
Supplement to "FourierFormer: Transformer Meets Generalized
Fourier Integral Theorem"

In the supplementary material, we collect proofs, additional theories, and experiment results deferred
from the main text. In Appendix C, we provide additional theoretical results for generalized Fourier
density estimator and for generalized Fourier nonparametric regression estimator. We provide proofs
of key results in the main text and additional theories in Appendix D. We present experiment details
in Appendix A while including additional experimental results in Appendix E.

A Experiment Details
This section provides the details of the model and training for experiments in Section 4. All of our
experiments are conducted on a server with 4 NVIDIA A100 GPUs.

A.1 Language Modeling
Datasets and metrics WikiText-103 is a collection of articles from Wikipedia, which have long
contextual dependencies. The training set consists of about 28K articles containing 103M running
words; this corresponds to text blocks of about 3600 words. The validation and test sets have 218K
and 246K running words, respectively. Each of them contains 60 articles and about 268K words. Our
experiment follows the standard setting [46, 71] and splits the training data into L-word independent
long segments. For evaluation, we use a batch size of 1, and process the text sequence with a sliding
window of size L. The last position is used for computing perplexity (PPL) except in the first segment,
where all positions are evaluated as in [1, 71].

Models and baselines Our implementation is based on the public code by [71].1 We use their
small and medium models in our experiments. In particular, for small models, the key, value, and
query dimension are set to 128, and the training and evaluation context length are set to 256. For
medium models, the key, value, and query dimension are set to 256, and the training and evaluation
context length are set to 384. In both configurations, the number of heads is 8, the feed-forward layer
dimension is 2048, and the number of layers is 16.
In our experiments on WikiText-103 in Section 4.1, we let R be a learnable scalar initialized to 2
and choose �(x) = x

4. The same setting is used for all attention units in the model; each unit has a
different R. We observe that by setting R to be a learnable vector [R1, . . . , RD]>, the FourierFormer
gains advantage in accuracy but with the cost of the increase in the number of parameters. When R is
a vector [R1, . . . , RD]>, the equation of the Fourier Attention is given by

ĥi := fN,R(qi) =

PN
i=1 vi

QD
j=1 �

⇣
sin(Rj(qij�kij))

Rj(qij�kij)

⌘

PN
i=1

QD
j=1 �

⇣
sin(Rj(qij�kij))

Rj(qij�kij)

⌘ 8 i 2 [N ]. (16)

We provide an ablation study for the effect of R and � in Section E.

A.2 Image Classification
Datasets and metrics The ImageNet dataset [22, 67] consists of 1.28M training images and 50K
validation images. For this benchmark, the model learns to predict the category of the input image
among 1000 categories. Top-1 and top-5 classification accuracies are reported.

Models and baselines We use the DeiT-tiny model [79] with 12 transformer layers, 4 at-
tention heads per layer, and a model dimension of 192. To train the models, we follow the same
setting and configuration as for the baseline [79].2
Similar to the setting for language modeling, in our experiments on ImageNet image classification,
we set R to be a learnable scalar initialized to 1 and choose �(x) = x

4. Different attention units have
different R.

A.3 UEA Time Series Classification
Following [93], we choose 10 out of 30 datasets in the benchmark [5], which vary in input sequence
lengths, the number of classes, and dimensionality, to evaluate our models on temporal sequences.

1Implementation available at https://github.com/IDSIA/lmtool-fwp.
2Implementation available at https://github.com/facebookresearch/deit.
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The test accuracy is reported as an evaluation for the benchmark.

Models and baseline For all experiments in this task, we adapt the setups and configura-
tions as in [93] 3 (for the PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets) and [95]
4 (for the other tasks). The number of heads is 8 in all models, whereas the model dimension and
number of transformer layers are varied.

A.4 Reinforcement learning on the D4RL benchmark
Datasets and metrics In the D4RL benchmark [29], which consists of the continuous control tasks
for offline reinforcement learning, we choose HalfCheetah, Hopper, and Walker as experiment
environments and Medium-Expert, Medium, and Medium-Replay as behavior policies. This selection
is adapted from [93].

Models and baseline The models trained on this benchmark has the same configuration as
in [93], with 3 transformer layers and 4 heads per layer. In our D4RL experiments, we choose
� = x

4 and the initial value of the learnable scalar R to be 1.

A.5 Machine Translation
Datasets and metrics The IWSLT’14 De-En dataset consists of 170K training sentence pairs, 7K
validation pairs, and 7K test pairs. In this task, the model does the translation from German to
English. To measure the performance of the trained model, the BLEU score [55] is used

Models and baselines The architecture of the Fourierformer and the baseline contains 12
transformer layers with 4 heads per layer. Our implementation is based on the public code
https://github.com/pytorch/fairseq/tree/main/examples/translation. In our Fourierformer models, we
choose �(x) = x

2 and the initialization Rinit = 1.0.

