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A Details of Experimental Setup for Small and Medium Size Datasets

In this section, we provide the details of the implementation and training protocol for the experiments
on small and medium size datasets (including CIFAR-10, CIFAR-100, STL-10, Tiny-ImageNet and
ImageNet-100). Our implementation is based on the released codebase of W-MSE [7]2.

A.1 Datasets

The followings are the descriptions of 5 small and medium scale datasets, commonly used to evaluate
the effectiveness of SSL models.

• CIFAR-10 and CIFAR-100 [13], two small-scale datasets composed of 32 × 32 images with 10 and
100 classes, respectively.

• STL-10 [4], derived from ImageNet [6], with 96 × 96 resolution images and more than 100K
training samples.

• Tiny ImageNet [14], a reduced version of ImageNet [6], composed of 200 classes with images
scaled down to 64 × 64. The total number of images is: 100K (training) and 10K (testing).

• ImageNet-100 [16], a random 100-class subset of ImageNet [6].

A.2 Analytical Experiments

In section 3 of the submitted paper, we conduct several experiments on CIFAR-10 to illustrate our
analysis. We provide a brief description of the setup in the caption of Figure 2 of the submitted
paper. Here, we describe the details of these experiments. All experiments are uniformly based on
the following training settings, unless otherwise stated in the figures of the submitted paper.

Training Settings We use the ResNet-18 as the encoder (dimension of encoding is 512.), a two layer
MLP with ReLU and BN appended as the projector (dimension of the hidden layer and embedding
are 1024 and 64 respectively). The model is trained on CIFAR-10 for 200 epochs with a batch size of
256, using Adam optimizer [12] with a learning rate of 3× 10−3, and learning rate warm-up for the
first 500 iterations and a 0.2 learning rate drop at the last 50 and 25 epochs. The weight decay is set
as 10−6. All transformations are performed with 2 positives extracted per image with standard data
argumentation (see Section A.3 for details). We use the same evaluation protocol as in W-MSE [7].

Method Settings In the experiments shown in Figure 2 and Figure 4 of the paper, fully PCA
whitening suffers the dimensional collapse and further produces numerical instability. Therefore, we
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use the MSE loss without L2 normalization and partition its channel dimension into 4 groups, which
makes it possible to finish training in a normal way. Despite the reduced setting for whitening, PCA
whitening still has problems as shown in Figure 2 and Figure 4. In other experiments, we use the
MSE loss with L2 normalization for all methods, as W-MSE [7] does.

A.3 Experimental Setup for Comparison of Baselines

In section 4.1 of the paper, we compare our channel whitening with random group partition (CW-
RGP) to the state-of-the-art SSL methods on CIFAR-10, CIFAR-100, STL-10 and Tiny-ImageNet
datasets. Here, we describe the training details of these experiments. Except for the hyper-parameters
relating to CW-RGP itself (e.g., the group number), our experimental setups are strictly following the
setup of the W-MSE [7] paper, as following descriptions.

Encoder and Projector We use the ResNet-18 [11] as the encoder and the dimension of encoding
is 512. We use a 2-layers MLP as the projector: one hidden layer with BN and Relu applied to it and
a linear layer as output. In the experiments of CIFAR-10, CIFAR-100 and STL-10, the dimension of
the hidden layer in the projector and embedding are 1024 and 512, respectively. In the experiments of
Tiny-ImageNet, the dimension of the hidden layer in the projector and embedding are 2048 and 1024,
respectively.

Image Transformation Details We make the image transformation following the details in [2],
which extract crops with a random size from 0.2 to 1.0 of the original area and a random aspect ratio
from 3/4 to 4/3 of the original aspect ratio. The horizontal mirroring is applied with a probability of
0.5. The color jittering configuration is (0.4, 0.4, 0.4, 0.1) with a probability of 0.8 and grayscaling
with a probability of 0.1. For ImageNet-100, the crop size is from 0.08 to 1.0, jittering is strengthened
to (0.8, 0.8, 0.8, 0.2), grayscaling probability is 0.2, and Gaussian blurring is with a probability of 0.5.
We use only one crop at testing time in all the experiments (standard protocol).

Optimizer and Learning Rate Schedule We use the Adam optimizer [12]. We apply the same
number of epochs and learning rate schedule to all the compared methods. Specifically, for CIFAR-10
and CIFAR-100, we use 1,000 epochs with a learning rate of 3× 10−3; for STL-10, 2,000 epochs
with a learning rate of 2× 10−3; for Tiny-ImageNet, 1000 epochs with a learning rate of 2× 10−3.
In these experiments, we use a 0.2 learning rate drop at the last 50 and 25 epochs. The weight decay
is 10−6. In all experiments, we use learning rate warm-up for the first 500 iterations of the optimizer.
We use a batch size of 512 for CW-RGP 2 in CIFAR-100, STL-10 and Tiny ImageNet experiments,
while 256 for the others.

