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Abstract

Vision and diverse languages are important information sources in our living world.
A model that understands multi-modalities and multi-languages can be applied to
a wider range of real-life scenarios. To build such a multimodal and multilingual
model, existing works try to ensemble vision-language data from multiple lan-
guages in pre-training. However, due to the large number of languages, these works
often require huge computing resources and cannot be flexibly extended to new
languages. In this work, we propose a Multi-Lingual Acquisition (MLA) frame-
work that can easily empower a monolingual Vision-Language Pre-training (VLP)
model with multilingual capability. Specifically, we design a lightweight language
acquisition encoder based on state-of-the-art monolingual VLP models. We further
propose a two-stage training strategy to optimize the language acquisition encoder,
namely the Native Language Transfer stage and the Language Exposure stage.
With much less multilingual training data and computing resources, our model
achieves state-of-the-art performance on multilingual image-text and video-text
retrieval benchmarks.

1 Introduction
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Figure 1: Comparison of data usage between M-
VLP and MLA. The size of a circle reflects the
amount of training data.

We live in a multimodal and multilingual world.
The information we receive in our daily lives
may come from different modalities and lan-
guages. Therefore, building multimodal and
multilingual models to effectively understand
such information has attracted much research
attention [12, 38, 21, 3]. Recently, Multilin-
gual Vision-Language Pre-training (M-VLP)
achieves convincing performance in various
cross-lingual cross-modal tasks such as multilin-
gual image-text retrieval [28, 44, 11, 16, 18] and
multimodal machine translation [35]. As shown
in Figure 1(a), M-VLP models handle multiple
languages and modalities simultaneously during pre-training. Despite their successes, M-VLP mod-
els suffer from two problems. First, pre-training on vision and multilingual data consumes huge
computing resources. For example, the state-of-the-art M-VLP model MURAL [18] is pre-trained on
128 Cloud TPUv3 for four days. It could support multimodal tasks on 100+ languages. However,
considering there are 6,900+ languages worldwide [44], building such a single model to handle all
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languages will be highly expensive. Second, M-VLP models cannot be flexibly extended to new
languages. Additional training is required for M-VLP models to achieve satisfactory performance
on a new language. However, this training process will cause performance degeneration of M-VLP
models on the original languages due to the limited model capacity. For example, the limited model
capacity even results in M-VLP models performing worse than their monolingual counterparts on
English [28, 44].

To build multimodal and multilingual models with low-cost and high-flexibility, we refer to our
human learning habits when acquiring new languages. We humans normally learn our native language
during childhood and practice it through interactions with the multimodal living environments. When
learning a new language, we humans initially tend to align it with the native language, as we can
easily map words in the native language to real-world objects and concepts. After having a certain
language foundation, we could further master it by interacting with the environment directly using
the new language. This is known as the language exposure [5]. The whole learning process rarely
degrades our native language capability.

Inspired by this, we propose a new framework, Multi-Lingual Acquisition (MLA), which constructs
multimodal and multilingual models based on monolingual VLPs. The topology of the MLA-based
multimodal and multilingual model is illustrated in Figure 1(b). Unlike M-VLPs, which handle data
from multiple languages and modalities in a single model, MLA empowers monolingual VLPs with
multilingual capability using much less training data through a language acquisition encoder. The
language acquisition encoder is realized by inserting our proposed lightweight language acquirers
into the pre-trained monolingual encoder of the VLP model. During training, original parameters
in the pre-trained monolingual encoder are fixed, only multi-lingual embeddings and language
acquirers for each new language are optimized. Following the human learning habits, we propose
a two-stage training strategy to train the language acquisition encoder. In the Native Language
Transfer (NLT) stage, the model is trained to establish the correspondence between the new languages
with the native language. In the Language Exposure (LE) stage, the model is optimized to build
cross-modal alignment between new languages and images. We apply our proposed MLA to the
monolingual VLP model CLIP [31] and achieve state-of-the-art results on both multilingual image-
text and video-text retrieval benchmarks with much less training data and computing resources.
Ablation studies demonstrate the effectiveness of our training strategy. Owing to the independence
merit of the language acquirers, the MLA-based models can be easily extended to new languages
without compromising the performance of their original languages. Since cross-modal retrieval is a
fundamental task for multilingual and multimodal learning, and most M-VLP [28, 44, 18] works are
evaluated using this task, we focus on cross-modal retrieval in the paper. The application of MLA to
other tasks will be explored in our future work.

