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Abstract

We present a method called Manifold Interpolating Optimal-Transport Flow
(MIOFlow) that learns stochastic, continuous population dynamics from static
snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic mod-
els, manifold learning, and optimal transport by training neural ordinary differential
equations (Neural ODE) to interpolate between static population snapshots as pe-
nalized by optimal transport with manifold ground distance. Further, we ensure that
the flow follows the geometry by operating in the latent space of an autoencoder
that we call a geodesic autoencoder (GAE). In GAE the latent space distance
between points is regularized to match a novel multiscale geodesic distance on the
data manifold that we define. We show that this method is superior to normalizing
flows, Schrödinger bridges and other generative models that are designed to flow
from noise to data in terms of interpolating between populations. Theoretically, we
link these trajectories with dynamic optimal transport. We evaluate our method
on simulated data with bifurcations and merges, as well as scRNA-seq data from
embryoid body differentiation, and acute myeloid leukemia treatment.

1 Introduction

Here, we tackle the problem of continuous dynamics of probability distributions defined on a data
manifold. Data from naturalistic systems are often modeled as generated from an underlying low
dimensional manifold embedded in a high dimensional measurement space. Termed the manifold
hypothesis, this assumption has led to many successful models of biological, chemical, and physical
systems. Measurements in such systems are increasingly high dimensional. For instance, in single
cell data the entire transcriptomic profile of the cell is measured with each mRNA or gene species
a dimension. However, because of informational redundancy between these genes, the intrinsic
dimensionality of the data is low dimensional. Mathematically, a Riemannian manifold is a good
model for such a system, and much of manifold learning literature including, diffusion maps [9],
Laplacian eigenmaps [2], and the wider graph signal processing literature, has focused on learning
this structure via data graphs [31, 32] and autoencoders [30, 11].

Building on this literature, we consider snapshot measurements of cellular populations over time.
Current technology cannot follow a cell in time as the measurements are destructive. We frame this as
learning a population flow on a data manifold. Recently several neural networks that perform flows,
or transports between probability distributions, have been proposed in the literature. However, most
of these works have focused on generative modeling: i.e., flowing from a noise distribution such as a
Gaussian distribution to a data distribution in order to generate data. Examples include score-based
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generative matching [41, 42], diffusion models [21], Schrödinger bridges [33, 10], and continuous
normalizing flows (CNF) [7, 17]. However, here we focus on learning continuous dynamics of such
systems using static snapshot measurements, with a key task being interpolation in unmeasured times,
as well as inference of individual trajectories that follow the manifold structure.

To continuously interpolate populations over time on data with manifold structure, we propose
Manifold Interpolation Optimal-transport Flow (MIOFlow)3, a new framework for flows based on
dynamical optimal transport in a manifold embedding. MIOFlow uses a neural ordinary differential
equations (Neural ODE) [7] to transport a sampling of high dimensional data points between time-
points such that 1. the transport occurs on a manifold defined by samples, 2. the transport is penalized
to agree with measured timepoints using Wasserstein, 3. the transport is inherently stochastic.

Works tackling a similar problem include TrajectoryNet [44], dynamics modeled by a recurrent neural
network [20], and Waddington-OT [38]. TrajectoryNet is based on a continuous normalizing flow
where the magnitude of the derivative is penalized to create a more optimal flow. However, this
approach suffers from several drawbacks. The first drawback is the requirement of starting from
a Gaussian distribution. It can be difficult to match distributions from the real world to Gaussian
distributions in an interpolating sense, all intermediate distributions must be penalized to start from
a Gaussian rather than being trained to flow from one to the next. Second, continuous normalizing
flows are deterministic. Hence, to model the intrinsic stochasticity in biology, we have to force
chaotic dynamics starting from slight noise added to any initial distributions. Third, continuous
normalizing flow models in k dimensions require calculating the trace of the Jacobian, which requires
O(k2) operations to compute [7], making our method k times faster per function evaluation.

Additionally, unlike normalizing flows which operate in ambient data dimensions, we focus on flows
on a data manifold. We feature a two-pronged approach with which to enforce this. First, propose the
Geodesic Autoencoder to embed the data such that distances in the latent space match a new manifold
distance called diffusion geodesic distance. Second, we penalize the transport using a manifold
optimal transport method [34, 50]. These two steps enforce flows on the manifold, whereas in earlier
works, such as TrajectoryNet, the KL-divergence is used to match distributions, and in [27] access to
the metric tensor of a Riemannian manifold is required.

The main contributions of our work include:

• The MIOFlow framework for efficiently learning continuous stochastic dynamics of static snap-
shot data based on Neural ODEs that implements optimal transport flows on a data manifold.

