a specific GNN. Therefore, we first probe the intersection between KD and geometric
learning, propose NHK to characterize geometric knowledge and propose different variants of GKD
that are shown to be effective especially in the geometric knowledge transfer setting.

Generalization of GNNs. Recent advances shed lights on the generalization ability of GNNs from
various perspectives, e.g., the in-distribution generalization error [16], extrapolation capability [59],
out-of-distribution (OOD) generalization under distribution shifts [55] and the reliability against
outliers and OOD testing data [32]. Our work can be seen a specific embodiment for GNN gener-
alization w.r.t. topological domain transfer. Furthermore, there are some recent studies exploring
learning under the varied data space between training and inference [54], using GNNs as an encoding
and reasoning tool. GKD focuses on transferring across varied structural information and aims at
compressing topological information for GNNs.
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