Evaluation Protocol We use the same setup of evaluation protocol as in W-MSE [7]: training the
linear classifier for 500 epochs using the Adam optimizer and the labeled training set of each specific
dataset, without data augmentation; the learning rate is exponentially decayed from 10−2 to 10−6

and the weight decay is 5× 10−6. In addition, we also evaluate the accuracy of a k-nearest neighbors
classifier (k-NN, k = 5) in these experiments.

For our CW-RGP, we denote ‘RGP2’ to indicate CW using random group partition, with a group
number of 2. We find that our CW-RGP can also work well when batch-slicing, proposed in W-
MSE [7], is used. We thus also use batch slicing (a default setting in the released code of W-MSE)
to ensure that the channel number is larger than the batch size for our CW-RGP. In the experiments
of CIFAR-10, CIFAR-100 and STL-10, we use RGP4 and the slicing sub-batch size is 64. In the
experiments of Tiny-ImageNet, we use RGP2 and the slicing sub-batch size is 128.

For a fair comparison, we also reproduce several related methods (including SimSiam [3], Barlow
Twins [17], VICReg [1], and Zero-ICL [18]) under the same training and evaluation settings as in [7].
However, These methods using the configuration of hyper-parameters based on the original baselines
in [7] get poor results in our training mode (e.g, a 2-layers projector, using Adam optimizer [12],
‘step’ learning rate schedule, and so on). In the reproduction experiments, we use the recommended
2048-2048-2048 projector for these methods which obtains significantly better results than the default
1024-512 or 1024-64 projector in [7]. In particular, for Barlow Twins [17], we set the trade-off
coefficient λ to 0.0078 instead of the recommended 0.0051 in [17], since that using the recommended
0.0051 has a significant degenerated performance in our experiments. For SimSiam [3], we use the
SGD optimizer and cosine learning rate schedule as recommended in [3], because the loss value
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fluctuates sharply and it leads to very poor results when we use Adam optimizer for the training. We
conjecture that the optimization mechanism of Adam may be not suitable for the training of predictor
in SimSiam [3]. Other settings not mentioned here are the same as in [7] by default.

B Proofs

B.1 proof of ∂L∂θ = ∂L
′

∂θ .

As stated in Section 3.3 of the paper, given one mini-batch input X with two augmented views, we
say the loss:

L(X) =
1

m
‖Ẑ1 − Ẑ2‖2F . (1)

and the proxy loss:

L
′
(X) =

1

m
‖Ẑ1 − (Ẑ2)st‖2F +

1

m
‖(Ẑ1)st − Ẑ2‖2F , (2)

has the same gradients w.r.t.the learnable parameters θ, i.e., ∂L∂θ = ∂L
′

∂θ . Here, we provide the proof.

Proof. Note that Ẑ1 and Ẑ2 are the function of θ. Based on the chain rule, we have:

∂L
∂θ

=
∂ 1
m‖Ẑ1 − Ẑ2‖2F

∂θ

=
1

m

∂‖Ẑ1 − Ẑ2‖2F
∂Ẑ1

∂Ẑ1

∂θ
+

1

m

∂‖Ẑ1 − Ẑ2‖2F
∂Ẑ2

∂Ẑ2

∂θ
. (3)

Similarly, we have:

∂L′

∂θ
=

∂( 1
m‖Ẑ1 − (Ẑ2)st‖2F + 1

m‖(Ẑ1)st − Ẑ2‖2F )

∂θ

=
1

m

∂‖Ẑ1 − (Ẑ2)st‖2F
∂Ẑ1

∂Ẑ1

∂θ
+

1

m

∂‖(Ẑ1)st − Ẑ2‖2F
∂Ẑ2

∂Ẑ2

∂θ

=
1

m

∂‖Ẑ1 − Ẑ2‖2F
∂Ẑ1

∂Ẑ1

∂θ
+

1

m

∂‖Ẑ1 − Ẑ2‖2F
∂Ẑ2

∂Ẑ2

∂θ
. (4)

From Eqn. 3 and Eqn. 4, we have ∂L
∂θ = ∂L

′

∂θ .