The main contributions of our work are as follows: 1) We propose a lightweight Multi-Lingual Acqui-
sition (MLA) framework that can easily empower monolingual VLPs with multilingual capability. 2)
We propose a two-stage training strategy to optimize the MLA-based models inspired by the language
learning habits of humans. Ablation studies prove the effectiveness of the strategy. 3) We apply MLA
to the monolingual VLP model CLIP and achieve the new state-of-the-art results on both multilingual
image-text and video-text retrieval benchmarks with much less training data and parameters.

2 Related Work

Vision-Language Pre-training: There are increasing interest in building Vision-Language Pre-
training (VLP) models. From the perspective of how to interact between vision and language
modalities, existing models can be divided into two categories: single-stream and dual-stream
models. The single-stream models perform interaction on image and text directly with a cross-
modal transformer [7, 26, 22]. In contrast, the dual-stream models encode image and text with
two independent encoders and optimize via simple objectives like image-text contrastive learning
[31, 19, 43]. Compared with the single-stream models, the dual-stream models are more efficient to
utilize noisy image-text data harvested from the web [17], and thus achieve better performance on
downstream tasks. Meanwhile, the dual-stream models are more flexible for extension. Since the
dual-stream models process images and text through independent encoders, we can fix the vision
encoders and focus on extending the text encoders to support new languages. Therefore, we focus on
empowering dual-stream VLPs with multilingual capability in this work.
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Multilingual Vision-Language Pre-training: To achieve both multilingual and multimodal capa-
bility, many works try to learn the relationship between multiple languages and modalities simulta-
neously through pre-training. M3P [28] introduces the multimodal code-switched training method
to enhance multilingual transferability. UC2 [44] augments the English image-text data to other
languages through machine translation and proposes fine-grained pre-training objectives to encourage
alignment between image regions and multilingual tokens. More recently, MURAL [18] adopts
the dual-stream structure. It is pre-trained with image-text and text-text contrastive objectives on
multilingual image-text pairs and translation pairs. M-VLP models significantly outperform previous
non-pretraining models [12, 38, 21, 3] on multilingual image-text retrieval. Despite their success,
these models typically consume huge computing resources and large-scale multilingual training data.
Moreover, they fail to take full advantage of the cross-modal knowledge learnt in monolingual VLP,
and building cross-modal cross-lingual representations from scratch can be very hard. In contrast, our
MLA framework aims to empower VLP models with multilingual capability and it builds multimodal
and multilingual models with much less data and computing cost.

Multilingual Extension: Some works explore making pre-trained monolingual language models
multilingual [32, 30, 36]. Reimers et al. [32] extend sentence embeddings from monolingual to
multilingual by Multilingual Knowledge Distillation (MKD). Artetxe et al. [2] extend monolingual
models by training additional word embeddings . MAD-X [30] extends multilingual pre-training
models to support low-resource languages through adapters [15]. By extending state-of-the-art
pre-trained language models, these works have achieved impressive results in NLP tasks such as
bitext retrieval [32], cross-lingual QA and NER [30, 32]. However, few works focus on making VLP
models multilingual. OSCAR+Ada [29] extends single-stream model OSCAR [26] to multilingual
for VQA tasks by adopting a similar strategy with MAD-X [30]. It trains language adapters with
Masked Language Modeling (MLM) for each language, and replaces the English adapter with the
target language one during inference. This strategy [30, 29] shares the same idea with MLA that
handles different languages through independent structures but with two core differences: i) It is
designed for MLM-based VLPs and cannot be applied to dual-stream models such as CLIP [31].
Consequently, it is not suitable for cross-modal retrieval considering the gap between retrieval and
MLM. ii) It generalizes poorly on other languages since MLM can only implicitly establish the
correspondence between these languages and English, let alone vision correspondences. In contrast,
MLA directly builds the connection between the other languages with English and then with vision
through the two-stage training strategy. It thus achieves comparable results on these languages as on
English in the downstream retrieval tasks.

3 Method

The Multi-Lingual Acquisition (MLA) framework is proposed to empower a dual-stream monolingual
VLP model with multilingual capability. We define the native language of a VLP as its pre-training
language. In this paper, we choose CLIP-ViT-B [31] as the VLP model. It is pre-trained with 400M
image-text pairs in English [31]. Note that MLA can also be applied to VLP models with different
native languages.

Since the state-of-the-art VLP models can project vision and native language into a shared multimodal
space, we design a language acquisition encoder to process non-native languages. We then simulate
the learning habits of human beings and propose a two-stage training strategy to optimize the language
acquisition encoder. We first introduce the architecture of the MLA framework in Sec.3.1. Then, we
describe our training strategy in Sec.3.2.

3.1 Architecture

Figure 2(a) illustrates the overview of the MLA framework, which consists of three modules: the
pre-trained text encoder, the pre-trained vision encoder, and the language acquisition encoder.

