
A Appendix

A.1 PyTorch pseudo-code for MIRA

Algorithm 1 PyTorch pseudo-code of MIRA

# network(x): normalize(projector(encoder(x))) @ normalize(classifier.weights).T
# tau_t: temperature scale for target
# tau_s: temperature scale for training
# beta: MI-regularization coefficient

for x in loader:
# Multi-view augmentations
x1, x2 = aug(x), aug(x)
logit1, logit2 = network(x1), network(x2)

# pseudo-labeling -- MIRA
target1 = mira(logit1, tau_t, beta)
target2 = mira(logit2, tau_t, beta)

# Swapped prediction loss
loss = CrossEntropyLoss(logit1/tau_s, target2) + CrossEntropyLoss(logit2/tau_s, target1)
loss.backward() # back propagation

# Optimization
update(network) # sgd updates

# The fixed-point iteration
def mira(logit, tau, beta, iters=30):

k = softmax(logit / tau / (1 - beta), dim=1)
v = k.mean(dim=0).pow(1 - beta)
for _ in range(iters):

temp = k/(v.pow(- beta) * k).sum(dim=1)
v = temp.mean(dim=0).pow(1 - beta)

v = v.pow(- beta / (1 - beta))
target = v * k / (v * k).sum(dim=1)
return target

A.2 Proof of proposition ??

In this subsection, we derive the necessary and sufficient condition in proposition ??. Denote
B,K be some natural numbers. We first prove the strict convexity of the optimization function
f : RBK×1

+ → R:

f(W ) = − 1

B

B∑
i=1

K∑
j=1

wij log pij +
1− β

B

B∑
i=1

K∑
j=1

wij logwij + β

k∑
j=1

wj logwj , (1)

where wj =
1
B

∑B
i=1 wij .

Lemma 1. For x ∈ RN×1
+ , s(x) =

∑N
i xi log xi is a strictly convex function of x.

Proof. Since the Hessian of s is a diagonal matrix with positive elements ∇2
xs(x)i,i = 1/xi, s is a

strictly convex function.

Corollary 1. For W ∈ RBK×1
+ , f(W ) is a strictly convex function of W .

Proof. Note that

1. f1(W ) = − 1
B

∑B
i=1

∑K
j=1 wij log pij is a affine transformation of W ,

2. f2(W ) = 1−β
B

∑B
i=1

∑K
j=1 wij logwij is a strictly convex function of W by lemma 1,

3. f3(W ) = β
∑k

j=1 wj logwj is a convex function of W since f3 is the composition of the

strictly convex function s and affine transformation wj =
1
B

∑B
i=1 wij .

The function f(W ) = f1(W ) + f2(W ) + f3(W ) that is the sum of the convex and strictly convex
terms becomes strictly convex.

We show that the optimization function f is strictly convex. The optimization problem (Eq. ??) is
defined on the convex set, i.e., W ⊂ ∆K := {x ∈ RK

+ | x⊺1K = 1}; hence, the problem is a strictly
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convex optimization problem1. By the strict convexity, our optimization problem has a unique optimal
point that has Karush–Kuhn–Tucker (KKT) conditions as the necessary and sufficient condition for
optimality. By using the KKT condition, we derive our necessary and sufficient condition Eq. ??.

Considering the constraint of the optimization domain, i.e., W ∈ ∆K ⇔ ∀i ∈ 1 : B,
∑K

j=1 wij = 1,
the Lagrangian function of our optimization problem becomes:

W ∗ = argmin
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where λ is a Lagrange multipliers. By the KKT conditions with
∑K

j=1 wij = 1,

(∇WL(W ∗,λ∗))ij = − log pij + (1− β)(1 + logw∗
ij) + β(1 + log
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proves the necessary and sufficient condition in proposition ??. The Eq. 8 comes from
∑

j w
∗
ij = 1.

For w∗, this condition becomes:
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A.3 Convergence of the fixed point iteration

In this subsection, we prove the convergence of our fixed point iteration (Eq. ??). Denote B,K be
some natural numbers.
Lemma 2. For a,x ∈ RB×1

+ and β ∈ [0, 1), ha(x) := ( 1
B

∑B
i=1 aix

−1
i )−β is a concave function

of x.
1In the main paper, we misrepresent our optimization problem as a strongly convex optimization problem;

while it is a strictly convex optimization problem.
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Proof. Denote ra(x) :=
1
B

∑B
i=1 aix

−1
i for a simplicity of expression; hence ha(x) = ra(x)

−β .
The second order partial derivatives of ha(x) w.r.t. x becomes:
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The inequality in Eq. 18 comes from Cauchy–Schwartz inequality as bellows:

(
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i
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Since ∀ω ∈ RB×1, ω⊺∇2
xha(x)ω < 0, the Hessian of ha(x) is negative definite, ha(x) is concave.