B.2 Proof of Proposition 1

As stated in Section 3.3 of the paper, by looking into the first term of Eqn. 2, we aim to minimize the
following objective:

min
Z1

L
′

1(Z1) = min
Z1

1

m
‖φ(Z1)Z1 − (Ẑ2)st‖2F . (5)

Here, φ(Z1) is the whitening matrix that depends on Z1, and Ẑ2 is a whitened matrix with 1
m Ẑ2Ẑ

T
2 =

I. We prove the following Proposition.

Proposition 1. Let A = argminZ1
L′

1(Z1). We have that A is not an empty set, and ∀Z1 ∈ A, Z1 is
full-rank. Furthermore, for any {σi}dzi=1 with σ1 ≥ σ2 ≥, ..., σdz > 0, we construct Ã = {Z1|Z1 =
U2 diag(σ1, σ2, ..., σdz ) VT

2 , where U2 ∈ Rdz×dz and V2 ∈ Rm×dz are from the singular value
decomposition of Ẑ2, i.e., U2(

√
mI)VT

2 = Ẑ2. When we use ZCA whitening, we have Ã ⊆ A.

Proof. Based on the fact that L′

1 ≥ 0, we have A = {Z1|L
′

1(Z1) = 0}. It is easy to validate that
L′

1(Ẑ2) = 0, and we have Ẑ2 ∈ A. Therefore, A is not an empty set.

We then prove that ∀Z1 ∈ A, Z1 is full-rank. We assume that for any Z1 ∈ A and Z1 is not a
full-rank matrix, i.e., Rank(Z1 < dz). We have Rank(φ(Z1)Z1) ≤ Rank(Z1) < dz . We thus
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have that φ(Z1)Z1 is not a full-rank matrix. Therefore, it is impossible for φ(Z1)Z1 = Ẑ2 since
Ẑ2 is a full-rank matrix. So L′

1(Z1) > 0, which is contradictory to Z1 ∈ A . Therefore, we have
∀Z1 ∈ A, Z1 is full-rank

For any {σi}dzi=1 with σ1 ≥ σ2 ≥, ..., σdz > 0, let Z1 = U2 diag(σ1, σ2, ..., σdz ) VT
2 , we now prove

that φ(Z1)Z1 = Ẑ2 when using ZCA whitening. We know φ(Z1) = ΦZCA = UΛ−
1
2UT , where

Λ = diag(λ1, . . . , λdz ) and U = [u1, ...,udz ] are the eigenvalues and associated eigenvectors of the
covariance matrix Σ of Z1. We know Σ = 1

mZ1Z
T
1 = U2 diag(σ2

1/m, σ
2
2/m, ..., σ

2
dz
/m) UT

2 . Since
the eigen decomposition of Σ is unique, we have φ(Z1) = U2 diag(

√
m/σ1,

√
m/σ2, ...,

√
m/σdz )

UT
2 . Therefore, φ(Z1)Z1 = U2 diag(

√
m/σ1,

√
m/σ2, ...,

√
m/σdz ) UT

2 U2 diag(σ1, σ2, ..., σdz )
VT

2 = U2(
√
mI)VT

2 = Ẑ2. We thus have Ã ⊆ A.

4



C Algorithm of CW-RPG

We describe our CW-RGP algorithm in Py-Torch style code, shown in Figure I.

def channel_whitening(x, g, eps=0):
# x: input feature with size [m, d] or [m, d, H, W]
# g: the group number of group whitening
x_flatten = x.view(x.size()[0], -1)
f_dim = x_flatten.size()[-1]
shuffle = torch.randperm(f_dim).tolist()
# centering
mean = x_flatten.mean(-1, keepdim=True)
x_centered = x_flatten - mean
# random group partition
x_group = x_centered[:, shuffle].reshape(x.size()[0], g, -1).permute(1, 2, 0)
f_cov = torch.bmm(x_group.permute(0, 2, 1), x_group) / (x_group.shape[1] - 1)
eye = torch.eye(x.size(0)).type(x.type()).reshape(1, x.size(0), x.size(0)).repeat(g, 1, 1)
# compute whitening matrix
sigma = (1 - eps) * f_cov + eps * eye
u, eig, _ = sigma.svd()
scale = eig.rsqrt()
wm = torch.bmm(u, torch.diag_embed(scale))
wm = torch.bmm(wm, u.permute(0, 2, 1))
# whiten
decorrelated = torch.bmm(x_group, wm)
shuffle_recover = [shuffle.index(i) for i in range(f_dim)]
decorrelated = decorrelated.permute(2, 0, 1).reshape(-1, f_dim)[:, shuffle_recover]

output = decorrelated.view_as(x)
return output

Figure I: Py-Torch style code of CW-RPG.
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D Details of Experiments for Large-Scale Classification and Transfer
Learning

In this section, we provide the details of implementation and training protocol for the experiments on
large-scale ImageNet [6] classification, and transfer learning to VOC [8] object detection, COCO [15]
object detection and instance segmentation.