• The Geodesic Autoencoder to create a manifold embedding in the latent space of the autoencoder.
• A new multiscale manifold distance called diffusion geodesic distance, and theoretical results

showing its convergence to a geodesic on the manifold in the limit of infinitely many points.
• Empirical results showing that our flows can model divergent trajectories on toy data and on

single-cell developmental and treatment response data.

2 Preliminaries and Background

Problem Formulation and Notation We consider a distribution µt over Rk evolving over time
t ∈ R, from which we only observe samples from a finite set of T distributions {µi}T−1

i=0 . For
each time t, we observe a sample Xt ∼ µt of size nt. We note the set of all observations X of size
n :=

∑
i ni. We also want to characterize the evolution of the support of µt. We aim to define

a trajectory from an initial points X0 ∼ µ0 to XT−1 ∼ µT−1, given the intermediate conditions
X2 ∼ µ2, . . . , XT−1 ∼ µT−1. We are thus interested in matching distributions given a set of T
samples {Xi}T−1

i=1 , and initial condition X0.

In the following, we assume that the distributions are absolutely continuous with respect to the
Lebesgue measure, and we use the same notation for the distribution and its density. We note the
equivalence between two distances d1 ≃ d2. We assume that all Stochastic Differential Equations
(SDE) admit a solution [15]. All proofs are presented in the supplementary material.

Optimal Transport In this section, we provide a brief overview of optimal transport [34, 50],
our primary approach for interpolating between distributions using a neural ODE. We consider two
distributions µ and ν defined on X and Y , and Π(µ, ν) the set of joint distributions on X × Y with

3Code is available here: https://github.com/KrishnaswamyLab/MIOFlow
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marginals µ and ν, i.e. π(dx,Y) = µ(dx) and π(X , dy) = ν(dy) for π ∈ Π(µ, ν). The transport
plan π moves the mass from µ to ν, where the cost of moving a unit mass from the initial x ∈ X to
the final y ∈ Y is d(x, y). This formulation gives rise to the p-Wasserstein distance

Wp(µ, ν)
p := inf

π∈Π(µ,ν)

∫
X×Y

d(x, y)pπ(dx, dy),

where p ∈ [1,∞). Suppose X = Y = Rk, and d(x, y) := ||x − y||2 then Benamou and Brenier
[3] provide a dynamic formulation of the optimal transport problem. For simplicity, we assume a
fix time interval [0, 1], but note that the following holds for any time interval [t0, t1]. The transport
plan is replaced by a time-evolving distribution ρt, such that ρ0 = µ and ρ1 = ν and that satisfies
the continuity equation ∂tρt +∇ · (ρtv) = 0, where∇· is the divergence operator. The movement
of mass is described by a time-evolving vector field v(x, t). When ρt satisfies these conditions,
Benamou and Brenier [3] show that

W2(µ, ν)
2 = inf

(ρt,v)

∫ 1

0

∫
Rk

∥v(x, t)∥22ρt(dx)dt. (1)

This formulation arises from the field of fluid mechanics; the optimal vector field is the divergence of
a pressureless potential flow. We can also view the problem on the path space of Rk

W2(µ, ν)
2 = inf

Xt

E
[ ∫ 1

0

∥f(Xt, t)∥22dt
]

s.t. dXt = f(Xt, t)dt, X0 ∼ µ, X1 ∼ ν, (2)

where the infimum is over all absolutely continuous stochastic path Xt (see [28]).

Adding Diffusion For various applications, it is interesting to incorporate a diffusion term in
the paths or trajectories. These types of flows are often used in control dynamics [1, 29, 16], and
mean field games [24]. We consider an SDE dXt = f(Xt, t)dt+

√
σdBt, where Bt is a standard

Brownian motion. To model this new dynamic, one can replace the continuity equation with the
Fokker–Planck equation of this SDE with diffusion, i.e. ∂tρt +∇ · (ρtv) = ∆(σρt/2). From this
formulation, one can also retrieve the Benamou-Brenier optimal transport. Indeed, Mikami [28]
established the convergence to the W2 when the diffusion term goes to zero. Similar to (2), we can
phrase the problem using an SDE

inf
f

E
[ ∫ 1

0

∥f(Xt, t)∥22dt
]

s.t. dXt = f(Xt, t)dt+
√
σdBt, X0 ∼ µ, X1 ∼ ν. (3)

The two previous formulations admit the same entropic interpolation ρt [33, 28]. In this paper, we
utilize such a diffusion term, with the knowledge that it still converges to the transport between
distributions. Moreover, as the diffusion goes to zero, the infimum converges to the W2.