Corollary 2. For v ∈ RK×1
+ ,Q ∈ RB×K

+ , gj(v;Q) := h(Q⊺)j (Qv) = ( 1
B

∑B
i=1

qij∑K
k=1 vkqik

)−β is
a concave function of v.

Proof. Since gj is a composition of the concave function h(Q⊺)j (by Lem. 2) and affine transformation
with Q; gj becomes concave.

We introduce the proposition from [8] that proves geometrical convergence of positive concave
mapping.
Proposition 1 (Piotrowski and Cavalcante [8], Proposition 3). Let f : RM

+ → int(RM
+ ) be a

continuous and concave mapping w.r.t cone order with a fixed point x∗ ∈ int(RM
+ ). Then, the fixed

point iteration of f , i.e., xn+1 = f(xn), with x ∈ RM
+ converges geometrically to x∗ with a factor

c ∈ [0, 1).

By the proposition 1 and corollary 2, we prove the convergence of the following fixed point iteration:

Proposition 2. For β ∈ [0, 1), Q ∈ RB×K
+ , and for any initialization v(0) ∈ RK×1

+ , the fixed point
iteration:

v
(n+1)
j = gj(v

(n);Q) =

[
1

B

B∑
i=1

qij∑K
k=1 v

(n)
k qik

]−β

, (21)

converges to the fixed point.

Proof. We can see that output of the fixed point iteration gj(v
(n);Q) is always positive. By corol-

lary 2, g(v(n);Q) is a concave mapping. Therefore, by proposition 1, the fixed point iteration
converges to the fixed point.
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Finally, by bijective change of variables v(n)j =
(
u
(n)
j

)−β/(1−β)
,
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=
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(n)
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, (24)

we derive our fixed point iteration in Eq. ??. Throughout updates, Eq. 24 continuously satisfies the
relation v

(n)
j =

(
u
(n)
j

)−β/(1−β)
to the fixed point iteration by Eq. 21; hence, the fixed point iteration

by Eq. 24 also converges to the fixed point. Furthermore, the fixed point by Eq. 24 satisfies the
necessary and sufficient condition (Eq.11); is equal to w∗.

A.4 Implementation & evaluation details

For the transfer learning evaluation, we use the open-source implementation of Ericsson et al. [6] at
https://github.com/linusericsson/ssl-transfer. For the k-NN evaluation, we refer to the
official implementation of Caron et al. [2] at https://github.com/facebookresearch/dino.
For the CIFAR-10/100 and ImageNet-100 training & evaluations, we refer to the implementations of
da Costa et al. [5] at https://github.com/vturrisi/solo-learn.

A.4.1 ImageNet-1k

Representation learning We describe more detailed implementation details here. When we pre-
train with EMA, we use the EMA backbone for downstream evaluations. We exclude BN parameters
and biases from weight decay in the LARS optimizer. For 100/200 epochs training, we reduce the
warm-up epochs to 5. Similar to temperature annealing of Caron et al. [2], we apply cosine annealing
on β from 0.7 to 2/3. For hyper-parameters tuning, we use ImageNet-100 tuned hyper-parameters
(τt = 0.225, β = 2/3) accross all ImageNet-1k, ImageNet-100, and CIFAR-10/100 datasets. For
other settings, including the projector design, number of clusters, and classification (prototype) head,
we follow SwAV implementation [1, 3].

Semi-supervised learning We explain our semi-supervised learning evaluation training. We train
20 epochs with a batch size of 256. We employ an SGD optimizer with a cosine learning rate schedule.
For 1% training, we find that freezing the backbone encoder (with 0. learning rate) performs the best;
we use learning rates of 0.4 for the linear classifier. For 10% training, we use learning rates of 0.02
and 0.1 for the backbone encoder and linear classifier.

More details about the linear evaluation As the local validation set (in the training dataset), we
use the 1% training split from SimCLR in the ImageNet train set as our local validation set. We do
not use regularization methods such as weight decay, gradient clipping, etc.

While we follow Grill et al. [7] for linear evaluation in the main results (Sec.??), it requires much
computation. Thus, for the additional linear evaluations in the analysis section (Sec. ??) and Appendix,
we fix to use a LARS optimizer with a learning rate of 0.1 since it performs well regardless of different
models and matches the performance with the SGD optimizer. For reference, we report MIRA’s
linear evaluation performance with the LARS optimizer.

Table 1: The linear evaluation results with a LARS optimizer.

