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Abstract

A desirable objective in self-supervised learning (SSL) is to avoid feature collapse.
Whitening loss guarantees collapse avoidance by minimizing the distance between
embeddings of positive pairs under the conditioning that the embeddings from
different views are whitened. In this paper, we propose a framework with an
informative indicator to analyze whitening loss, which provides a clue to demystify
several interesting phenomena as well as a pivoting point connecting to other SSL
methods. We reveal that batch whitening (BW) based methods do not impose
whitening constraints on the embedding, but they only require the embedding
to be full-rank. This full-rank constraint is also sufficient to avoid dimensional
collapse. Based on our analysis, we propose channel whitening with random
group partition (CW-RGP), which exploits the advantages of BW-based methods
in preventing collapse and avoids their disadvantages requiring large batch size.
Experimental results on ImageNet classification and COCO object detection reveal
that the proposed CW-RGP possesses a promising potential for learning good
representations. The code is available at https://github.com/winci-ai/CW-RGP.

1 Introduction
Self-supervised learning (SSL) has made significant progress over the last several years [1, 19, 6, 16,
8], almost reaching the performance of supervised baselines on many downstream tasks [33, 24, 35].
Several recent approaches rely on a joint embedding architecture in which a dual pair of networks are
trained to produce similar embeddings for different views of the same image [8]. Such methods aim
to learn representations that are invariant to transformation of the same input. One main challenge
with the joint embedding architectures is how to prevent a collapse of representation, in which the
two branches ignore the inputs and produce identical and constant output representations [6, 8].

One line of work uses contrastive learning methods that attract different views from the same image
(positive pairs) while pull apart different images (negative pairs), which can prevent constant outputs
from the solution space [43]. While the concept is simple, these methods need large batch size to
obtain a good performance [19, 6, 37]. Another line of work tries to directly match the positive targets
without introducing negative pairs. A seminal approach, BYOL [16], shows that an extra predictor
and momentum is essential for representation learning. SimSiam [8] further generalizes [16] by
empirically showing that stop-gradient is essential for preventing trivial solutions. Recent works
generalize the collapse problem into dimensional collapse [21, 25]2 where the embedding vectors only
span a lower-dimensional subspace and would be highly correlated. Therefore, the embedding vector
dimensions would vary together and contain redundant information. To prevent the dimensional
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collapse, whitening loss is proposed by only minimizing the distance between embeddings of positive
pairs under the condition that embeddings from different views are whitened [12, 21]. A typical way
is using batch whitening (BW) and imposing the loss on the whitened output [12, 21], which obtains
promising results.

Although whitening loss has theoretical guarantee in avoiding collapse, we experimentally observe
that this guarantee depends on which kind of whitening transformation [26] is used in practice
(see Section 3.2 for details). This interesting observation challenges the motivations of whitening
loss for SSL. Besides, the motivation of whitening loss is that the whitening operation can remove
the correlation among axes [21] and a whitened representation ensures the examples scattered in
a spherical distribution [12]. Based on this argument, one can use the whitened output as the
representation for downstream tasks, but it is not used in practice. To this end, this paper investigates
whitening loss and tries to demystify these interesting observations. Our contributions are as follows:

• We decompose the symmetric formulation of whitening loss into two asymmetric losses,
where each asymmetric loss requires an online network to match a whitened target. This
mechanism provides a pivoting point connecting to other methods, and a way to understand
why certain whitening transformation fails to avoid dimensional collapse.

• Our analysis shows that BW based methods do not impose whitening constraints on the
embedding, but they only require the embedding to be full-rank. This full-rank constraint is
also sufficient to avoid dimensional collapse.

• We propose channel whitening with random group partition (CW-RGP), which exploits
the advantages of BW-based method in preventing collapse and avoids their disadvantages
requiring large batch size. Experimental results on ImageNet classification and COCO
object detection show that CW-RGP has promising potential in learning good representation.