Pre-trained Text Encoder. Given a sentence S in the native language, the corresponding sentence
representation s = Φ(S; θΦ) is generated through the pre-trained text encoder Φ. To preserve
the cross-model knowledge of VLP, θΦ is keep fixed during training. As shown in the top part of
Figure 2(a), the pre-trained text encoder contains a native embedding block and l transformer layers
[37]. The native embedding block first tokenizes S with byte pair encoding (BPE) [33]. Then, it
converts words into embeddings ES = [e0=[SOS], e1, . . . , eM=[EOS]]. [SOS] and [EOS] are special
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Figure 2: Model illustration: (a) The overview of MLA framework. (b) The structure of a language
acquirer

tokens denoting the boundary of S. The word embeddings are then passed through the transformer
layers:

H0 = [e0=[SOS], e1, . . . , eM=[EOS]] + Epos (1)

Hi = TransformerLayer(Hi−1; θiΦ) (2)

where Hi = [hi
0, . . . , h

i
M ] is the hidden state of the layer i. θiΦ denotes the parameters of the layer i.

Epos is the positional encoding. Note that the causal self-attention mask is used in the transformer
layers [31]. The last hidden state of the [EOS] token is chosen to generate the sentence representation:

s = Wah
l
M (3)

where s is the sentence representation of S, and Wa denotes a linear projection.

Pre-trained Vision Encoder. We extract the representation v = Ψ(V ; θΨ) of an image V with
the pre-trained vision encoder Ψ. Similar with the pre-trained text encoder, θΨ is also frozen. The
pre-trained vision encoder is implemented as a Vision Transformer [9]. As shown in the bottom part
of Figure 2(a), it consists of a image embedding block and l transformer layers. Given an image V ,
the image embedding block first divides V into patches V ′ = [v′1, . . . , v

′
N ] following [9]. Then, they

are linearly projected into patch embeddings Ep = [e[CLASS],Wpv
′
1, . . . ,Wpv

′
N ], where e[CLASS] is a

special embedding for the whole image and Wp is the linear projection. The patch embeddings are
then fed into transformer layers:

Z0 = [e[CLASS],Wpv
′
1, . . . ,Wpv

′
N ] + Epos (4)

Zi = TransformerLayer(Zi−1; θ
i
V ) (5)

where Zi = [zi0, . . . , z
i
N ] is the hidden state of the layer i. The last hidden state of the [CLASS]

embedding zl0 is selected to produce the representation of image V :

v = Wbz
l
0 (6)

where v is the image representation of V , and Wb denotes a linear projection.

Language Acquisition Encoder. As shown in the middle part of Figure 2(a), the language ac-
quisition encoder is built upon the pre-trained text encoder. Suppose T is a sentence written in
a non-native language L, we get the representation of T through language acquisition encoder
t = Φ′(T ; θΦ, θemb, θL), where θΦ are fixed parameters of the pre-trained text encoder, θemb

refers to a shared non-native embedding block and θL represents specialized language acquirers
for language L. Non-native sentence T is first tokenized and processed into word embeddings
ET = [u0=[SOS], . . . , uM=[EOS]] through the non-native embedding block. The word embeddings are
then encoded through the pre-trained transformer layers and language acquirers:

X0 = [Weu0=[SOS],Weu1, . . . ,Weum=[EOS]] + Epos (7)

Hi = TransformerLayer(Xi−1; θiΦ) (8)

Xi = LA(Hi; θiL) (9)
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where Xi = [xi
0, . . . , x

i
m] is the hidden state of the layer i. We is a linear projection to keep

dimension consistency. θiL denotes the parameters of the i-th language acquirer for language L.
As shown in Figure 2(b), the language acquirer is implemented as a bottleneck MLP with residual
connection [14]:

LA(X) = WupperReLU(WdownX) +X (10)

Similar with the pre-trained text encoder, the last hidden state of the [EOS] token is projected into
the sentence representation t:

t = Wax
l
m (11)

Eq.11 shares the same linear projection Wa with Eq.3. The main advantage of the language acquisition
encoder is that it can extend the VLP models to support new languages without influencing the existing
languages, as it handles different languages with independent language acquirers.

3.2 Training Strategy

To simulate the language learning habits of humans, we optimize the model in two stages: the Native
Language Transfer (NLT) stage and the Language Exposure (LE) stage.