D.1 Datasets

• ImageNet [6], the well-known largescale dataset with about 1.3M training images and 50K test
images, spanning over 1000 classes.

• VOC07+12 [8], the PASCAL Visual Object Classes Challenge. VOC2007: 20 classes with 9,963
images containing 24,640 annotated objects; VOC2012: 20 classes with 11,530 images containing
27,450 ROI annotated objects and 6,929 segmentations.

• COCO2017 [15], a large-scale object detection, segmentation, and captioning dataset with 330K
images containing 1.5 million object instances.

D.2 Experiment on ImageNet

In section 4.1 of the paper, we compare our CW-RGP to the state-of-the-art SSL methods on large-
scale ImageNet classification. Here, we describe the training details of these experiments. Our
implementation is based on the released codebase of SimSiam [3]3. Except for the hyper-parameters
relating to CW-RGP itself, we strictly follow the setup of the SimSiam paper [3].

Encoder and Projector We use the ResNet-50 [11] as the encoder and the dimension of encoding
is 2048. We use a 3-layers MLP as the projector: two hidden layers with BN and Relu applied to it
and a linear layer as output. The dimension of the hidden layer and embedding are 2048 and 1024,
respectively.

Image Transformation Details In image transformation, we follow the details in [3]: crop size from
0.2 to 1.0, no strengthened jittering (0.4, 0.4, 0.4, 0.1) with probability 0.8, grayscaling probability
0.2, and Gaussian blurring with 0.5 probability. We use standard protocol at testing time.

Optimizer and Learning Rate Schedule We apply the SGD optimizer, using a learning rate of lr
× BatchSize / 256 with a base lr of 0.05 and cosine decay schedule. The weight decay is 10−4 and
the SGD momentum is 0.9. In addition, we use learning rate warm-up for the first 500 iterations of
the optimizer. We only try the batch size of 256 and 512 due to memory limitation.

Evaluation Protocol We use the same setup of evaluation protocol as in Simsiam [3]: training the
linear classifier for 100 epochs with the LARS optimizer (using a learning rate of lr × BatchSize /
256 with a base lr of 0.1 and cosine decay schedule). The batch size for evaluation is 1024.

For our CW-RGP, we use RGP2 for CW. We find that our CW-RGP can also work well when
combined with the whitening penalty (covariance loss) used in VICReg [1]. For adapting to the
sample orthogonalization in CW, we use a covariance loss along the channel dimension (see Section F
for details). We empirically set the weight of covariance loss as 0.001 for the half training epochs to
amplify the extent of whitening, which obtains a top-1 accuracy of 69.7% when training 100 epochs,
compared to 69.6% of the method using CW-RGP only. Here, we address that our CW-RGP can
combine with covariance loss to obtain good results. We believe the performance can be further
improved, if we fine-tune the weight of covariance loss.

D.3 Experiments for Transfer Learning

In this part, we describe the training details of experiments for transfer learning. Our implementation
is based on the released codebase of MoCo [10]4 for transfer learning to object detection and instance

3https://github.com/facebookresearch/simsiam under the CC-BY-NC 4.0 license.
4https://github.com/facebookresearch/moco/tree/main/detection under the CC-BY-NC 4.0 license.
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Figure II: Illustration of different projectors when varying the dimension of the hidden layer. We show
(a) the linear accuracies; (b) the normalized stable-rank of embedding; (c) the rank of embedding. (d)
the k-NN accuracies; (e) the normalized stable-rank of encoding; (f) the rank of encoding. All results
are averaged by five random seeds, with standard deviation shown as error bars.

segmentation tasks. We use the default hyper-parameter configurations from the training scripts
provided by the codebase for CW-RGP, using our 200-epoch pre-trained model on ImageNet.

For the experiments of ‘VOC 07+12 detection’, we use Faster R-CNN fine-tuned in VOC 2007
trainval + 2012 train, evaluated in VOC 2007 test. For the experiments of ‘COCO detection and
COCO instance segmentation’, we use Mask R-CNN (1× schedule) fine-tuned in COCO 2017 train,
evaluated in COCO 2017 val. All Faster/Mask R-CNN models are with the C4-backbone. Our
CW-RGP is performed with 3 random seeds, with mean and standard deviation reported.

E Investigating the Projector MLP

As mentioned in section 5 of the submitted paper, we conduct preliminary experiments to explore
how the projector affects the extents of whitening between encoding and embedding. Specifically, we
conduct experiments to explore the extents of whitening between encoding and embedding by varying
the dimension and number of the hidden layer of the projector, based on our CW-RGP algorithm.