2 Related Work
A desirable objective in self-supervised learning is to avoid feature collapse.
Contrastive learning prevents collapse by attracting positive samples closer, and spreading negative
samples apart [43, 44]. In these methods, negative samples play an important role and need to be
well designed [34, 1, 20]. One typical mechanism is building a memory bank with a momentum
encoder to provide consistent negative samples, proposed in MoCos [19], yielding promising results
[19, 7, 9, 30]. Other works include SimCLR [6] addresses that more negative samples in a batch with
strong data augmentations perform better. Contrastive methods require large batch sizes or memory
banks, which tends to be costly, promoting the questions whether negative pairs is necessary.
Non-contrastive methods aim to accomplish SSL without introducing negative pairs explicitly [3,
4, 31, 16, 8]. One typical way to avoid representational collapse is the introduction of asymmetric
network architecture. BYOL [16] appends a predictor after the online network and introduce
momentum into the target network. SimSiam [8] further simplifies BYOL by removing the momentum
mechanism, and shows that stop-gradient to target network serves as an alternative approximation to
the momentum encoder. Other progress includes an asymmetric pipeline with a self-distillation loss
for Vision Transformers [5]. It remains not clear how the asymmetric network avoids collapse without
negative pairs, leaving the debates on batch normalization (BN) [14, 41, 36] and stop-gradient [8, 46],
even though preliminary works have attempted to analyze the training dynamics theoretical with
certain assumptions [40] and build a connection between asymmetric network with contrastive
learning methods [39]. Our work provides a pivoting point connecting asymmetric network to
profound whitening loss in avoiding collapse.
Whitening loss has theoretical guarantee in avoiding collapse by minimizing the distance of positive
pairs under the conditioning that the embeddings from different views are whitened [45, 12, 21, 2].
One way to obtain whitened output is imposing a whitening penalty as regularization on embedding—
the so-called soft whitening, which is proposed in Barlow Twins [45], VICReg [2] and CCA-SSG [47].
Another way is using batch whitening (BW) [22]—the so-called hard whitening, which is used in
W-MSE [12] and Shuffled-DBN [21]. We propose a different hard whitening method—channel
whitening (CW) that has the same function that ensures all the singular values of transformed output
being one for avoiding collapse. But CW is more numerical stable and works better when batch size is
small, compared to BW. Furthermore, our CW with random group partition (CW-RGP) can effectively
control the extent of constraint on embedding and obtain better performance in practice. We note
that a recent work ICL [48] proposes to decorrelate instances, like CW but having several significant
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differences in technical details. ICL uses "stop-gradient" for the whitening matrix, while CW requires
back-propagation through the whitening transformation. Besides, ICL uses extra pre-conditioning on
the covariance and whitening matrices, which is essential for the numerical stability, while CW does
not use extra pre-conditioning and can work well since it encourages the embedding to be full-rank.

3 Exploring Whitening Loss for SSL

3.1 Preliminaries
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Figure 1: The basic notations for SSL used in this paper.

Let x denote the input sampled uniformly
from a set of images D, and T denote the
set of data transformations available for
augmentation. We consider the Siamese
network fθ(·) parameterized by θ. It takes
as input two randomly augmented views,
x1 = T1(x) and x2 = T2(x), where
T1,2 ∈ T. The network fθ(·) is trained
with an objective function that minimizes
the distance between embeddings obtained from different views of the same image:

L(x, θ) = Ex∼D, T1,2∼T `
(
fθ(T1(x)), fθ(T2(x))

)
. (1)

where `(·, ·) is a loss function. In particular, the Siamese network usually consists of an encoder
Eθe(·) and a projector Gθg (·). Their outputs h = Eθe(T (x)) and z = Gθg (h) are referred to as
encoding and embedding, respectively. We summarize the notations and use the corresponding capital
letters denoting mini-batch data in Figure 1. Under this notation, we have fθ(·) = Gθg (Eθe(·)) with
learnable parameters θ = {θe, θg}. The encoding h is usually used as representation for evaluation
by either training a linear classifier [19] or transferring to downstream tasks. This is due to that h is
shown to obtain significantly better performance than the embedding z [6, 8].

The mean square error (MSE) of L2−normalized vectors is usually used as the loss function [8]:

`(z1, z2) = ‖ z1
‖z1‖2

− z2
‖z2‖2

‖22, (2)

where ‖ · ‖2 denotes the L2 norm. This loss is also equivalent to the negative cosine similarity, up to
a scale of 1

2 and an optimization irrelevant constant.

Collapse and Whitening Loss. While minimizing Eqn. 1, a trivial solution known as collapse could
occur such that fθ(x) ≡ c, ∀x ∈ D. The state of collapse will provide no gradients for learning and
offer no information for discrimination. Moreover, a weaker collapse condition called dimensional
collapse can be easily arrived, for which the projected features collapse into a low-dimensional
manifold. As illustrated in [21], dimensional collapse is associated with strong correlations between
axes, which motivates the use of whitening method in avoiding the dimensional collapse. The general
idea of whitening loss [12] is to minimize Eqn. 1, under the condition that embeddings from different
views are whitened, which can be formulated as3:

min
θ
L(x; θ) = Ex∼D, T1,2∼T `(z1, z2),

s.t. cov(zi, zi) = I, i ∈ {1, 2}. (3)
Whitening loss provides theoretical guarantee in avoiding (dimensional) collapse, since the embedding
is whitened with all axes decorrelated [12, 21]. While it is difficult to directly solve the problem
of Eqn. 3, Ermolov et al. [12] propose to whiten the mini-batch embedding Z ∈ Rdz×m using
batch whitening (BW) [22, 38] and impose the loss on the whitened output Ẑ ∈ Rdz×m, given the
mini-batch inputs X with size of m, as follows:

min
θ
L(X; θ) = EX∼D, T1,2∼T ‖Ẑ1 − Ẑ2‖2F

with Ẑi = Φ(Zi), i ∈ {1, 2}, (4)
where Φ(·) denotes the whitening transformation over mini-batch data.