B Background
B.1 Kernel Density Estimation
Kernel density estimation (KDE) is the application of kernel smoothing for probability density
estimation, i.e., a non-parametric method to estimate the probability density function of a random
variable based on kernels as weights. Let (x1, x2, . . . , xn) be i.i.d. samples drawn from some
univarite distribution with an unknown density f at any given point x. We are interested in estimating
the shape of this function f . Its kernel density estimator is

f̂h(x) =
1

n

nX

i=1

Kh(x� xi) =
1

nh

nX

i=1

K

✓
x� xi

h

◆
, (17)

where K is the kernel and h > 0 is a smoothing parameter called the bandwidth. A kernel with
subscript h is called the scaled kernel and defined as Kh(x) = 1/hK(x/h).

B.2 Nonparametric Kernel Regression
Kernel regression is a nonparametric technique to estimate the conditional expectation of a random
variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In
any nonparametric regression, the conditional expectation of a variable Y relative to a variable X may
be written:

E(Y |X) = m(X), (18)

where m is an unknown function.

Nadaraya–Watson kernel regression Nadaraya–Watson kernel regression estimates m as a locally
weighted average, using a kernel as a weighting function. The Nadaraya–Watson estimator is given
by

m̂h(x) =

Pn
i=1 Kh(x� xi)yiPn
i=1 Kh(x� xi)

, (19)

where Kh is a scaled kernel with a bandwidth h.
3Implementation available at https://github.com/thuml/Flowformer.
4Implementation available at https://github.com/gzerveas/mvts_transformer.
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B.3 Fourier Integral Theorem
The Fourier integral theorem [92, 7] has been used in nonparametric mode clustering, deconvolution
problem, and generative modeling [33]. It is a combination of Fourier transform and Fourier inverse
transform. In particular, for any function p 2 L1(RD), the Fourier integral theorem is given by

p(x) =
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(2⇡)D

Z

RD

Z

RD

cos(s>(x� y))p(y)dyds

=
1
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Z
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1
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R!1

Z
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DY

j=1

sin(R(xj � yj))

(xj � yj)
p(y)dy, (20)

where x = (x1, . . . , xD), y = (y1, . . . , yD), s = (s1, . . . , sD), and R is the radius. Here, the first
equality in equation (20) is due to

lim
R!1

Z

[�R,R]D
cos(s>(x� y))ds =

Z

RD

cos(s>(x� y))ds

and the final equality in equation (20) is due to
Z

[�R,R]D
cos(s>(x� y))ds =

DY

j=1

sin(R(xj � yj))

(xj � yj)

for all y 2 RD. Equation (20) suggests that pR(x) := 1
⇡D

R
RD

QD
j=1

sin(R(yj�xj))
(yj�xj)

p(y)dy can be
used as an estimator of the function p.

C Additional Theoretical Results
In this section, we provide additional theoretical results for generalized Fourier density estimator in
Appendix C.1 and for generalized Fourier nonparametric regression estimator in Appendix C.2.

C.1 Generalized Fourier density estimator

We now establish the MISE rate of p�N,R in equation (12) when �(z) = z
l and l 2 {1, 2}. We

consider the following tail bounds on the Fourier transform of the true density function p as follows.

Definition 3 (1) We say that p is supersmooth of order ↵ if we have universal constants C1 and C2

such that the following inequalities hold for almost surely x 2 RD:

|bp(x)|  C1 exp

0

@�C2

0

@
DX

j=1

|xj |
↵

1

A

1

A .

Here, bp denotes the Fourier transform of the function p.

(2) The function p is ordinary smooth of order � if there exists universal constant c such that the
following inequality holds for almost surely x 2 RD:

|bp(x)|  c ·

DY

j=1

1

(1 + |xj |
�)

.

The notions of supersmoothness and ordinary smoothness had been used widely in deconvolution
problems [28] and density estimation problems [20, 82, 33]. The supersmooth condition is satisfied
when the function p is Gaussian distribution or Cauchy distribution while the ordinary smooth
condition is satisfied when the function p is Laplace distribution and Beta distribution.

Based on the smoothness conditions in Definition 3, we have the following result regarding the
mean-square integrated error (MISE) of the function generalized Fourier density estimator (12) (see
equation (13) for a definition of MISE) when �(z) = z

l and l 2 {1, 2}.
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Theorem 3 (a) When �(z) = z, the following holds:

• (Supersmooth setting) If the true density function p is supersmooth function of order ↵ for
some ↵ > 0, then there exists universal constants C̄1, C̄2, and C̄3 such that as long as
R � C̄1 we have

MISE(p�N,R)  C̄2

✓
R

max{1�↵,0} exp(�C̄3R
↵) +

R
D

N

◆
.