Manifold Learning A useful assumption in representation learning is that high dimensional data
originates from an intrinsic low dimensional manifold that is mapped via nonlinear functions to
observable high dimensional measurements; this is commonly referred to as the manifold assumption.
Formally, letM be a hidden m dimensional manifold that is only observable via a collection of
k ≫ m nonlinear functions f1, . . . , fk :M→ R that enable its immersion in a high dimensional
ambient space as F (M) = {f(z) = (f1(z), . . . , fk(z))

T : z ∈ M} ⊆ Rk from which data is
collected. Conversely, given a dataset X = {x1, . . . , xn} ⊂ Rk of high dimensional observations,
manifold learning methods assume data points originate from a sampling Z = {zi}ni=1 ∈ M of
the underlying manifold via xi = f(zi), i = 1, . . . , n, and aim to learn a low dimensional intrinsic
representation that approximates the manifold geometry ofM.

To learn a manifold geometry from collected data that is robust to sampling density
variations, Coifman and Lafon [9] proposed to use an anisotropic kernel kϵ,β(x, y) :=

kϵ(x, y)/∥kϵ(x, ·)∥β1∥kϵ(y, ·)∥
β
1 , where 0 ≤ β ≤ 1 controls the separation of geometry from density,

with β = 0 yielding the isotropic kernel, and β = 1 completely removing density and providing
a geometric equivalent to uniform sampling of the underlying manifold. Next, the kernel kϵ,β is
normalized to define transition probabilities pϵ,β(x, y) := kϵ,β(x, y)/∥kϵ,β(x, ·)∥1 and an n × n
row stochastic matrix (Pϵ,β)ij := pϵ,β(xi, xj) that describes a Markovian diffusion process over
the intrinsic geometry of the data. Finally, a diffusion map [9] Φt(xi) is defined by the eigenvalues
and eigenvectors of the matrix Pt

ϵ,β . Most notably, this embedding preserves the diffusion distance
∥ptϵ,β(xi, ·)− ptϵ,β(xj , ·)/ϕ1(·)∥2 between xi, xj ∈ X, where t is a time-scale parameter. Next, we
consider a multiscale diffusion distance that relates to the geodesic distance on the manifold.
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Figure 1: Overview of the MIOFlow pipeline. The Geodesic Autoencoder learns a latent space that
preserves the diffusion geodesic distance. A neural network predicts the derivative of the trajectories
with respect to time. For an initial sample at t0, the ODE Solver produces the trajectories x(t1). At a
population level, predictions of points at time t1 are penalized by the Wasserstein distance during
training.

Manifold Geodesics The dynamic optimal transport formulations (1) and (2) are valid when the
ground distance is Euclidean. This is restrictive as we might have observations sampled from a lower
dimensional manifold. Thus, using the Euclidean distance in the ambient space ignores the underlying
geometry of the data. Static optimal transport with a geodesic distance is known to perform well on
geometric domains [40, 45], or when the data lie on a manifold [46]. Here, we extend the use of a
ground geodesic distance to the dynamic formulation. To do so, we define a manifold learning step
that precedes the trajectory inference. The goal is to learn an embedding Z such that the Euclidean in
Z is equivalent to the geodesic distance. In that case, dynamic optimal transport in Z is equivalent
to the Wasserstein with a geodesic ground distance. In the following section, we present theoretical
results that will justify our approximation of a geodesic distance on a closed Riemannian manifold.

We consider a closed Riemannian manifold (M, dM), where dM is the geodesic distance representing
the shortest path between two points on the manifold. We note ht the heat kernel onM. For a point
x ∈M, the heat kernel ht(x, ·) induces a measure, i.e. how the heat has propagated on the manifold
at time t given an arbitrary initial distribution. The diffusion ground distance between x, y ∈M is
based on the L1 norm between the measures induced by the heat kernel given the initial conditions
δx and δy .

Definition 1. The diffusion ground distance between x, y ∈M is

Dα(x, y) :=
∑
k≥0

2−kα||h2−k(x, ·)− h2−k(y, ·)||1,

for α ∈ (0, 1/2), the scale parameter k ≥ 0, and ht the heat kernel onM.

Next, we state an important result from Leeb and Coifman (Thm. 2 in [25]). This theorem links the
diffusion ground distance and the geodesic on a Riemannian manifold.

Theorem 1 ([25] Thm. 2). Let (M, dM) a closed Riemannian manifold, with geodesic dM, for
α ∈ (0, 1/2), the distance Dα is equivalent to d2αM.