3The dual view formulation can be extended to s different views, as shown in [12].
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Figure 2: Effects of different whitening transformations for SSL. We use the ResNet-18 as the encoder
(dimension of representation is 512.), a two layer MLP with ReLU and BN appended as the projector
(dimension of embedding is 64). The model is trained on CIFAR-10 for 200 epochs with batch size of
256 and standard data argumentation, using Adam optimizer [27] (more details of experimental setup
please see supplementary materials). We show (a) the linear evaluation accuracy; (b) the training
loss; (c) the rank of embedding; (d) the rank of encoding.

Whitening Transformations. There are an infinite number of possible whitening matrices, as
shown in [26, 22], since any whitened data with a rotation is still whitened. For simplifying notation,
we assume Z is centered by Z := Z(I − 1

m11T ). Ermolov et al. [12] propose W-MSE that uses
Cholesky decomposition (CD) whitening: ΦCD(Z) = L−1Z in Eqn. 4, where L is a lower triangular
matrix from the Cholesky decomposition, with LLT = Σ. Here Σ = 1

mZZT is the covariance matrix
of the embedding. Hua et al. [21] use zero-phase component analysis (ZCA) whitening [22] in Eqn. 4:
ΦZCA = UΛ−

1
2UT , where Λ = diag(λ1, . . . , λdz ) and U = [u1, ...,udz ] are the eigenvalues and

associated eigenvectors of Σ, i.e., UΛUT = Σ. Another famous whitening is principal components
analysis (PCA) whitening: ΦPCA = Λ−

1
2UT [26, 22].

3.2 Empirical Investigation on Whitening Loss
In this section, we conduct experiments to investigate the effects of different whitening transformations
Φ(·) used in Eqn. 4 for SSL. Besides, we investigate the performances of different features (including
encoding H, embedding Z and the whitened output Ẑ) used as representation for evaluation. For
illustration, we first define the rank and stable-rank [42] of a matrix as follows:
Definition 1. Given a matrix A ∈ Rd×m, d ≤ m, we denote {λ1, ..., λd} the singular values of A in
a descent order with convention λ1 > 0. The rank of A is the number of its non-zero singular values,
denoted as Rank(A) =

∑d
i=1 I(λi > 0), where I(·) is the indicator function. The stable-rank of A

is denoted as r(A) =
∑d

i=1 λi

λ1
.

By definition, Rank(A) can be a good indicator to evaluate the extent of dimensional collapse of A,
and r(A) can be an indicator to evaluate the extent of whitening of A. It can be demonstrated that
r(A) ≤ Rank(A) ≤ d [42]. Note that if A is fully whitened with covariance matrix AAT = mI,
we have r(A) = Rank(A) = d. We also define normalized rank as R̂ank(A) = Rank(A)

d and
normalized stable-rank as r̂(A) = r(A)

d , for comparing the extent of dimensional collapse and
whitening of matrices with different dimensions, respectively.

PCA Whitening Fails to Avoid Dimensional Collapse. We compare the effects of ZCA, CD, PCA
transformations for whitening loss, evaluated on CIFAR-10 using the standard setup for SSL (see
Section 4.1 for details). Besides, we also provide the result of batch normalization (BN) that only
performs standardization without decorrelating the axes, and the ‘Plain’ method that imposes the
loss directly on embedding. From Figure 2, we observe that naively training a Siamese network
(‘Plain’) results in collapse both on the embedding (Figure 2(c)) and encoding (Figure 2(d)), which
significantly hampers the performance (Figure 2(a)), although its training loss becomes close to zero
(Figure 2(b)). We also observe that an extra BN imposed on the embedding prevents collapse to a
point. However, it suffers from the dimensional collapse where the rank of embedding and encoding
are significantly low, which also hampers the performance. ZCA and CD whitening both maintain
high rank of embedding and encoding by decorrelating the axes, ensuring high linear evaluation
accuracy. However, we note that PCA whitening shows significantly different behaviors: PCA
whitening cannot decrease the loss and even cannot avoid the dimensional collapse, which also leads
to significantly downgraded performance. This interesting observation challenges the motivations of
whitening loss for SSL. We defer the analyses and illustration in Section 3.3.