• (Ordinary smooth setting) If the true density function p is ordinary smooth function of order
� for some � > 1, then there exists universal constants c̄ such that

MISE(p�N,R)  c̄

✓
R

��+1 +
R

D

N

◆
.

(b) When �(z) = z
2, the following holds

• (Supersmooth setting) If the true density function p is supersmooth function of order ↵ for
some ↵ > 0, then there exists universal constants C 0

1 and C
0
2 such that as long as R � C

0
1

we have

MISE(p�N,R)  C
0
2

✓
1

R2
+

R
D

N

◆
.

• (Ordinary smooth setting) If the true density function p is ordinary smooth function of order
� for some � > 3, then there exists universal constants c0 such that

MISE(p�N,R)  c
0
✓

1

R2
+

R
D

N

◆
.

Proof of Theorem 3 is in Appendix D.2. A few comments with the results of Theorem 3 are in order.

When �(z) = z: As part (a) of Theorem 3 indicates, when the function p is supersmooth, by choosing

the radius R to balance the bias and variance, we have the optimal R as R =
⇣

log(N)
C̄3

⌘1/↵
and the

MISE rate of the generalized Fourier density estimator p�N,R becomes O
⇣

log(N)D/↵

N

⌘
. It indicates

that, the MISE rate of p�N,R is parametric when the function p is supersmooth. On the other hand,
when the function p is ordinary smooth, the optimal R becomes R = O(N

1
D+��1 ) and the MISE

rate becomes O
⇣
N

� ��1
D+��1

⌘
. It is slower than the MISE rate when the function p is supersmooth.

When �(z) = z
2: The results of part (b) of Theorem 3 demonstrate that the upper bounds for the

MISE rate of the generalized Fourier density estimator p�N,R is similar for both the supersmooth and

ordinary smooth settings. The optimal radius R = O

⇣
N

1
D+2

⌘
and the MISE rate of the estimator is

O

⇣
N

� 2
D+2

⌘
.

C.2 Generalized Fourier nonparametric regression estimator
In this appendix, we provide additional result for the mean square error (MSE) rate of the generalized
Fourier nonparametric regression estimator fN,R in equation (14) when �(z) = z, namely, the setting
of the Fourier integral theorem. The results when �(z) = z

l for l 2 {2, 3, 4, 5} are left for the future
work.

When �(z) = z, the MSE rate of fN,R had been established in Theorem 9 of Ho et al. [33] when the
function p is supersmooth function. Here, we restate that result for the completeness.

Theorem 4 Assume that the function p is supersmooth function of order ↵ for some ↵ > 0 and
supk2RD |p(k)| < 1. Furthermore, we assume that the function f in the nonparametric regression
model (3) is such that supk2RD |f

2(k)p(k)| < 1 and

|cf.p(t)|  C1Q(|t1|, |t2|, . . . , |tD|) exp

0

@�C2

0

@
DX

j=1

|tj |
↵

1

A

1

A ,
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where cf.p(t) is the Fourier transform of the function f.p, C1 and C2 are some universal constants,
and Q(|t1|, |t2|, . . . , |tD|) is some polynomial function of |t1|, . . . , |tD| with non-negative coefficients.
Then, we can find universal constants C3, C4, C5 such that as long as R � C3 we have

E
⇥
(fN,R(k)� f(k))2

⇤
 C4

R
max{2deg(Q)+2�2↵,0} exp (�2C2R

↵) + (f(k)+C5)R
D

N

p2(k)J̄(R)
,

where deg(Q) denotes the degree of the polynomial function Q, J̄(R) = 1 �

Rmax{2�2↵,0} exp(�2C2R
↵)+RD log(NR)

N
p2(k) .

Proof of Theorem 4 is similar to the proof of Theorem 9 of Ho et al. [33]; therefore, it is omitted.

The result of Theorem 4 indicates that the optimal radius R =
⇣

log(N)
2C2

⌘1/↵
and the MSE rate of the

generalized Fourier nonparametric regression estimator fN,R is O
⇣

log(N)D/↵

N

⌘
.

D Proofs
In this Appendix, we provide proofs for key results in the paper and in Appendix C.