Native Language Transfer. When learning a new language, we humans initially tend to align it
with the native language. To simulate this learning phase, we align the non-native representations to
the native representations during the Native Language Transfer (NLT) stage. Specifically, suppose
{(S1, T1), ..., (Sn, Tn)} are translation pairs, where Si is in the native language, and Ti is in a
non-native language L. The objective in the NLT stage is minimizing the Mean Square Error
(MSE) between the native representation si = Φ(Si; θΦ) and the non-native representation ti =
Φ′(Ti; θΦ, θL, θemb):

LNLT =
1

B

B∑
i=1

∥si − ti∥2 (12)

where B is the batch size. Note that θΦ is loaded from the VLP model and is kept frozen. θL is trained
for non-native language L. θemb is shared among non-native languages.

During the NLT stage, the non-native language correspondence with vision can be built by pivoting
on the native language, since the correspondence between the native language and vision is well
established through VLP.

Language Exposure. After the NLT stage, the model has built an implicit connection between
non-native languages and vision. However, due to the existence of synonyms, two same words in
the native language may correspond to different images. Thus, ambiguity may arise when learning
non-native languages solely by relying on the native language. Actually, we can regard the language
acquisition encoder after the NLT stage as a person with a certain language foundation. He/She has
learned the basic usage of a language through native language teaching. To master it, he/she may
practice the non-native language by interacting with the multimodal living environments. Inspired by
this learning phase, we directly establish the cross-modal alignment between non-native languages
and vision during the Language Exposure (LE) stage. Given image-text pairs {(V1, T1), ..., (Vn, Tn)}
where Ti is in a non-native language L, the sentence representation ti = Φ

′
(Ti; θΦ, θL, θemb) should

be closer to the aligned image representation vi = Ψ(Vi; θΨ), and away from the misaligned one
vj = Ψ(Vj ; θΨ), j ̸= i. This can be achieved by performing contrastive learning between non-native
languages and images. For a non-native sentence Ti, we treat the corresponding image Vi as a positive
sample, and other images in the same batch Vj , j ̸= i as negative samples. Vice versa for images.
The objective in the LE stage is minimizing the NCE loss [13] defined as follows:

LLE =
1

2
(Lv2t + Lt2v) (13)

Lv2t = − 1

B

B∑
i=1

log
exp(sim(vi, ti)/τ)∑N

k=1 exp(sim(vi, tk)/τ)
(14)

Lt2v = − 1

B

B∑
i=1

log
exp(sim(vi, ti)/τ)∑N

k=1 exp(sim(vk, ti)/τ)
(15)
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where B is the batch size. sim(x,y) = x⊤y
∥x∥∥y∥ is the cosine similarity between two vectors. τ is

a temperature hyper-parameter to scale the logits. Note that though the image-to-text loss Lv2t is
optimized, the pre-trained vision encoder is kept frozen during training. Similar to NLT, the trainable
parameters in LE come from the language acquirers and the non-native embedding block.

4 Experiments

4.1 Dataset Description

We train our model with the Conceptual Captions (CC) dataset [34] and two translation enhanced
versions of the CC [44, 4]. We use Multi30K [10], MSCOCO [6, 25, 40] and XTD [1] for multilingual
image-text retrieval evaluation, and MSRVTT [39, 16] for multilingual video-text retrieval evaluation.
Conceptual Captions (CC) [34] contains 3.3 million image-text pairs in English crawled from
the Web.2 We also randomly select 300K image-text pairs denoted as CC300K for training our
model to show the low-cost merit of MLA. For multilingual sentences, we leverage two translation
augmented CC datasets: (1) CC6L [44] that translates all English captions of the CC into 5 languages
(German(de), French(fr), Czech(cs), Chinese(zh));3 and (2) CC69L [4] that contains 27K captions in
each of the 68 languages translated from English.4 Considering the languages of the downstream
datasets, we train the model with CC6L for multilingual image-text retrieval, and with CC69L for
multilingual video-text retrieval.
Multi30K [10] is built upon Flickr30K [41]. The English(en) captions are manually translated into
German(de), French(fr) and Czech(cs). It contains 31K images paired with 5 captions per image in
English and German, and 1 caption in French and Czech. We use the standard train, dev and test
splits defined by Young et al. [41].
MSCOCO [6] contains 123K images with 5 English captions per image.Yoshikawa et al. [40]
annotate 5 Japanese captions per image, and Li et al. [25] extends MSCOCO with Chinese captions
for 20K images. We follow the standard train, dev and test splits for English and Japanese as in [20].
For Chinese, we can only perform zero-shot evaluation on the test split defined by Li et al. [25], as
the full splits have overlaps with English and Japanese splits.
XTD [1] provides captions in 11 languages (English(en), German(de), French(fr), Chinese(zh),
Japanese(ja), Italian(it), Spanish(es), Russian(ru), Polish(pl), Turkish(tr), Korean(ko)) for 1K
MSCOCO images. Except for Japanese, all non-English captions are translated from the English
caption directly. We use this dataset for zero-shot image-text retrieval evaluation only.
MSRVTT [39] is a video caption dataset with 10K videos, where each video is annotated with 20
English captions. Huang et al.[16] translates the English captions into 8 languages (German(de),
French(fr), Russian(ru), Spanish(es), Czech(cz), Swahili(sw), Chinese(zh) and Vietnamese(vi)) via
machine translation service. We follow the standard train/dev splits in [39], and evaluate on the 1K
test split as described in [42].