Whitened Output is not a Good Representation. As introduced before, the motivation of whiten-
ing loss for SSL is that the whitening operation can remove the correlation among axes [21] and a
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Figure 3: Comparisons of features when using encoding H, embedding Z and whitened output Ẑ
respectively. We follow the same experimental setup as Figure 2. We show (a) the linear evaluation
accuracy; (b) the kNN accuracy; (c) the normalized stable-rank for comparing the extent of whitening
(note that the normalized stable-rank of Ẑ is always 100% during training and we omit it for clarity).
The results are averaged by five random seeds, with standard deviation shown using shaded region.

whitened representation ensures that the examples scattered in a spherical distribution [12], which
is sufficient to avoid collapse. Based on this argument, one should use the whitened output Ẑ as
the representation for downstream tasks, rather than the encoding H that is commonly used. This
raises questions that whether H is well whitened and whether the whitened output is a good feature.
We conduct experiments to compare the performances of whitening loss, when using H, Z and
Ẑ as representations for evaluation respectively. The results are shown in Figure 3. We observe
that using whitened output Ẑ as a representation has significantly worse performance than using H.
Furthermore, we find that the normalized stable rank of H is significantly smaller than 100%, which
suggests that H is not well whitened. These results show that the whitened output could not be a
good representation.

3.3 Analysing Decomposition of Whitening Loss
For clarity, we use the mini-batch input with size of m. Given one mini-batch input X with two
augmented views, Eqn. 4 can be formulated as:

L(X) =
1

m
‖Ẑ1 − Ẑ2‖2F . (5)

Let us consider a proxy loss described as:

L
′
(X) =

1

m
‖Ẑ1 − (Ẑ2)st‖2F︸ ︷︷ ︸

L′1

+
1

m
‖(Ẑ1)st − Ẑ2‖2F︸ ︷︷ ︸

L′2

, (6)

where (·)st indicates the stop-gradient operation. It is easy to demonstrate that ∂L∂θ = ∂L
′

∂θ (see
supplementary materials for proof). That is, the optimization dynamics of L is equivalent to L′ . By
looking into the first term of Eqn. 6, we have:

L
′

1 =
1

m
‖φ(Z1)Z1 − (Ẑ2)st‖2F . (7)

Here, we can view φ(Z1) as a predictor that depends on Z1 during forward propagation, and Ẑ2

as a whitened target with r(Ẑ2) = Rank(Ẑ2) = dz . In this way, we find that minimizing L′1 only
requires the embedding Z1 being full-rank with Rank(Ẑ1) = dz , as stated by following proposition.

Proposition 1. Let A = argminZ1
L′1(Z1). We have that A is not an empty set, and ∀Z1 ∈ A, Z1 is

full-rank. Furthermore, for any {σi}dzi=1 with σ1 ≥ σ2 ≥, ..., σdz > 0, we construct Ã = {Z1|Z1 =
U2 diag(σ1, σ2, ..., σdz ) VT

2 , where U2 ∈ Rdz×dz and V2 ∈ Rm×dz are from the singular value
decomposition of Ẑ2, i.e., U2(

√
mI)VT

2 = Ẑ2. When we use ZCA whitening, we have Ã ⊆ A.

The proof is shown in supplementary materials. Proposition 1 states that there are infinity matrix
with full-rank that is the optimum when minimizing L′1 w.r.t. Z1. Therefore, minimizing L′1 only
requires the embedding Z1 being full-rank with Rank(Ẑ1) = dz , and does not necessarily impose
the constraints on Z1 to be whitened with r(Z1) = dz . Similar analysis also applies to L′2 and
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minimizing L′2 requires Z2 being full-rank. Therefore, BW-based methods shown in Eqn. 4 do not
impose whitening constraints on the embedding as formulated in Eqn. 3, but they only require the
embedding to be full-rank. This full-rank constraint is also sufficient to avoid dimensional collapse
for embedding, even though it is a weaker constraint than whitening.

Our analysis further implies that whitening loss in its symmetric formulation (Eqn. 5) can be
decomposed into two asymmetric losses (Eqn. 6), where each asymmetric loss requires an online
network to match a whitened target. This mechanism provides a pivot connecting to other methods,
and a clue to understand why PCA whitening fails to avoid dimensional collapse for SSL.

Connection to Asymmetric Methods. The asymmetric formulation of whitening loss shown in
Eqn. 7 bears resemblance to those asymmetry methods without negative pairs, e.g., SimSiam [8]. In
these methods, an extra predictor is incorporated and the stop-gradient is essential for avoid collapse.
In particular, SimSiam uses the objective as:

L(X) =
1

m
‖Pθp(·) ◦ Z1 − (Z2)st‖2F +

1

m
‖Pθp(·) ◦ Z2 − (Z1)st‖2F , (8)

where Pθp(·) is the predictor with learnable parameters θp. By contrasting Eqn. 7 and the first term of
Eqn. 8, we find that: 1) BW-based whitening loss ensures a whitened target Ẑ2, while SimSiam does
not put constraint on the target Z2; 2) SimSiam uses a learnable predictor Pθp(·), which is shown to
empirically avoid collapse by matching the rank of the covariance matrix by back-propagation [40],
while BW-based whitening loss has an implicit predictor φ(Z1) depending on the input itself, which
is a full-rank matrix by design. Based on this analysis, we find that BW-based whitening loss can
surely avoid collapse if the loss converges well, while Simsian can not provide such a guarantee in
avoiding collapse. Similar analysis also applies to BYOL [16], except that BYOL uses a momentum
target network for providing target signal.