D.1 Proof of Theorem 1

Recall that, k1,k2, . . . ,kN 2 RD are i.i.d. samples from the density function p. In equation (12),
the generalized Fourier density estimator of p0 is given by:

p
�
N,R(k) =

R
D

NAD

NX

i=1

DY

j=1

�

✓
sin(R(kj � kij))

R(kj � kij)

◆
,

where A =
R
R �

⇣
sin(z)

z

⌘
dz, ki = (ki1, . . . , kiD), and k = (k1, . . . , kD). Direct calculation

demonstrates that

E[p�N,R(k)] =
R

D

AD

Z
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DY

j=1

�

✓
sin(R(kj � yj))

R(kj � yj)

◆
p(y)dy

=
1
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Z
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j=1

�

✓
sin(yj)

yj

◆
p

⇣
k �

y

R

⌘
dy. (21)

An application of Taylor expansion up to the m-th order indicates that

p

⇣
k �

y

R

⌘
=

X

0|↵|m

1

R|↵|↵!
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j=1
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p
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(k) + R̄(k,y), (22)

where ↵ = (↵1, . . . ,↵d), |↵| =
Pd

j=1 ↵j , and R̄(k,y) is Taylor remainder admitting the following
form:

R̄(k,y) =
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(�yj)
�j

Z 1

0
(1� t)m

@
m+1

p

@k�

✓
k �

ty
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Plugging equations (22) and (23) into equation (21), we find that

E[p�N,R(k)]

= p(k) +
1
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1
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✓
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According to the hypothesis that
R
R �

⇣
sin(z)

z

⌘
z
j
dz = 0 for all 1  j  m, we obtain that
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◆ DY
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for any ↵ = (↵1, . . . ,↵d) such that 1  |↵|  m. Collecting the above results, we arrive at
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Since the function p 2 C
m+1(RD), we can find positive constant M such that k

@
m+1

p

@k�
(k)k1  M

for all � = (�1, . . . ,�d) such that |�| = m+ 1. Therefore, we find that
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For any � = (�1, . . . ,�D) such that |�| = m+ 1, an application of the AM-GM inequality indicates
that

QD
j=1 |yj |

�j  m(
PD

j=1 |yj |
m+1). Hence, putting these results together leads to

|E[p�N,R(k)]� p(k)| 
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From the hypothesis, we have
R
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sin(z)
z

⌘��� |z|m+1
dz < 1. As a consequence, we can find a

universal constant C depending on A and d such that

|E[p�n,R(k)]� p(k)| 
C

Rm+1

for all k 2 RD.

Bounding the variance: We now move to bound the variance of p�N,R(k). Indeed, direct computation
indicates that
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where the variance and the expectation are taken with respect to K = (K.1, . . . ,K.d) ⇠ p. As
R
R �

2
⇣

sin(z))
z

⌘
dz < 1, there exists a universal constant C 0 depending on A and D such that

Var[p�N,R(k)] 
C

0
R

D

N
.

As a consequence, we obtain the conclusion of the theorem.
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D.2 Proof of Theorem 3
From the Plancherel theorem, we obtain that

Z

RD

h
(p�N,R(k)� p(k)

i2
dk =

1

(2⇡)D

Z

RD

h
bp�N,R(t)� bp(t)

i2
dt, (24)

where bp�N,R and bp are respectively the Fourier transforms of pN,R and p. From the definition of
generalized Fourier density estimator p�N,R in equation (12), it is clear that

bp�N,R(t) =
1

N

NX

i=1

exp(it>ki)
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j=1

KR(tj),

for any t = (t1, . . . , tD) 2 RD where we define KR(y) := 1
⇡

R
R R�
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⌘
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for any y 2 R. To ease the presentation, we denote K̄R(t) :=
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1
N
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>ki) for any t = (t1, t2, . . . , tD) 2 RD. Based on these notations, we can rewrite
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Direct calculation shows that EkN
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Furthermore, we have

EkN
1
[|'N (t)|2] = E['N (t)'N (�t)] = E

" 
1

N

NX

i=1

exp(it>ki)

! 
1

N

NX

i=1

exp(�it>ki)

!#

=
1

N
+

(N � 1)

N
E
⇥
exp(it>k) exp(�it>k)

⇤

=
1

N
+

(N � 1)

N
|bp(t)|2.

Collecting the above results, we have the following equations:
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Z
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Combining the results from equations (24) and (25), we find that

MISE(p�N,R) = EkN
1

Z

RD

h
(p�N,R(k)� p(k)

i2
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�

=
1
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bp2(t)(1� K̄R(t))
2
dt+

1

N

Z
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(1� |bp(t)|2)K̄2
R(t)dt

◆
. (26)

D.2.1 When �(z) = z

We first consider the setting when �(z) = z, namely, the setting of the Fourier integral theorem.
Under this setting, direct computation indicates that

K̄R(t) =
dY

i=1

1{|ti|R}.