In practice, we cannot always evaluate the heat kernel for an arbitrary manifold. However, convergence
results from Coifman and Lafon [9] provide a natural approximation. Indeed, for β = 1, the diffusion
operator P t/ϵ

ϵ,β converges to the heat operator as ϵ goes to zero (Prop. 3 [9]). For the rest of the paper
we assume β = 1, we define Pϵ := Pϵ,1 and the matrix Pϵ := Pϵ,1.

3 Manifold Interpolating Optimal-Transport Flow

To learn individual trajectories from multiple cross-sectional samples of a population, we propose
MIOFlow shown in Fig. 1. Our method consists of two steps. We first learn an embedding Z which
preserves the diffusion geodesic distance—which we define using our Geodesic Autoencoder. Then,
we learn continuous trajectories based on an optimal transport loss. We model the trajectories with a
Neural ODE [7], allowing us to learn non-linear paths and interpolate between timepoints.
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3.1 Geodesic Autoencoder Embedding

In light of Thm. 1, we define an approximation of the diffusion ground distance Dα (Def. 1) from
a collection of samples X that we call diffusion geodesic distance. We then train an autoencoder
regularized to match this distance. Similar ideas are explored in [30, 11] where the latent space of the
autoencoder is regularized to match a manifold learning embedding, either PHATE or diffusion map.

Our approximation relies on the diffusion matrix Pϵ. We first recall its construction. We build a graph
with the affinity matrix defined by (Kϵ)ij := kϵ(xi, xj), and we consider the density normalized
matrix Mϵ := Q−1KϵQ

−1, where Q is a diagonal matrix with Qii :=
∑

j(Kϵ)ij . In practice, we
choose kϵ to be a Gaussian kernel or the α-decay kernel [32]. Lastly, a Markov diffusion operator
is defined by Pϵ := D−1Mϵ, where Dii :=

∑n
j=1(Mϵ)ij is a diagonal matrix. The stationary

distribution associated to Pϵ is π, where πi = Dii/
∑

j Djj , since Pϵ is π-reversible. Finally, we
note that the matrix Pϵ follows a similar construction as the kernel pϵ; the integrals are approximated
by sums. We refer to [9] for more details about the convergence of the matrix operator Pϵ to the
operator Pϵ. Until now, we have defined a matrix Pϵ that approximates the operator Pϵ, which in turn
converges to the heat operator. Now, we define an approximation of the diffusion ground distance,
based on the matrix Pϵ. We use the notation (Pϵ)

t
i: to represent the i-th row of Pt

ϵ, it represents the
transition probabilities of a t-steps random walk started at xi.
Definition 2. We define the diffusion geodesic distance between xi, xj ∈ X as

Gα(xi, xj) :=

K∑
k=0

2−(K−k)α||(Pϵ)
2k

i: − (Pϵ)
2k

j: ||1 + 2−(K+1)/2||πi − πj ||1.

The diffusion geodesic compares the transitions probabilities of a random walk at various scales
given two different initial states xi, xj . In [46], the authors use the diffusion operator Pϵ to define a
distance equivalent to the Wasserstein with ground distance Dα. Their method comes from the static
formulation of optimal transport. Here we propose to learn a space Z that preserves an approximation
of the distance Dα, in order to do dynamic optimal transport in Z .

Training To use the diffusion geodesic distance, we train a Geodesic Autoencoder, with encoder
outputting ϕ : Rk → Z , such that ∥ϕ(xi)− ϕ(xj)∥22 ≈ Gα(xi, xj). We draw a subsample of size N ,
evaluate Gα and minimize the Mean Square Error (MSE)

L(ϕ) :=
2

N

N∑
i=1

∑
j>i

(||ϕ(xi)− ϕ(xj)||2 −Gα(xi, xj))
2
.

Learning the embedding Z over using Gα as the advantage of being inductive, it is useful since
we use it to compute distances between predicted and ground truth observations. Moreover, the
encoder can be trained to denoise, hence becoming robust to predicted values that are not close to
the manifold. Computing Gα on the entire dataset is inefficient due to the powering of the diffusion
matrix. We circumvent this difficulty with the encoder, since we train on subsamples. We choose N
to have few observations in most regions of the manifold, thus making the computation of Gα very
efficient, which allows us to consider more scales.
Theorem 2. Assuming X is sampled from a closed Riemannian manifold M with geodesic dM.
Then, for all α ∈ (0, 1/2), sufficiently large K,N and small ϵ > 0, we have with high probability
Gα(xi, xj) ≃ d2αM(xi, xj) for all xi, xj ∈ X.