Epochs
Method 100 200 400 800

MIRA (without multi-crop) 69.4 72.1 72.9 73.8

MIRA (with multi-crop) 73.5 74.8 75.5 -

4

https://github.com/linusericsson/ssl-transfer
https://github.com/facebookresearch/dino
https://github.com/vturrisi/solo-learn


A.4.2 CIFAR-10/100 and ImageNet-100

Representation learning For experiments on CIFAR-10/100 and ImageNet-100, we follow the
settings in da Costa et al. [5]. We use the same settings of ImageNet-1k experiments except for
the base encoder, optimizer, augmentation scheme, and batch size. We employ ResNet18 as a base
encoder for experiments on CIFAR-10/100 and ImageNet-100. For CIFAR-10/100 datasets, we
change the first 7× 7 convolution layer with stride 2 into 3× 3 convolution layer with stride 1. We
use the SGD optimizer with a weight decay of 10−4. We employ a linearly scaled learning rate with a
base learning rate of 0.3 as in ImageNet-1k and scheduled the learning rate with 10 epochs of a linear
warmup followed by cosine scheduling. For CIFAR-10/100 datasets, we remove the GaussianBlur
and adjust the minimum scale of RandomResizedCrop to 0.2. We use batch sizes of 256 and 512 for
CIFAR10/100 and ImageNet-100, respectively. We train for 1000 and 400 epochs for CIFAR-10/100
and ImageNet-100, respectively.

Linear evaluation Following the da Costa et al. [5], we report online and offline linear evaluation
results for CIFAR-10/100 and ImageNet-100, respectively. For online linear evaluation on CIFAR-
10/100, we use the SGD optimizer with a learning rate of 0.1. We do not apply weight decay and use
cosine scheduled the learning rate. For the linear evaluation on ImageNet-100, we use the LARS
optimizer with learning rate of 0.1 and batch size of 1024.

A.5 Standard deviations

We report the standard deviations for our main results. The linear, semi-supervised, and transfer
learning evaluations are conducted four times with four different random seeds.

Table 2: The results on the linear and semi-supervised evaluations with standard deviations.

Linear Semi 1% Semi 10%
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

75.61 (0.036) 92.50 (0.02) 55.62 (0.032) 80.46 (0.041) 70.11 (0.055) 89.9 (0.046)

Table 3: The results on the transfer learning evaluation with standard deviations.

Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets SUN397 VOC2007

58.93 (0.16) 92.11 (0.035) 60.64 (0.28) 94.20 (0.021) 79.61 (0.071) 77.62 (0.025) 96.16 (0.037) 78.84 (0.087) 89.95 (0.23) 65.84 (0.0019) 84.10 (0.)

A.6 Results on 800 epochs training

We report MIRA 800 epochs training results on the linear and k-NN evaluations. To account for
longer epoch training, we use the initial EMA momentum value of 0.996 as in Chen et al. [4]. For the
linear evaluation of 800 epochs training, we follow the evaluation protocols in the main results [7].

Table 4: MIRA 800 epochs training results on the linear and k-NN evaluations.

Epochs Linear k-NN (100%) k-NN (10%) k-NN (1%)

400 75.6 68.7 60.7 47.8
800 75.7 68.8 61.1 48.2

A.7 Experiments on the detection and segmentation task

We test our method on detectionsegmentation of the COCO 2017 dataset with Masked R-CNN,
R50-C4 on a 2x scheduled setting. We use the configuration from the MoCo official implementation.
MIRA performs better than the supervised baseline and is comparable to MoCo; it is not as dominating
as in the classification tasks.
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Table 5: Detection and segmentation results on the COCO 2017 dataset.

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Sup 40 59.9 43.1 34.7 56.5 36.9
MoCo 40.7 60.5 44.1 35.4 57.3 37.6
MIRA 40.6 61 44.1 35.3 57.2 37.3

A.8 Ablation studies

A.8.1 Ablation study on the number of clusters

In table 6, we study the effect of the number of clusters on the performance of linear and k-NN
evaluation (with 1%/10%/100% labels). We train MIRA on ImageNet-1k for 100 epochs without
multi-crop augmentations while varying the number of clusters. When the number of clusters is
sufficiently large (≥ 3000), we observe no particular gain by varying the number of clusters. This is
consistent with the observation in SwAV [1].

Table 6: The lineark-NN evaluation results while varying the number of clusters.

# of clusters 300 1000 3000 10000 30000

Linear 67.7 69 69.3 69.5 69.5
k-NN (100%) 58.9 60.5 61.6 61.7 61.7
k-NN (10%) 49.5 51.9 53.3 53.3 53.3
k-NN (1%) 36.6 39.7 41.0 41.0 41.0

A.8.2 Ablation study on the number of the fixed point iteration

We report the 100 and 400 epochs pre-training linear evaluation results with 1 and 3 fixed point
iterations. In the 100 epochs training, the models with a smaller number of fixed point iterations,
1it and 3it, perform slightly better (+0.2%); in 400 epochs training, the model with more iterations,
30it, performs better (+0.2∼0.3%). The convergence to the fixed point is not the primary factor for
learning; however, choosing a sufficiently large number of fixed point iterations in longer epoch
training seems reasonable.

Table 7: The linear evaluation results of MIRA while varying the fixed point iteration steps.

# of iterations 1it 3it 30it

100 epochs 69.5 69.5 69.3
400 epochs 72.7 72.6 72.9
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