Given the smoothness assumptions on the function p, we have two settings on that function.
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Supersmooth setting of the function p: When the function p is supersmooth density, we have

|bp(t)|  C1 exp

0

@�C2

0

@
DX

j=1

|tj |
↵

1

A

1

A ,

where C1 and C2 are some universal constants. Therefore, we find that
Z

RD

bp2(t)(1� K̄R(t))
2
dt =

Z

RD\[�R,R]D
bp2(t)dt  C1

Z

RD\[�R,R]D
exp

0

@�C2

0

@
DX

j=1

|tj |
↵

1

A

1

A dt

 C1

DX

i=1

Z

Bi

exp

0

@�C2

0

@
DX

j=1

|tj |
↵

1

A

1

A dt,

(27)

where Bi := {t 2 RD : |ti| � R}. We now proceed to bound
R
Bi

exp
⇣
�C2

⇣PD
j=1 |tj |

↵
⌘⌘

dt for
all i 2 [D]. Indeed, we have that

Z

Bi

exp

0

@�C2

0

@
DX

j=1

|tj |
↵

1

A

1

A dt =

✓Z

R
exp(�C2|x|

↵)dx

◆D�1

·

Z

|x|�R
exp(�C2|x|

↵)dx

=
C2↵

D�1

(2C2�(1/↵))
D�1 ·

Z

|x|�R
exp(�C2|x|

↵)dx.

When ↵ � 1, we have that
Z 1

R
exp (�C2x

↵) dx 

Z 1

R
x
↵�1 exp (�C2x

↵) dx = exp(�C2R
↵)/(C2↵).

When ↵ 2 (0, 1), then we find that
Z 1

R
exp(�C2x

↵)dx =

Z 1

R
x
1�↵

x
↵�1 exp(�C2x

↵)dx


R

1�↵ exp (�C2R
↵)

C2↵
+

1� ↵

C2↵R
↵

Z 1

R
exp(�C2x

↵)dx,

When the R is such that R↵
�

2(1�↵)
C2↵

, the above inequality becomes
Z 1

R
exp(�C2x

↵)dx 
2R1�↵ exp (�C2R

↵)

C2↵
.

Collecting the above results, we arrive at
Z

|x|�R
exp(�C2|x|

↵)dx 
4Rmax{1�↵,0}

C2↵
exp(�C2R

↵). (28)

Plugging the inequality (28) into the inequality (31), there exists universal constant C3 depending on
↵ and D such that

Z

RD

bp2(t)(1� K̄R(t))
2
dt  C3R

max{1�↵,0} exp(�C1R
↵). (29)

On the other hand, we also have

1

N

Z

RD

(1� |bp(t)|2)K̄2
R(t)dt 

1

N

Z

RD

K̄
2
R(t) 

R
D

N
. (30)

Combining the results from equations (29) and (30), we obtain that

MISE(p�N,R)  C4

✓
R

max{1�↵,0} exp(�C1R
↵) +

R
D

N

◆
.
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As a consequence, we obtain the conclusion of Theorem 3 under the supersmooth setting of the
function p and �(z) = z.

Ordinary smooth setting of the function p: The proof of Theorem 3 when the function p is ordinary
smooth also proceeds in the similar fashion as that when p is supersmooth. In particular, we have

Z

RD

bp2(t)(1� K̄R(t))
2
dt  c

DX

i=1

Z

Bi

DY

j=1

1

(1 + |tj |
�)

dt, (31)

where Bi := {t 2 RD : |ti| � R}. By simple algebra, we obtain that
Z

Bi

DY

j=1

1

(1 + |tj |
�)

dt =

✓Z

R

1

1 + |x|�
dx

◆D�1

·

Z

|x|�R

1

1 + |x|�
dx



✓Z

R

1

1 + |x|�
dx

◆D�1 2

� � 1
R

��+1
.

Putting the above results together leads to
Z

RD

bp2(t)(1� K̄R(t))
2
dt  c1R

��+1
, (32)

where c1 is some universal constant.

Similar to the supersmooth setting, we also can bound the variance 1
N

R
RD (1 � |bp(t)|2)K̄2

R(t)dt
under the ordinary smooth setting as follows:

1

N

Z

RD

(1� |bp(t)|2)K̄2
R(t)dt 

R
D

N
. (33)

Combining the results from equations (32) and (23), we obtain that

MISE(p�N,R)  c2

✓
R

��+1 +
R

D

N

◆
,

where c2 is a universal constant. As a consequence, we obtain the conclusion of Theorem 3 under the
ordinary smooth setting of the function p and �(z) = z.

D.2.2 When �(z) = z
2

When �(z) = z
2, which corresponds to the Féjer integral setting, we find that

K̄R(t) =
1

2D

dY

i=1

✓
2�

����
ti

R

����

◆
1{|ti|2R}.

Given the formulation of the function K̄R, we first bound 1
N

R
RD (1 � |bp(t)|2)K̄2

R(t)dt. Indeed,
direct calculation shows that

1

N

Z
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R

◆
dx

!D

=
2DR

D

N
. (34)

Now, we proceed to upper bound
R
RD bp2(t)(1� K̄R(t))2dt. We have two settings of the function p.