4.2 Implementation Details

We apply MLA on two VLP models: CLIP-ViT-B-32 and CLIP-ViT-B-16 [31], denoted as MLACLIP

and MLACLIP16 respectively. The hidden dimension of the language acquirers is set to 256, and
all language acquirers for each non-native language cost only 3.14 MB parameters. The non-native
embedding matrix is initialized with M-BERT [8]. It costs 92.2 MB and shared with all non-native
languages. We train two separate models for multilingual image-text retrieval and video-text retrieval.
For the image model, we train with CC6L [44]. For the video model, we use multilingual captions
from CC69L [4]. For both models, we optimize multiple language acquirers iteratively with a batch
size of 128. The NLT stage performs 117,150 steps with a learning rate of 1e-4, and the LE stage
performs 11,715 steps with a learning rate of 3e-6. The temperature τ is set to 0.01. For both stages,
we use the Adam optimizer [23] with a linear warm-up for the first 10% of steps. The whole training
process takes about 12 hours to converge on 1 Nvidia V100 GPU.

2We can only access ∼2.5 million images due to some broken URLs.
3Dataset released at https://github.com/zmykevin/UC2, under MIT license.
4Released at https://github.com/FreddeFrallan/Multilingual-CLIP, under MIT license. We

remove captions of unaccessible images, leaving ∼20K captions for each language.
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Table 1: Multilingual image-text retrieval results on Multi30K and MSCOCO. TrTrain: Translate-
train, FT-En: Fine-tune on English, FT-All: Fine-tune on All. ⋄: Models re-implemented by us.
†: Models trained with publicly unavailable datasets. ‡: Models fine-tuned on COCO-CN [25], which
has an overlap train split with the test split of English and Japanese. Best results are in bolded and
second best are underlined.

Method Training Data Multi30K MSCOCO 1K MSCOCO 5K

en de fr cs en ja en ja

Z
er

o-
sh

ot

Unicoder-VL CC3M (English only) 72.0 - - - 63.7 - - -
ALIGN AT-en (English only) 84.3 - - - 80.0 - 60.6 -
M3P CC3M+Wiki 57.9 36.8 27.1 20.4 63.1 33.3 - -
UC2 TrTrain(CC3M) 66.6 62.5 60.4 55.1 70.9 62.3 - -
MKDCLIP TrTrain(CC300K) 82.1 77.1 75.2 72.3 78.5 73.6 - -
MURAL⋄ TrTrain(CC300K) 67.8 62.7 60.8 57.5 68.1 62.5 43.3 37.1
MURAL TrTrain(CC12M)+EOBT 80.9 76.0 75.7 68.2 78.1 72.5 58.0 49.7
MURAL† AT+MBT 82.4 76.2 75.0 64.6 79.2 73.4 59.5 54.4
MLACLIP TrTrain(CC300K) 84.4 78.7 77.7 70.8 79.4 74.9 60.5 54.1
MLACLIP16 TrTrain(CC300K) 86.4 80.8 80.9 72.9 80.9 76.7 62.6 57.0

FT
-E

n

M3P CC3M+Wiki 87.4 82.1 67.3 65.0 88.6 56.0 - -
UC2 TrTrain(CC3M) 87.2 83.8 77.6 74.2 88.1 71.7 - -
MURAL⋄ TrTrain(CC300K) 82.8 76.5 76.7 70.1 84.5 74.6 64.3 52.5
MLACLIP TrTrain(CC300K) 92.0 82.6 85.1 76.2 89.3 80.4 75.7 62.1
MLACLIP16 TrTrain(CC300K) 94.5 86.4 87.3 79.5 91.3 82.6 79.4 65.5