Dimension of the Hidden Layer Here, we conduct experiments on CIFAR-10 to observe the
effect by using different dimensions, ranging in {1024, 2048, 4096, 8192}, of the hidden layer. In the
experiments, we set the projector: one hidden layer with BN and Relu applied to it and a linear layer
as output (the embedding is 2048). We train the model for 200 epochs (other settings are the same as
the experiments described in Section A.2). We use encoding as the representation for evaluation. The
results are shown in Figure II. We observe that CW-RGP can obtain improved linear/5-NN accuracy,
and increased rank of embedding, when increasing the dimension of the hidden layer. We find that
CW-RGP can make the encoding full-rank for all settings with different dimensions. Besides, there
are no significant differences in terms of the stable-rank (the extent of whitening) of embedding for all
settings. One interesting observation is that the stable-rank of encoding decreases as the dimension of
the hidden layer increases. For this observation, we conjecture that the large hidden-layer dimension
may amplify the largest eigenvalue of the covariance matrix of encoding (driven by back-propagation),
which leads to the decrease of stable-rank of encoding.

Number of the Hidden Layer We then conduct experiments on Tiny ImageNet to observe the
effect by using different numbers, ranging in {1, 2, 3, 4, 5}, of the hidden layer (dimension of the
hidden layer and embedding are 2048 and 1024 respectively). We train the model for 400 epochs
(other settings are the same as the experiments described in Section A.2). We use encoding as the
representation for evaluation. The results are shown in Figure III. We observe that CW-RGP can
obtain increased rank and stable-rank (extent of whitening) of embedding, when decreasing the
numbers of the hidden layer from 5 to 2. We also find that CW-RGP can make the encoding to be
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Figure III: Illustration of different projectors when varying the number of the hidden layer. We show
(a) the linear accuracies; (b) the normalized stable-rank of embedding; (c) the rank of embedding. (d)
the k-NN accuracies; (e) the normalized stable-rank of encoding; (f) the rank of encoding. All results
are averaged by three random seeds, with standard deviation shown as error bars.

full-rank for almost all settings with different numbers of the hidden layer, except that CW-RGP
with the projector using 5 hidden-layer has slightly reduced rank and has slightly worse performance.
For this experiment, we do not obtain a clear clue that how the numbers of the hidden layer of the
projector affects the extent of whitening.
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Figure IV: Illustration of CW with different penalty weights {0, 0.001, 0.01, 0.1} of the covariance
loss. We use the ResNet-18 as the encoder (dimension of representation is 512.), a two layer MLP
with ReLU and BN appended as the projector (dimension of embedding is 2048). The model is
trained on CIFAR-10 for 200 epochs with a batch size of 256 and standard data argumentation, using
Adam optimizer [12] (more details of experimental setup please see Section A). We show (a) the
normalized stable-rank of embedding; (b) the rank of embedding. The results are averaged by five
random seeds, with standard deviation shown using shaded region.

F Covariance Loss along Channel Dimension

We note that VICReg [1] uses covariance loss along the batch dimension to constrain the evolution of
the covariance matrix of embedding Z to a diagonal matrix. The main idea is to reduce the value of
non-diagonal elements of the covariance matrix. It is natural to extend this covariance loss along the
channel dimension and we explore whether covariance loss can be used together with whitening loss
in this section.

For adapting to the sample orthogonalization like our channel whitening (CW), we propose a
covariance loss along the channel dimension as follows:

Centering : Zc = (I− 1

d
1 · 1T )Z, (6)

Covariance matrix : Σ =
1

d− 1
ZTc Zc, (7)

Covariance loss : C =
1

m

∑
i6=j

Σ2
i,j , (8)

We conduct experiments to show that our CW can work well with the covariance loss and the
covariance loss even can amplify the extent of whitening of the embedding. We use CW combing
the covariance loss with varying penalty weights ranging in {0, 0.001, 0.01, 0.1}. The results are
shown in Figure IV. We observe that CW can obtain a significantly higher rank and stable-rank of
embedding Z, when increasing the penalty weight of covariance loss, especially in the early stage of
training where a relatively large learning rate is used. We also note that CW with covariance loss
using a penalty weight of 0.001 obtains an accuracy of 88.78%, slightly better than CW without
covariance loss which has an accuracy of 88.50%.

G Licenses of Datasets

ImageNet [6] is subject to the ImageNet terms of access [5].

PASCAL VOC [8] uses images from Flickr, which is subject to the Flickr terms of use [9].

The annotations of COCO [15] are under the Creative Commons Attribution 4.0 License. The images
are subject to the Flickr terms of use [9].
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