Supersmooth setting of the function p: Given the above formulation of the function K̄R, we have
Z

RD

bp2(t)(1� K̄R(t))
2
dt =

Z
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bp2(t)dt

+
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[�2R,2R]D
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dt. (35)
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By using the similar argument as when �(x) = x, when p is supersmooth function, we obtain that
Z

RD\[�2R,2R]D
bp2(t)dt  C

0
1R

max{1�↵,0} exp(�C
0
2R

↵), (36)

where C
0
1 and C

0
2 are universal constants. On the other hand, we have
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A
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l=1 t
2
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R2m
dt, (37)

where C̄1 is some universal constant. Here, i1, . . . , im in the sum satisfy that they are pairwise
different and 1  i1, . . . , im  D. Now, simple calculations indicate that

Z
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exp

0
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0
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A
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1
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Z
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0
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0

@
DX

j=1

|tj |
↵

1

A

1

A
mY

l=1

t
2
ildt 

C̄2

R2m
, (38)

where C̄2 is some universal constant. Combining the results from equations (37) and (38), there
exists universal constant C̄3 depending on D such that

Z

[�2R,2R]D
bp2(t)

 
1�

DY

i=1

✓
1�

|ti|

2R

◆!2

dt 
C̄3

R2
. (39)

Plugging the inequalities (36) and (39) to equation (35) leads to the following bound
Z

RD

bp2(t)(1� K̄R(t))
2
dt  C

0
1R

max{1�↵,0} exp(�C
0
2R

↵) +
C̄3

R2


C̄4

R2
. (40)

Combining the results from equations (34) and (40), we have

MISE(p�N,R)  C̄5

✓
1

R2
+

R
D

N

◆
.

As a consequence, we obtain the conclusion of Theorem 3 when �(z) = z
2 and the function p is

supersmooth function.

Ordinary smooth setting of the function p: Using similar proof argument as that of the supersmooth
setting of the function p, as � > 3, we find that

Z

RD

bp2(t)(1� K̄R(t))
2
dt 

c

R��1
+

Z

[�2R,2R]D
bp2(t)

 
1�

DY

i=1

✓
1�

|ti|

2R

◆!2

dt


c

R��1
+

c1

R2


c2

R2
, (41)

where c, c1, c2 are universal constants. Combining the inequalities (34) and (41), we obtain the
conclusion of Theorem 3 under the ordinary smooth setting of the function p and �(z) = z

2.

D.3 Proof of Theorem 2
Our proof strategy is to first bound the bias of fN,R(k) and then establish an upper bound for the
variance of fN,R(k) for each k 2 RD.
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D.3.1 Upper bound on the bias
Recall that in equation (14), we define fN,R(k) as follows:

fN,R(k) :=

PN
i=1 vi

QD
j=1 �

⇣
sin(R(kj�kij))

R(kj�kij)

⌘

PN
i=1

QD
j=1 �

⇣
sin(R(kj�kij))

R(kj�kij)

⌘ =
aN,R(k)

p
�
N,R(k)

,

where p
�
N,R(k) is generalized Fourier density estimator in equation (12) while aN,R(k) is defined as

follows:

aN,R(k) :=
R

D

nAD

NX

i=1
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�

✓
sin(R(kj � kij))

R(kj � kij)

◆
.

Simple algebra leads to

fN,R(k)� f(k) =
aN,R(k)� f(k)p�N,R(k)

p(k)
+

(fN,R(k)� f(k))(p(k)� p
�
n,R(k))

p(k)
. (42)

Therefore, via an application of Cauchy-Schwarz inequality we obtain that
(E [fN,R(k)]� f(k))2

 2

⇣
E
h
aN,R(k)� f(k)p�N,R(k)

i⌘2
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⇣
E
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⇣
E
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E
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⇤
E
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(p(k)� p

�
N,R(k))

2
i

p2(k)
,

(43)
where the second inequality is due to the standard inequality E2(XY )  E(X2)E(Y 2) for all the
random variables X,Y .

According to the assumptions of Theorem 2 and the result of Theorem 1, we have

E
h
(p(k)� p

�
N,R(k))

2
i


C1

R2(m+1)
+

C2R
D

N
, (44)

where C1 and C2 are some universal constants in Theorem 1.

Now, we proceed to bound |E [aN,R(k)� f(k)pN,R(k)]|. Direct calculation demonstrates that
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An application of Taylor expansion up to the m-th order indicates that
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where ↵ = (↵1, . . . ,↵d), |↵| =
Pd

j=1 ↵j , and R̄1(k,y), R2(k,y) are Taylor remainders admitting
the following forms:
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Combining equations (46) and (47), we obtain that
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⇣
k �

y

R

⌘
f

⇣
k �

y

R

⌘
=

X

0|↵|,|�|m

1

R|↵|+|�|↵!�!