FT
-A

ll

M3P‡ CC3M+Wiki 87.7 82.7 73.9 72.2 88.7‡ 87.9‡ - -
UC2‡ TrTrain(CC3M) 88.2 84.5 83.9 81.2 88.1‡ 87.5‡ - -
MURAL⋄ TrTrain(CC300K) 83.4 80.3 79.4 76.8 84.8 83.2 64.7 62.9
MURAL TrTrain(CC12M)+EOBT 91.0 87.3 86.4 82.4 89.4 87.4 73.7 71.9
MURAL† AT+MBT 92.2 88.6 87.6 84.2 88.6 88.4 75.4 74.9
MLACLIP TrTrain(CC300K) 92.0 86.8 85.4 82.3 89.3 88.1 75.7 73.2
MLACLIP16 TrTrain(CC300K) 94.5 89.7 89.2 85.9 91.3 90.4 79.4 76.5

4.3 Evaluation on Multilingual Image-Text Retrieval

In multilingual image-text retrieval, models are given a sentence in a certain language to find the most
semantically relevant image from an image database and vice versa. We compare our model with
state-of-the-art multilingual vision-language pre-training methods under three settings: (1) Zero-shot:
we directly evaluate the model without fine-tuning on downstream datasets. (2) Fine-tune on English:
we first fine-tune the VLP model on downstream English data. We then insert the language acquirers
and non-native embedding block into the fine-tuned model and evaluate on other languages directly.
(3) Fine-tune on All: after (2), we fine-tune the language acquirers and non-native embedding block
on the downstream dataset and freeze other parts of the model. Following previous works [28, 44, 18],
we report Average Recall (AR), which is the average score over Recall@1, Recall@5, and Recall@10
on two retrieval directions (image→text, text→image). The results are shown in Table 1. For a fair
comparison, we re-implement MURAL [18] (marked with ⋄ in tables) and train it with the same data
as MLA.

Table 2: Comparison over trainable parame-
ters (#TP) and computing costs (Costs).

Method Langs #TP Costs

M3P 100 566 M 8×V100×7d
UC2 6 478 M 8×V100×4d
MURAL 109 300 M 128×TPUv3×4d

MLACLIP 6 108 M 1×V100×0.5d

Under the Zero-shot setting, we observe that
MLACLIP performs significantly better than
state-of-the-art M-VLP models on English. This
is because MLACLIP could completely main-
tain the strong English performance of CLIP.
In contrast, M-VLP models typically perform
worse than their monolingual counterparts on
English (M3P 57.9 vs. Unicoder-VL [24] 72.0,
MURAL 80.9 vs. ALIGN [19] 84.3). MLACLIP also outperforms M-VLP models on other lan-
guages. For example, MLACLIP achieves 78.7 average recall on German by using 300K image-text
pairs, outperforming MURAL pre-trained with the same data by 16.0% and CC12M+EOBT by
2.7%. It demonstrates that MLA is a high-data-efficient method to empower monolingual VLP
models with multilingual capability. Meanwhile, M-VLP models like MURAL require pre-training
over a large amount of data to achieve convincing performance. Under the Fine-tune on English
setting, MLA shows strong cross-lingual transfer capability. Under the Fine-tune on All setting,
MLACLIP performs slightly worse than MURAL which was pre-trained on publicly unavailable
dataset AT+MBT [18]. We consider the reason is that MURAL has a larger transformer-based text
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encoder (768 hidden dimensions, 12 heads) compared to MLACLIP (512 hidden dimensions, 8 heads).
This makes it easier for MURAL to fit the downstream datasets with a certain scale such as Multi30K
and MSCOCO. MLACLIP16 achieves state-of-the-art results on all languages under three settings.
These results suggest that MLA could probably reach better performance on multilingual image-text
retrieval if stronger VLP models such as ALIGN-L2 [19] or Florence [43] are provided.

4.4 Evaluation on Multilingual Video-Text Retrieval
In multilingual video-text retrieval, the model searches for the most semantically relevant videos
given a text query in a certain language. Following [27], we first uniformly sample 12 frames from
each video, and use the pre-trained vision encoder to extract representations for each frame. We
then perform mean pooling over frame representations to get the video representation. We also
evaluate the models under three settings as in Sec.4.3. We report the text→video Recall@1 score in
Table 3. Under Zero-shot setting, MLACLIP, which is trained on CC69L without using any video
data, achieves comparable or even better results than the fine-tuning results of the state-of-the-art
M-VLP model XLM-R-MMP [16] on several languages (de: 20.1 vs. 21.1; fr: 22.0 vs. 21.8; es:
20.2 vs. 21.9). Under the Fine-tune on English and Fine-tune on All settings, MLACLIP also
outperforms XLM-R-MMP significantly. We consider the convincing performance comes from two
reasons: 1) CLIP is a strong VLP model that can generalize well on video data. 2) The proposed
MLA framework can well transfer the open-domain knowledge learned by CLIP to other languages.
These results suggest that MLA could maintain the open-domain capability of the VLP model which
generalizes well on different downstream data.