Connection to Soft Whitening. VICReg [2] also encourages whitened embedding produced from
different views, but by imposing a whitening penalty as a regularization on the embedding, which is
called soft whitening. In particular, given a mini-batch input, the objective of VICReg is as follows4:

L(X) =
1

m
‖Z1 − Z2‖2F + α

2∑
i=1

(‖ 1

m
ZiZ

T
i − λI‖2F ), (9)

where α ≥ 0 is the penalty factor. Similarly, we can use a proxy loss for VICReg and considering its
term corresponding to optimizing Z1 only (similar to Eqn. 7), we have:

L
′

V ICReg(X) =
1

m
‖Z1 − (Z2)st‖2F + α‖ 1

m
Z1Z

T
1 − λI‖2F . (10)

Based on this formulation, we observe that VICReg requires embedding Z1 to be whitened by, 1) the
additional whitening penalty, and 2) fitting the (expected) whitened targets Z2. By contrasting Eqns. 7
and 10, we highlight that the so-called hard whitening methods, like W-MSE [12], only impose full-
rank constraints on the embedding, while soft whitening methods indeed impose whitening constraints.
Similar analysis also applies to Barlow Twins [45], except that the whitening/decorrelation penalty is
imposed on the cross-covariance matrix of embedding from different views.

Connection to Other Non-contrastive Methods. SwAV [4], a clustering-based method, uses a
"swapped" prediction mechanism where the cluster assignment (code) of a view is predicted from the
representation of another view, by minimizing the following objective:

L(X) = `(CTZ1, (Q2)st) + `(CTZ2, (Q1)st). (11)

Here, C is the prototype matrix learned by back-propagation, Qi is the predicted code with equal-
partition and high-entropy constraints, and SwAV uses cross-entropy loss as `(·, ·) to match the
distributions. The constraints on Qi are approximately satisfied during optimization, by using the
iterative Sinkhorn-Knopp algorithm conditioned on the input CTZi. Note that SwAV explicitly uses
stop-gradient when it calculates the target Qi. By contrasting Eqn. 7 and the first term of Eqn. 11,
we find that: 1) SwAV can be viewed as an online network to match a target with constraints, like
BW-based whitening loss, even thought the constraints imposed on the targets between them are

4Note the slight difference where VICReg uses margin loss on the diagonal of covariance, while our notation
uses MSE loss.
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different; 2) From the perspective of asymmetric structure, SwAV indeed uses a linear predictor CT

that is also learned by back-propagation like SimSiam, while BW-based whitening loss has an implicit
predictor φ(Z1) depending on the input itself. Similar analysis also applies to DINO [5], which
further simplifies the formulation of SwAV by removing the prototype matrix and directly matching
the output of another view, from the view of knowledge distillation. DINO uses centering and
sharpening operations to impose the constraints on the target (output of another view). One significant
difference between DINO and whitening loss is that DINO uses population statistics of centering
calculated by moving average, while whitening loss uses the mini-batch statistics of whitening.

PCA0 100 ZCA0 100 PCA500 600 ZCA500 600

Sampling
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n 
of

 v
ar

ia
nc

es
 

Mean

101

102

103

M
ax

 o
f v

ar
ia

nc
es

 

Max

(a)

0 1 10 50 100 1000 5000 10000
Variance

0

5000

10000

15000

Fr
eq

ue
nc

y 

PCA
ZCA

(b)

Figure 4: Illustration of PCA-based whitening loss suf-
fering from training instability. We follow the same ex-
perimental setup as Figure 2. Given a certain mini-batch
input (m = 2048), we monitor its whitened output Ẑt and
whitening matrix Φt for each epoch t. We calculate the
variance along the training epochs for each element of
Ẑ and Φ. We show (a) the mean and maximum of vari-
ances of Ẑ, noting that PCA0−100 indicates the variance
of PCA whitened output is calculated along the first 100
epochs; and (b) the histogram of variance of Φ.