DY

j=1

(�yj)
↵j+�j

@
|↵|

p

@k↵
(k)

@
|�|

f

@k�
(k)

+

0

@
X

0|↵|m

1

R|↵|↵!

DY

j=1

(�yj)
↵j

@
|↵|

p

@k↵
(k)

1

A R̄2(k,y)

+

0

@
X

0|↵|m

1

R|↵|↵!

DY

j=1

(�yj)
↵j

@
|↵|

f

@k↵
(k)

1

A R̄1(k,y) + R̄1(k,y)R̄2(k,y).

As we have
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⌘
z
j
dz = 0 for all 1  j  m, plugging the equation in the above display to

equation (45) leads to
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h
p
�
N,R(k)

i
+B1 +B2 +B3 +B4,

where B1, B2, B3, B4 are defined as follows:
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Since we have
R
R

����
⇣

sin(z)
z
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we find that as long as R � c̄ for some given constant c̄

|B1| 
1

AD

X

m+1|↵|+|�|2m

1

R|↵|+|�|↵!�!

Z

RD

DY

j=1

�����
✓
sin(yj)

yj

◆����
DY

j=1

|yj |
↵j+�jk

@
|↵|

p

@k↵
k1k

@
|�|

f

@k�
k1


c1

Rm+1
,

where c1 is some universal constant depending on A, D, and c̄. Furthermore, we find that
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where c2 is some universal constant depending on A, d, and c̄. Similarly, we also can demonstrate
that B3  c3/R

m+1 and B4  c4/R
2(m+1) for some universal constants c3 and c4. Putting the

above results together, we arrive at the following bound:
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Plugging the results from equations (44) and (48) to equation (43), we obtain that

(E [fN,R(k)]� f(k))2 
2(c0)2

p2(k)R2(m+1)
+

2E
⇥
(fN,R(k)� f(k))2

⇤

p2(k)

✓
C1

R2(m+1)
+

C2R
D

N

◆
.

(49)

28



D.3.2 Upper bound on the variance
Now, we study the variance of fN,R(k). By taking variance both sides of the equation (42), we obtain
that

var(fN,R(k)) = var
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(50)

Upper bound of T2: To upper bound T2, we utilize the following lemma.

Lemma 1 Assume that the function � and p0 satisfy the assumptions of Theorem 1. Furthermore,
�(z)  C as long as |z|  1 for some universal constant C. Then, for almost all k 2 RD, there exist
universal constants C 0 such that
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Proof of Lemma 1 is given in Appendix D.4. Now given the result of Lemma 1, we denote B as the
event such that
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where C
0 is a universal constant in Lemma 1. Then, we obtain P(B) � 1� �. Hence, we have the

following bound with T2:
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where c
0 is some universal constant and the final inequality is based on the inequalities: P(Bc)  �
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for some universal constant c00 when R is sufficiently large.

Upper bound of T1: As vi = f(ki) + ✏i for all i 2 [N ], direct calculation shows that
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An application of Cauchy-Schwarz inequality leads to
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where the outer expectation is taken with respect to X = (X.1, . . . , X.d) ⇠ p. From the result in
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Putting the above results together, we obtain that
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where c
000 is some universal constant. Combining the results from equation (52) and equation (53),

we find that
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where C is some universal constant. Plugging the bounds of T1 and T2 from equations (51) and (54)
into equation (50), when R � C
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0 is some universal constant, we have
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where C
0
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0
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0
3 are some universal constants. Combining the results with bias and variance in

equations (49) and (55), we obtain the following bound:
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As a consequence, we obtain the conclusion of the theorem.

D.4 Proof of Lemma 1
Invoking triangle inequality, we obtain that
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From the result of Theorem 1, there exists universal constant c such that
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Plugging the bounds (57) and (58) into the triangle inequality (56), we obtain the conclusion of the
lemma.

E Additional Experimental Results
E.1 Effect of �
Using the WikiText-103 language modeling as a case study, we analyze the effect of �(x) on the
performance of FourierFormer. In particular, we set �(x) = x

k and compare the performance of
FourierFormer for k = 1, 2, 3, 4 and 6. We keep other settings the same as in our experiments in
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Table 7. Ablation study on how the choice of �(x) = xk influences the performance of FourierFormer.
Odd values of k cause training to diverge. For even values of k, greater k yields better perplexity
(PPL), but the improvement is small for k > 4. Other choices of � such as �(x) = |x|, ReLU(x), and
sigmoid(x) yield worse results.