Table 3: Multilingual video-text retrieval results on MSRVTT. ZS: Zero-shot
Method en de fr cs zh ru vi sw es mean

Z
S Ours(MLACLIP w/o LE) 30.8 18.3 18.9 14.5 18.6 12.6 7.2 10.2 19.3 16.7

Ours(MLACLIP) 30.8 20.1 22.0 15.7 18.3 14.4 8.2 10.7 20.2 17.8

FT
-E

n XLM-R-MMP [16] 23.8 19.4 20.7 19.3 18.2 19.1 8.2 8.4 20.4 17.5
Ours(MLACLIP) 42.5 26.1 26.7 20.5 25.3 18.9 12.9 12.6 27.2 23.6

FT
-A

ll XLM-R-MMP [16] 23.1 21.1 21.8 20.7 20.0 20.5 10.9 14.4 21.9 19.4
Ours(MLACLIP) 42.5 33.1 34.5 30.5 31.6 28.9 16.9 24.3 33.5 30.6

4.5 Ablation Studies
A. Training Strategy

Table 4: Ablation study on training strategy.
Row Stage one Stage two Multi30K MSCOCO 1K

NLT LE NLT LE de fr cs ja zh

1 ✓ 76.3 74.2 67.2 72.1 75.7
2 ✓ 68.2 67.7 58.6 65.9 71.7
3 ✓ ✓ 71.1 69.7 59.8 67.6 73.9
4 ✓ ✓ 78.7 77.7 70.8 74.9 78.5
5 ✓ ✓ ✓ 78.4 77.3 69.9 74.2 78.1

We conduct an ablation study in Table 4 to val-
idate the effectiveness of the proposed MLA
training strategy. For those settings with NLT
and LE at the same stage, we add the loss of
the two objectives together during training. By
comparing row 1 to row 2&3, we observe that
LE at stage one leads to poor performance. This
indicates that aligning with the native language is more important for the VLP model to acquire new
languages at an early stage. It is consistent with the learning habits of humans. By comparing row 1
and row 4, we see that LE at stage two could bring improvements on the new languages. Additionally,
comparing row 4 and row 5 suggests that optimizing the model with NLT and LE together at stage
two does not bring improvements.

B. Language Acquirers and Embedding Initialization

Table 5: Ablation study over Language Acquir-
ers (LA) and Embedding Initialization (EI).

Methods Multi30K MSCOCO 1K
de fr cs ja zh

MLACLIP 78.7 77.7 70.8 74.9 78.5
MLACLIP w/o LA 76.1 74.9 65.7 70.3 76.5
MLACLIP w/o EI 77.9 76.2 69.4 74.6 78.1

In order to validate the effectiveness of the pro-
posed Language Acquirers, we remove the lan-
guage acquirers and the M-BERT embedding
initialization from the model respectively and
evaluate on zero-shot multilingual image-text
retrieval. As shown in Table 5, the performance
on all languages drops significantly without lan-
guage acquirers. Meanwhile, initializing the
embedding with M-BERT [8] only brings incremental improvements. It indicates that the language
acquirers contribute most to the performance, and MLA does not depend much on the initialization
of non-native embedding.
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C. Comparing with Machine Translation based method

Table 6: Comparing with the machine translation
based baseline.

Method Multi30K MSCOCO 1K
de fr cs ja zh

CLIP+MT 75.3 73.0 66.3 72.2 74.2
MLACLIP 78.7 77.7 70.8 74.9 78.5

We compare MLA with a translate-based
method CLIP+MT as follows. For non-
English text queries in Multi30K and MSCOCO,
CLIP+MT first translates them into English with
a strong commercial machine translation service
Iflytek5, and then performs image-text retrieval.
As shown in Table 6, the CLIP+MT performs
significantly worse than MLA in all languages. This is because the translate-based method can
introduce extra translation errors or ambiguity although the commercial translation service has been
optimized with a large volume of multilingual corpus. By directly optimizing the alignment between
vision and each language, MLA does not suffer from this issue.

D. Low-resource Languages

Table 7: Low resource performance on image-
Korean retrieval.

Row Method Data Training samples
100 / 200 / 600

1 UC2 Img-Txt 47.0 / 60.1 / 78.3
2 MURAL Both 53.2 / 60.8 / 73.3
3 MLACLIP Txt-Txt 51.7 / 62.8 / 78.7
4 MLACLIP Both 56.7 / 66.9 / 80.1

Image-text pairs may be rare for low-resource
languages. To explore the performance of MLA
under this situation, we further simulate a low-
resource scenario using XTD dataset. We fine-
tune MLACLIP, UC2 and MURAL with small
amount of data from XTD in an unseen lan-
guage. Both UC2 and MURAL are pre-trained
on CC6L with 3M images. We randomly sample
600 pairs for finetuning, and the remained 400 samples are evenly divided for validation and testing.
Korean is chosen to perform simulation as its script and language family are not covered by CC6L.
Experimental results in Table 7 show that MLA can achieve competitive results with very small
amount of text-text pairs only (row 3), and adding image-text pairs brings further improvement (row
4). It demonstrates that MLA is still an attractive method for low-resource languages even without
any image-text pairs.