Why PCA Whitening Fails to Avoid Di-
mensional Collapse? Based on Eqn. 7,
we note that whitening loss can favor-
ably provide full-rank constraints on the
embedding under the condition that the
online network can match the whitened
targets well. We experimentally find
that PCA-based whitening loss provides
volatile sequence of whitened targets dur-
ing training, as shown in Figure 4(a). It is
difficult for the online network to match
such a target signal with significant vari-
ation, resulting in minimal decrease in
the whitening loss (see Figure 2). Fur-
thermore, we observe that PCA-based
whitening loss has also significantly vary-
ing whitening matrix sequences {φt(·)}
(Figure 4(b)), even given the same input
data. This coincides with the observation
in [16, 8], where an unstable predictor results in significant degenerate performance. Our observations
are also in accordance with the arguments in [22, 23] that PCA-based BW shows significantly large
stochasticity. We note that ZCA whitening can provide relatively stable sequences of whitened targets
and whitening matrix during training (Figure 4), which ensures stable training for SSL. This is likely
due to the property of ZCA-based whitening that minimizes the total squared distance between the
original and whitened variables [26, 22].

Why Whitened Output is not a Good Representation? A whitened output removes the corre-
lation among axes [21] and ensures the examples scattered in a spherical distribution [12], which
bears resemblance to contrastive learning where different examples are pulled away. We conduct
experiments to compare SimCLR [6], BYOL [16], VICReg [2] and W-MSE [12], and monitor the
cosine similarity for all negative pairs, stable-rank and rank during training. From Figure 5, we find
that all methods can achieve a high rank on the encoding. This is driven by the improved extent of
whitening on the embedding. Furthermore, we observe that the negatives cosine similarity decreases
during the training, while the extent of stable-rank increases, for all methods. This observation
suggests that a representation with stronger extent of whitening is more likely to have less similarity
among different examples. We further conduct experiments to validate this argument, using VICReg
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Figure 5: Comparison of different SSL methods. We follow the same experimental setup as Figure 2.
We show (a) the normalized stable-rank of embedding; (b) the rank of encoding; (c) the negatives
cosine similarity, calculated on the embeddings from all negative pairs (different examples). We
also train VICReg with varying penalty factor α to show the relationship between the normalized
stable-rank and negatives cosine similarity in (d). Here, we use embedding dimension of 64. We have
similar observations when using the embedding dimension of other numbers (e.g., 128 and 256).
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Figure 6: Illustration of CW with random group partition. We follow the same experimental setup
as Figure 2, except that we set the dimension of embedding as 2048 tailored for CW. We use ‘GP2’
(‘RGP2’) to indicate CW using group partition (random group partition), with a group number of 2.
(a) The linear and k-NN accuracies; (b) The normalized stable-rank of embedding; (c) The rank of
embedding. All experiments are repeated five times, with standard deviation shown as error bars.

with varying penalty factor α (Eqn. 10) to adjust the extent of whitening on embedding (Figure 5(d)).
Therefore, a whitened output leads to the state that all examples have dissimilar features. This state
can break the potential manifold the examples in the same class belong to, which makes the learning
more difficult [17]. Similar analysis for contrastive learning is also shown in [6], where classes
represented by the projected output (embedding) are not well separated, compared to encoding.

4 Channel Whitening with Random Group Partition
One main weakness of BW-based whitening loss is that the whitening operation requires the number of
examples (mini-batch size) m to be larger than the size of channels d, to avoid numerical instability5.
This requirement limits its usage in scenarios where large batch of training data cannot be fit into
the memory. Based on previous analysis, the whitening loss can be viewed as an online learner to
match a whitened target with all singular values being one. We note the key of whitening loss is that
it conducts a transformation φ : Z → Ẑ, ensuring that the singular values of Ẑ are one. We thus
propose channel whitening (CW) that ensures the examples in a mini-batch are orthogonal:

Centering : Zc = (I− 1

d
1 · 1T )Z, Whitening : Ẑ = ZcΦ, (12)

where Φ ∈ Rm×m is the ‘whitening matrix’ that is derived from the corresponding ‘covariance
matrix’: Σ

′
= 1

d−1Z
T
c Zc. In our implementation, we use ZCA whitening to obtain Φ. CW ensures

the examples in a mini-batch are orthogonal to each other, with ẐT Ẑ = 1
d−1I. This means CW has

the same ability as BW for SSL in avoiding the dimensional collapse, by providing target Ẑ whose
singular values are one. More importantly, one significant advantage of CW is that it can obtain
numerical stability when the batch size is small, since the condition that d > m can be obtained
by design (e.g., we can set the channel number of embedding d to be larger than the batch size m).
Besides, we find that CW can amplify the full-rank constraints on the embedding by dividing the
channels/neurons into random groups, as we will illustrate.

Random Group Partition. Given the embedding Z ∈ Rd×m, d > m, we divide it into g ≥ 1

groups {Z(i) ∈ R
d
g×m}gi=1, where we assume that d is divisible by g and ensure d

g > m. We then
perform CW on each Z(i), i = 1, ..., g. Note that the ranks of Z and Z(i) are all at most m. Therefore,
CW with group partition provides g constraints with Rank(Z(i)) = m on embedding, compared to
CW without group partition that only one constraint with Rank(Z) = m. Although CW with group
partition can provide more full-rank constraints for mini-batch data, we find that it can also make
the population data correlated, if group partition is all the same during training, which decreases
the rank and does not improve the performance in accuracy by our experiments (Figure 6). We find
random group partition, which randomly divide the channels/neurons into group for each iteration
(mini-batch data), can alleviate this issue and obtain an improved performance, from Figure 6. We
call our method as channel whitening with random group partition (CW-RGP), and provide the full
algorithm and PyTorch-style code in supplementary materials.