Method Valid PPL Test PPL

Baseline dot-product (small) 33.15 34.29

FourierFormer, �(x) = x2 (small) 32.09 33.10
FourierFormer, �(x) = x4 (small) 31.86 32.85
FourierFormer, �(x) = x6 (small) 31.84 32.81
FourierFormer, �(x) = x (small) not converge not converge
FourierFormer, �(x) = x3 (small) not converge not converge

FourierFormer, �(x) = |x| (small) 33.12 34.18
FourierFormer, �(x) = ReLU(x) (small) 33.87 35.01
FourierFormer, �(x) = sigmoid(x) (small) not converge not converge

Table 8. Ablation study on how the initialization of R influences the performance of FourierFormer.
When R is initialized to a too small or too big value, the PPL of the trained FourierFormer is reduced.
Rinit = 1, 2, 3 yield the best results. Fourierformer with learnable vectors R yields better results than
Fourierformer of the same setting using learnable scalars R with the cost of increasing the number of
parameters in the model.

Method Valid PPL Test PPL

Baseline dot-product (small) 33.15 34.29

FourierFormer, Rinit = 0.1 (small) 32.04 33.01
FourierFormer, Rinit = 1.0 (small) 31.89 32.87
FourierFormer, Rinit = 2.0 (small) 31.86 32.85
FourierFormer, Rinit = 3.0 (small) 31.90 32.88
FourierFormer, Rinit = 4.0 (small) 32.58 33.65

FourierFormer, Rinit = 2.0 (small, R is a vector) 31.82 32.80

Section 4.1. We summarize our results in Table 7. We observe that for odd values of k such as
k = 1, 3, the training diverges, confirming that negative density estimator cause instability in training
FourierFormer (see Remark 3.1). For even values of k such as k = 2, 4, 6, we observe that the
greater value of k results in better valid and test PPL. However, the gap between k = 4 and k = 6 is
smaller compared to the gap between k = 2 and k = 4, suggesting that using k > 4 does not add
much advantage in terms of accuracy. We have also studied other choices of � that are nonnegative
functions such as �(x) = |x|, ReLU(x), and sigmoid(x). Those functions yield worse results than
�(x) = x

2m. We summarize these results in Table 7.

E.2 Effect of the Initialization of R
In this section, we study the effect of the initialization value of R on the performance of FourierFormer
when trained for the WikiText-103 language modeling and summarize our results in Table 8. Here we
choose R to be learnable scalars as in experiments described in our main text. Other settings are also
the same as in our experiments in Section 4.1. We observe that when R is initialized too small (e.g.
Rinit = 0.1) or too big (e.g. Rinit = 4), the PPL of the trained FourierFormer decreases. Rinit = 1, 2, 3
yield best results. We also study the performance of the FourierFormer when R is chosen to be a
learnable vector, R = [R1, . . . , RD]>. We report our result in the last row of Table 8. FourierFormer
with R be learnable vectors achieves better PPLs than FourierFormer with R be learnable scalars of
the same setting. As we mentioned in Section A, this advantage comes with an increase in the number
of parameters in the model. Finally, from our experiments, we observe that making R a learnable
parameter yields better PPLs than making R a constant and selecting its value via a careful search.

E.3 Efficiency Analysis
We have included quantitative results on the runtime and GPU memory usage of the FourierFormer
versus the baseline softmax transformer in Table 9.

E.4 Synthetic Examples for Density Estimation and Nonparametric Regression via The
Generalized Fourier Integral Theorem

We empirically confirm Theorem 1 for density estimation and Theorem 2 for nonparametric regression
using the Generalized Fourier Integral Theorem in this section. In Figure 1, we show that the
generalized Fourier density estimator can approximate (A) 1-D and (B) 2-D Gaussian distribution
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Table 9. Runtime and GPU memory usage of the FourierFormer vs. the baseline softmax transformer.
Both models are trained for the WikiText-103 language modeling task.

Model Runtime (Train) GPU Memory (Train) Runtime (Test) GPU Memory (Test)
(miliseconds/sample) (GB) (miliseconds/sample) (GB)

Baseline softmax (small) 5.41 1.43 1.53 0.94

FourierFormer (small) 6.00 1.43 1.70 0.94

(A) (B)

Figure 1. (A) 1-D and (B) 2-D Gaussian distributions and their estimated densities via Fourier Integral
theorem.

Ground Truth Prediction

Figure 2: Non-parametric regression via the Fourier Integral theorem.

with a dense covariance matrix well, which further verify Theorem 1. In Figure 2, we show that the
generalized Fourier nonparametric regression estimator can approximate the function that maps from
a random variable to another random variable, which further verify Theorem 2.

In particular, for the density estimation experiments, we sample 100000 data points from the 1-D and
2-D Gaussian distribution and estimate the density for 1000 uniformly sampled test points. The mean
square errors (MSE) are 1.29⇥ 10�5 and 2.42⇥ 10�5 for the 1-D and 2-D case, respectively. For the
non-parametric regression task, we build a training dataset with 90000 correlated normally distributed
samples and choose a 3-degree polynomial as the ground truth function. The MSE between ground
truth labels and predictions is 0.06.
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