Corollary 1. If the encoder is such that L(ϕ) = 0, then with high probability ∥ϕ(xi)− ϕ(xj)∥2 ≃
d2αM(xi, xj) for all xi, xj ∈ X.

The stochasticity in the two previous results arises from the discrete approximation of the operator Pϵ.
The law or large numbers guarantees the convergence. For fix sample size, there exist approximation
error bounds with high probability, see for example [8, 39]. In practice, we choose α close to 1/2 so
that the diffusion distance is equivalent to the geodesic on the manifold. From that embedding Z , we
can also train a decoder ϕ−1 : Z → Rk, with a reconstruction loss Lr :=

∑
x ∥ϕ−1 ◦ ϕ(x)− x∥2.

This is particularly interesting in high dimensions, since we can learn the trajectories in the lower
dimensional space Z , then decode them in the ambient space. For example, we use the decoder in
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Sec. 4 to infer cellular trajectories in the gene space, enabling us to understand how specific genes
evolved over time. We describe the training procedure of the GAE in algorithm 2 in the supplementary
material.

3.2 Inferring Trajectories

Given T distributions {µi}T−1
i=0 , we want to model the trajectories respecting the conditions Xi ∼ µi

for fix timepoints i ∈ {0, . . . , T − 1}. Formally, we want to learn a parametrized function fθ(x, t)
such that

Xt = X0 +

∫ t

0

fθ(Xu, u)du, with X0 ∼ µ0, . . . , XT−1 ∼ µT−1. (4)

We adapt the main theorem from [44], to consider the path space, and other types of dissimilarities
between distributions.

Theorem 3. We consider a time-varying vector field f(x, t) defining the trajectories dXt =
f(Xt, t)dt with density ρt, and a dissimilarity between distributions such that D(µ, ν) = 0 iff
µ = ν. Given these assumptions, there exist a sufficiently large λ > 0 such that

W2(µ, ν)
2 = inf

Xt

E

[ ∫ 1

0

∥f(Xt, t)∥22dt
]
+ λD(ρ1, ν) s.t. X0 ∼ µ. (5)

Moreover, if Xt is defined on the embedded space Z , then W2 is equivalent to the Wasserstein with
geodesic distance W2(µ, ν) ≃Wd2α

M
(µ, ν).

This theorem enables us to add the second marginal constraint in the optimization problem. In
practice, it justifies the method of matching the marginals and adding a regularization on the vector
field f(x, t), that way the optimal (ρt, f) corresponds to the one from theW2. If in addition we model
the trajectories in the embed space Z , then the transport is equivalent to the one on the manifold.

Training We observe discrete distributions µi := (1/ni)
∑

i δxi
for xi ∈ Xi, and we approxi-

mate (4) with a Neural ODE [7], where fθ is modeled by a neural network with parameters θ. Denote
by ψθ : Rk × T → Rd|T | the function that represents the Neural ODE, where T is a set of time
indices. We define the predicted sets X̂1, . . . , X̂T−1 = ψθ(X0, {1, . . . , T − 1}); given an initial
set X0 it returns the approximation of (4) for all t ∈ T . The resulting discrete distributions are
µ̂i := (1/ni)

∑
j δxj

for xj ∈ X̂i. To match the marginals, we used two approaches of training;
local or global. For the local method, we only predict the next sample, hence given Xt as initial
condition, we predict X̂t+1 = ψθ(Xt, t+ 1). Whereas for the global, we use the entire trajectories
given the initial condition X0. For both cases, we formulate a loss Lm on the marginals, representing
the second term in (5). To take into account the first term in (5), we add the loss Le, where the integral
can be approximate with the forward pass of the ODE solver, and λe ≥ 0 is a hyperparameter.

Lm :=

T−1∑
i=1

W2(µ̂i,µi) Le := λe

T−1∑
i=1

∫ i

i−1

∥fθ(xt, t)∥22dt (6)

In practice, to compute the Wasserstein between discrete distributions, we use the implementation
from the library Python Optimal Transport [14]. This is in contrasts with the maximum-likelihood
approach in CNF methods which requires evaluation of the instantaneous change of variables at every
integration timestep at O(k2) additional cost per function evaluation [7].

We add a final density loss Ld inspired by [44] to encourage the trajectories to stay on the manifold.
Intuitively, for a predicted point x ∈ X̂t, we minimize the distance to its k-nearest neighbors in Xt

given a lower bound h > 0

Ld := λd

T−1∑
t=1

∑
x∈X̂t

ℓd(x, t), where ℓd(x, t) :=
k∑

i=1

max(0,min-k({∥x− y∥ : y ∈ Xt})− h).

We describe the overall training procedure of MIOFlow in algorithm 1.
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