We note that Hua et al. [21] use a similar idea for BW, called Shuffled-DBN. However Shuffled-DBN
cannot well amplify the full-rank constraints by using more groups, since BW-based methods require
m > d

g to avoid numerical instability. We further show that CW-RGP works remarkably better than

5An empirical setting is m = 2d that can obtain good performance as shown in [12, 21].
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Table 1: Classification accuracy (top 1) of a linear classifier and a 5-nearest neighbors classifier for
different loss functions and datasets with a ResNet-18 encoder.

Method CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet
linear 5-nn linear 5-nn linear 5-nn linear 5-nn

SimCLR [6] 91.80 88.42 66.83 56.56 90.51 85.68 48.84 32.86
BYOL [16] 91.73 89.45 66.60 56.82 91.99 88.64 51.00 36.24
SimSiam [8] (repro.) 90.51 86.82 66.04 55.79 88.91 84.84 48.29 34.21
Shuffled-DBN [21] (repro.) 90.45 88.15 66.07 56.97 89.20 84.51 48.60 32.14
Barlow Twins [45] (repro.) 88.51 86.53 65.78 55.76 88.36 83.71 47.44 32.65
VICReg [2] (repro.) 90.32 88.41 66.45 56.78 90.78 85.72 48.71 33.35
Zero-ICL [48] (repro.) 88.12 86.64 61.91 53.47 86.35 82.51 46.25 32.74
W-MSE 2 [12] 91.55 89.69 66.10 56.69 90.36 87.10 48.20 34.16
W-MSE 4 [12] 91.99 89.87 67.64 56.45 91.75 88.59 49.22 35.44
CW-RGP 2 (ours) 91.92 89.54 67.51 57.35 90.76 87.34 49.23 34.04
CW-RGP 4 (ours) 92.47 90.74 68.26 58.67 92.04 88.95 50.24 35.99

Shuffled-DBN in the subsequent experiments. We attribute this results to the ability of CW-RGP in
amplifying the full-rank constraints by using groups.

4.1 Experiments for Empirical Study
Table 2: Comparisons on ImageNet linear clas-
sification. All are based on ResNet-50 encoder.
The table is mostly inherited from [8].
Method Batch size 100 eps 200 eps
SimCLR [6] 4096 66.5 68.3
MoCo v2 [7] 256 67.4 69.9
BYOL [16] 4096 66.5 70.6
SwAV [4] 4096 66.5 69.1
SimSiam [8] 256 68.1 70.0
W-MSE 4 [12] 4096 69.4 -
Zero-CL [48] 1024 68.9 -
BYOL [16] (repro.) 512 66.1 69.2
SwAV [4] (repro.) 512 65.8 67.9
W-MSE 4 [12] (repro.) 512 66.7 67.9
CW-RGP 4 (ours) 512 69.7 71.0

In this section, we conduct experiments to validate
the effectiveness of our proposed CW-RGP. We eval-
uate the performances of CW-RGP for classifica-
tion on CIFAR-10, CIFAR-100 [28], STL-10 [10],
TinyImageNet [29] and ImageNet [11]. We also
evaluate the effectiveness in transfer learning, for a
pre-trained model using CW-RGP. We run the ex-
periments on one workstation with 4 GPUs. For
more details of implementation and training proto-
col, please refer to supplementary materials.

Evaluation for Classification We first conduct
experiments on small and medium size datasets (in-
cluding CIFAR-10, CIFAR-100, STL-10 and Tiny-
ImageNet), strictly following the setup of W-MSE
paper [12]. Our CW-RGP inherits the advantages
of W-MSE in exploiting different views. CW-RGP 2 and CW-RGP 4 indicate our methods with s = 2
and s = 4 positive views extracted per image respectively, similar to W-MSE [12]. The results of
baselines shown in Table. 1 are partly inherited in [12], except that we reproduce certain baselines
under the same training and evaluation settings as in [12] (some different hyper-parameter settings
are shown in supplementary materials). We observe that CW-RGP obtains the highest accuracy on
almost all the datasets except Tiny-ImageNet. Besides, CW-RGP with 4 views are generally better
than 2, similar to W-MSE. These results show that CW-RGP is a competitive SSL method. We also
confirm that CW with random group partition could obtain a higher performance than BW (and with
random group partition), comparing CW-RGP to W-MSE and Shuffled-DBN.