E. Amount of Training Data
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Figure 3: Mean AR vs. Number of data pairs.

We conduct experiments to control the numbers
of image-text pairs used for each language. We
train the models with CC6L and evaluate on
MSCOCO 1K and Multi30K under the zero-shot
setting. The corresponding mean AR over non-
English languages (de, fr, cs, ja, zh) are drawn
in Figure 3. We observe that MLA performs
significantly better than MKD [32] in all cases.
Note that when the amount of training data is
small, the advantage of MLA is more obvious,
which could outperform MKD even without the
LE training stage. Additionally, when training
with only 30K image-text pairs per language,
MLA outperforms UC2, which is pre-trained
with 3M pairs per language. MLA is thus a data-efficient method to build multilingual and multimodal
models.

F. Language Extensibility

Multilingual models often encounter the need to support new languages that do not occur in the
training stage. We conduct language extension experiments to compare MLACLIP with M-VLP
model UC2 [44] on the XTD dataset [1]. XTD supports 11 languages, and 5 of them (en, de, fr, cs,
zh, ja) are seen in the pre-training stage of UC2, while other 6 languages (it, es, ru, pl, tr, ko) are
unseen. To make a fair comparison, we first train MLACLIP with the same data as UC2 and then train
both of them on unseen languages with CC69L. The zero-shot image-text retrieval results on XTD
are shown in Table 8. We observe a significant performance degeneration on the seen languages for
UC2 when training solely with unseen languages (row 1 vs. row 2). Even keep training with the seen
languages, the performance is still significantly reduced due to the limited model capacity (row 1 vs.

5https://global.xfyun.cn
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row 3). In contrast, as MLA decoupled multiple languages through acquirers, the performance of the
seen languages is rarely affected (row 4 vs. row 5) . This suggests that MLA framework can build
multimodal multilingual models that are suitable for supporting increasing numbers of languages.

Table 8: Language extention experiments on XTD dataset.

Row Method Seen languages Unseen languages
en de fr zh ja it es ru pl tr ko

1 UC2 w/o unseen language training 71.8 67.5 68.4 61.9 51.5 - - - - -
2 UC2 w/ unseen language training 63.6 57.8 57.6 57.6 48.4 56.4 56.2 51.3 56.4 51.6 51.3
3 UC2 w/ all language training 65.2 59.3 59.7 60.1 50.5 57.7 56.5 50.9 55.3 53.2 50.2

4 MLACLIP w/o unseen language training 75.9 72.6 72.9 73.7 67.2 - - - - - -
5 MLACLIP w/ unseen language training 76.0 72.6 72.9 73.8 67.2 64.7 62.8 58.1 63.0 56.5 57.3

5 Conclusion and Limitations

In this paper, we propose the Multi-Lingual Acquisition (MLA) framework that can empower
multilingual capability on monolingual Vision-Language Pre-training models with low-cost and high-
flexibility. MLA injects language acquirers and a non-native embedding block into VLPs to support
new languages. Inspired by the language learning habits of humans, we propose a two-stage training
strategy to optimize the language acquirers and non-native embedding block. MLA applied on CLIP
achieves state-of-the-art performances on multilingual image-text and video-text retrieval benchmarks
with much less computing costs and training data. Extensive ablation studies demonstrate that MLA is
a flexible, effective, and efficient method to empower multilingual capability on multimodal models.

Though MLA shows high data efficiency that achieves high performance with a small amount of
multilingual training data in our experiments, it has the following limitations, which also suggest
potential research avenues: i) MLA relies on bilingual corpora, which limits its application on
low-resource languages. Meanwhile, state-of-the-art models, such as UC2 and MURAL, also rely on
bilingual information. How to achieve comparable performance with monolingual corpora only is still
an open problem. ii) MLA is currently limited to coarse-grained retrieval tasks. We will investigate
the further application of MLA to fine-grain tasks like VQA in our future work. Furthermore, the
majority of our training data is automatically constructed through machine translation, so the ethical
prejudice from the machine translation service may potentially affect the behavior of multilingual
models produced by MLA. One way to mitigate such concern is to use human annotated or reviewed
data for training.
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