We then conduct experiments on large-scale ImageNet, strictly following the setup of SimSiam
paper [8]. The results of baselines shown in Table 2 are mostly reported in [8], except that the result
of W-MSE 4 is from the W-MSE paper [12] and we reproduce BYOL [16], SwAV [4] and W-MSE
4 [12] under a batch size of 512 based on the same training and evaluation settings as in [8] for
fairness. CW-RGP 4 is trained with a batch size of 512 and gets the highest accuracy among all
methods under both 100 and 200 epochs training. We find that our CW-RGP can also work well
when combined with the whitening penalty used in VICReg. Note that we also try a batch size of 256
under 100-epoch training, which gets the top-1 accuracy of 69.5%.

Transfer to downstream tasks We examine the representation quality by transferring our model
to other tasks, including VOC [13] object detection, COCO [32] object detection and instance
segmentation. We use the baseline (except for the pre-training model, the others are exactly the
same) of the detection codebase from MoCo [19] for CW-RGP to produce the results. The results of
baselines shown in Table3 are mostly inherited from [8]. We clearly observe that CW-RGP performs
better than or on par with these state-of-the-art approaches on COCO object detection and instance
segmentation, which shows the great potential of CW-RGP in transferring to downstream tasks.
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Table 3: Transfer Learning. All competitive unsupervised methods are based on 200-epoch pre-
training in ImageNet (IN). The table is mostly inherited from [8]. Our CW-RGP is performed with 3
random seeds, with mean and standard deviation reported.

Method VOC 07+12 detection COCO detection COCO instance seg.
AP50 AP AP75 AP50 AP AP75 AP50 AP AP75

Scratch 60.2 33.8 33.1 44.0 26.4 27.8 46.9 29.3 30.8
IN-supervised 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2
SimCLR [6] 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 [7] 82.3 57.0 63.3 58.8 39.2 42.5 55.5 34.3 36.6
BYOL [16] 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SwAV [4] 81.5 55.4 61.4 57.6 37.6 40.3 54.2 33.1 35.1
SimSiam [8] 82.0 56.4 62.8 57.5 37.9 40.9 54.2 33.2 35.2
CW-RGP (ours)82.2±0.07 57.2±0.10 63.8±0.11 60.5±0.28 40.7±0.14 44.1±0.14 57.3±0.16 35.5±0.12 37.9±0.14

Table 4: Results of ablation for random group partition.

Method CIFAR-10 CIFAR-100
linear 5-nn linear 5-nn

CW 2 91.66 88.99 66.26 56.36
CW-GP 2 91.61 88.89 66.17 56.53
CW-RGP 2 91.92 89.54 67.51 57.35
CW 4 92.10 90.12 66.90 57.12
CW-GP 4 92.08 90.06 67.34 57.28
CW-RGP 4 92.47 90.74 68.26 58.67

Ablation for Random Group Partition.
We also conduct experiments to show the
advantages of random group partition for
channel whitening. We use ‘CW’, ‘CW-
GP’ and ‘CW-RGP’ to indicate channel
whitening without group partition, with
group partition and with random group
partition, respectively. We further con-
sider the setup with s = 2 and s = 4
positive views. We use the same setup as
in Table 1 and show the results in Table 4. We have similar observation as in Figure 6 that CW with
random group partition improves the performance.
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Figure 7: Decrease in top-1 and 5-nn accuracy (in %
points) of CW and BW at 100 epochs on ImageNet-100.

Ablation for Batch Size. Here, we
conduct experiments to empirically show
the advantages of CW over BW, in
terms of the stability using different
batch size. We train CW and BW on
ImageNet-100, using batch size ranging
in {32, 64, 128, 256}. Figure 7 shows
the results. We can find that CW is more
robust for small batch size training.

5 Conclusion and Limitation

In this paper, we invested whitening loss for SSL, and observed several interesting phenomena with
further clarification based on our analysis framework. We showed that batch whitening (BW) based
methods only require the embedding to be full-rank, which is also a sufficient condition for collapse
avoidance. We proposed channel whitening with random group partition (CW-RGP) that is well
motivated theoretically in avoiding a collapse and has been validated empirically in learning good
representation.

Limitation. Our work only shows how to avoid collapse by using whitening loss, but does not
explicitly show what should be the extent of whitening of a good representation. We note that a
concurrent work addresses this problem by connecting the eigenspectrum of a representation to a
power law [15], and shows the coefficient of the power law is a strong indicator for the effects of
representation. We believe our work can be further extended when combined with the analyses
from [15]. Besides, our work does not answer how the projector affects the extents of whitening
between encoding and embedding [18], which is important to answer why encoding is usually used as
a representation for evaluation, rather than the whitened output or embedding. Our attempts, shown
in supplementary materials, provide preliminary results, but does not offer an answer to this question.
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